830 lines
31 KiB
C++
830 lines
31 KiB
C++
/*
|
|
* Vulkan Example - Compute shader ray tracing
|
|
*
|
|
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
|
|
*
|
|
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
|
*/
|
|
|
|
#include "vulkanexamplebase.h"
|
|
|
|
#define VERTEX_BUFFER_BIND_ID 0
|
|
#define ENABLE_VALIDATION false
|
|
|
|
#if defined(__ANDROID__)
|
|
#define TEX_DIM 1024
|
|
#else
|
|
#define TEX_DIM 2048
|
|
#endif
|
|
|
|
class VulkanExample : public VulkanExampleBase
|
|
{
|
|
public:
|
|
vks::Texture textureComputeTarget;
|
|
|
|
// Resources for the graphics part of the example
|
|
struct {
|
|
VkDescriptorSetLayout descriptorSetLayout; // Raytraced image display shader binding layout
|
|
VkDescriptorSet descriptorSetPreCompute; // Raytraced image display shader bindings before compute shader image manipulation
|
|
VkDescriptorSet descriptorSet; // Raytraced image display shader bindings after compute shader image manipulation
|
|
VkPipeline pipeline; // Raytraced image display pipeline
|
|
VkPipelineLayout pipelineLayout; // Layout of the graphics pipeline
|
|
} graphics;
|
|
|
|
// Resources for the compute part of the example
|
|
struct {
|
|
struct {
|
|
vks::Buffer spheres; // (Shader) storage buffer object with scene spheres
|
|
vks::Buffer planes; // (Shader) storage buffer object with scene planes
|
|
} storageBuffers;
|
|
vks::Buffer uniformBuffer; // Uniform buffer object containing scene data
|
|
VkQueue queue; // Separate queue for compute commands (queue family may differ from the one used for graphics)
|
|
VkCommandPool commandPool; // Use a separate command pool (queue family may differ from the one used for graphics)
|
|
VkCommandBuffer commandBuffer; // Command buffer storing the dispatch commands and barriers
|
|
VkFence fence; // Synchronization fence to avoid rewriting compute CB if still in use
|
|
VkDescriptorSetLayout descriptorSetLayout; // Compute shader binding layout
|
|
VkDescriptorSet descriptorSet; // Compute shader bindings
|
|
VkPipelineLayout pipelineLayout; // Layout of the compute pipeline
|
|
VkPipeline pipeline; // Compute raytracing pipeline
|
|
struct UBOCompute { // Compute shader uniform block object
|
|
glm::vec3 lightPos;
|
|
float aspectRatio; // Aspect ratio of the viewport
|
|
glm::vec4 fogColor = glm::vec4(0.0f);
|
|
struct {
|
|
glm::vec3 pos = glm::vec3(0.0f, 0.0f, 4.0f);
|
|
glm::vec3 lookat = glm::vec3(0.0f, 0.5f, 0.0f);
|
|
float fov = 10.0f;
|
|
} camera;
|
|
} ubo;
|
|
} compute;
|
|
|
|
// SSBO sphere declaration
|
|
struct Sphere { // Shader uses std140 layout (so we only use vec4 instead of vec3)
|
|
glm::vec3 pos;
|
|
float radius;
|
|
glm::vec3 diffuse;
|
|
float specular;
|
|
uint32_t id; // Id used to identify sphere for raytracing
|
|
glm::ivec3 _pad;
|
|
};
|
|
|
|
// SSBO plane declaration
|
|
struct Plane {
|
|
glm::vec3 normal;
|
|
float distance;
|
|
glm::vec3 diffuse;
|
|
float specular;
|
|
uint32_t id;
|
|
glm::ivec3 _pad;
|
|
};
|
|
|
|
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
|
|
{
|
|
title = "Compute shader ray tracing";
|
|
compute.ubo.aspectRatio = (float)width / (float)height;
|
|
timerSpeed *= 0.25f;
|
|
|
|
camera.type = Camera::CameraType::lookat;
|
|
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
|
|
camera.setRotation(glm::vec3(0.0f, 0.0f, 0.0f));
|
|
camera.setTranslation(glm::vec3(0.0f, 0.0f, -4.0f));
|
|
camera.rotationSpeed = 0.0f;
|
|
camera.movementSpeed = 2.5f;
|
|
|
|
#if defined(VK_USE_PLATFORM_MACOS_MVK)
|
|
// SRS - on macOS set environment variable to ensure MoltenVK disables Metal argument buffers for this example
|
|
setenv("MVK_CONFIG_USE_METAL_ARGUMENT_BUFFERS", "0", 1);
|
|
#endif
|
|
}
|
|
|
|
~VulkanExample()
|
|
{
|
|
// Graphics
|
|
vkDestroyPipeline(device, graphics.pipeline, nullptr);
|
|
vkDestroyPipelineLayout(device, graphics.pipelineLayout, nullptr);
|
|
vkDestroyDescriptorSetLayout(device, graphics.descriptorSetLayout, nullptr);
|
|
|
|
// Compute
|
|
vkDestroyPipeline(device, compute.pipeline, nullptr);
|
|
vkDestroyPipelineLayout(device, compute.pipelineLayout, nullptr);
|
|
vkDestroyDescriptorSetLayout(device, compute.descriptorSetLayout, nullptr);
|
|
vkDestroyFence(device, compute.fence, nullptr);
|
|
vkDestroyCommandPool(device, compute.commandPool, nullptr);
|
|
compute.uniformBuffer.destroy();
|
|
compute.storageBuffers.spheres.destroy();
|
|
compute.storageBuffers.planes.destroy();
|
|
|
|
textureComputeTarget.destroy();
|
|
}
|
|
|
|
// Prepare a texture target that is used to store compute shader calculations
|
|
void prepareTextureTarget(vks::Texture *tex, uint32_t width, uint32_t height, VkFormat format)
|
|
{
|
|
// Get device properties for the requested texture format
|
|
VkFormatProperties formatProperties;
|
|
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
|
|
// Check if requested image format supports image storage operations
|
|
assert(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT);
|
|
|
|
// Prepare blit target texture
|
|
tex->width = width;
|
|
tex->height = height;
|
|
|
|
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
|
|
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
|
|
imageCreateInfo.format = format;
|
|
imageCreateInfo.extent = { width, height, 1 };
|
|
imageCreateInfo.mipLevels = 1;
|
|
imageCreateInfo.arrayLayers = 1;
|
|
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
|
|
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
|
// Image will be sampled in the fragment shader and used as storage target in the compute shader
|
|
imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT;
|
|
imageCreateInfo.flags = 0;
|
|
|
|
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();
|
|
VkMemoryRequirements memReqs;
|
|
|
|
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &tex->image));
|
|
vkGetImageMemoryRequirements(device, tex->image, &memReqs);
|
|
memAllocInfo.allocationSize = memReqs.size;
|
|
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
|
|
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &tex->deviceMemory));
|
|
VK_CHECK_RESULT(vkBindImageMemory(device, tex->image, tex->deviceMemory, 0));
|
|
|
|
VkCommandBuffer layoutCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
|
|
|
tex->imageLayout = VK_IMAGE_LAYOUT_GENERAL;
|
|
vks::tools::setImageLayout(
|
|
layoutCmd,
|
|
tex->image,
|
|
VK_IMAGE_ASPECT_COLOR_BIT,
|
|
VK_IMAGE_LAYOUT_UNDEFINED,
|
|
tex->imageLayout);
|
|
|
|
vulkanDevice->flushCommandBuffer(layoutCmd, queue, true);
|
|
|
|
// Create sampler
|
|
VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo();
|
|
sampler.magFilter = VK_FILTER_LINEAR;
|
|
sampler.minFilter = VK_FILTER_LINEAR;
|
|
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
|
|
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
|
|
sampler.addressModeV = sampler.addressModeU;
|
|
sampler.addressModeW = sampler.addressModeU;
|
|
sampler.mipLodBias = 0.0f;
|
|
sampler.maxAnisotropy = 1.0f;
|
|
sampler.compareOp = VK_COMPARE_OP_NEVER;
|
|
sampler.minLod = 0.0f;
|
|
sampler.maxLod = 0.0f;
|
|
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
|
|
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &tex->sampler));
|
|
|
|
// Create image view
|
|
VkImageViewCreateInfo view = vks::initializers::imageViewCreateInfo();
|
|
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
|
|
view.format = format;
|
|
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
|
|
view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
|
|
view.image = tex->image;
|
|
VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &tex->view));
|
|
|
|
// Initialize a descriptor for later use
|
|
tex->descriptor.imageLayout = tex->imageLayout;
|
|
tex->descriptor.imageView = tex->view;
|
|
tex->descriptor.sampler = tex->sampler;
|
|
tex->device = vulkanDevice;
|
|
}
|
|
|
|
void buildCommandBuffers()
|
|
{
|
|
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
|
|
|
VkClearValue clearValues[2];
|
|
clearValues[0].color = defaultClearColor;
|
|
clearValues[1].depthStencil = { 1.0f, 0 };
|
|
|
|
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
|
|
renderPassBeginInfo.renderPass = renderPass;
|
|
renderPassBeginInfo.renderArea.offset.x = 0;
|
|
renderPassBeginInfo.renderArea.offset.y = 0;
|
|
renderPassBeginInfo.renderArea.extent.width = width;
|
|
renderPassBeginInfo.renderArea.extent.height = height;
|
|
renderPassBeginInfo.clearValueCount = 2;
|
|
renderPassBeginInfo.pClearValues = clearValues;
|
|
|
|
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
|
|
{
|
|
// Set target frame buffer
|
|
renderPassBeginInfo.framebuffer = frameBuffers[i];
|
|
|
|
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
|
|
|
|
// Image memory barrier to make sure that compute shader writes are finished before sampling from the texture
|
|
VkImageMemoryBarrier imageMemoryBarrier = {};
|
|
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
|
|
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_GENERAL;
|
|
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
|
|
imageMemoryBarrier.image = textureComputeTarget.image;
|
|
imageMemoryBarrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
|
|
if (vulkanDevice->queueFamilyIndices.graphics != vulkanDevice->queueFamilyIndices.compute)
|
|
{
|
|
// Acquire barrier for graphics queue
|
|
imageMemoryBarrier.srcAccessMask = 0;
|
|
imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
|
|
imageMemoryBarrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
|
|
imageMemoryBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
|
|
vkCmdPipelineBarrier(
|
|
drawCmdBuffers[i],
|
|
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
|
|
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
|
|
VK_FLAGS_NONE,
|
|
0, nullptr,
|
|
0, nullptr,
|
|
1, &imageMemoryBarrier);
|
|
}
|
|
else
|
|
{
|
|
// Combined barrier on single queue family
|
|
imageMemoryBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
|
|
imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
|
|
imageMemoryBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
|
imageMemoryBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
|
vkCmdPipelineBarrier(
|
|
drawCmdBuffers[i],
|
|
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
|
|
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
|
|
VK_FLAGS_NONE,
|
|
0, nullptr,
|
|
0, nullptr,
|
|
1, &imageMemoryBarrier);
|
|
}
|
|
|
|
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
|
|
|
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
|
|
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
|
|
|
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
|
|
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
|
|
|
// Display ray traced image generated by compute shader as a full screen quad
|
|
// Quad vertices are generated in the vertex shader
|
|
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelineLayout, 0, 1, &graphics.descriptorSet, 0, NULL);
|
|
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipeline);
|
|
vkCmdDraw(drawCmdBuffers[i], 3, 1, 0, 0);
|
|
|
|
drawUI(drawCmdBuffers[i]);
|
|
|
|
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
|
|
|
if (vulkanDevice->queueFamilyIndices.graphics != vulkanDevice->queueFamilyIndices.compute)
|
|
{
|
|
// Release barrier from graphics queue
|
|
imageMemoryBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
|
|
imageMemoryBarrier.dstAccessMask = 0;
|
|
imageMemoryBarrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
|
|
imageMemoryBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
|
|
vkCmdPipelineBarrier(
|
|
drawCmdBuffers[i],
|
|
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
|
|
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
|
|
VK_FLAGS_NONE,
|
|
0, nullptr,
|
|
0, nullptr,
|
|
1, &imageMemoryBarrier);
|
|
}
|
|
|
|
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
|
|
}
|
|
|
|
}
|
|
|
|
void buildComputeCommandBuffer()
|
|
{
|
|
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
|
|
|
VK_CHECK_RESULT(vkBeginCommandBuffer(compute.commandBuffer, &cmdBufInfo));
|
|
|
|
VkImageMemoryBarrier imageMemoryBarrier = {};
|
|
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
|
|
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_GENERAL;
|
|
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
|
|
imageMemoryBarrier.image = textureComputeTarget.image;
|
|
imageMemoryBarrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
|
|
if (vulkanDevice->queueFamilyIndices.graphics != vulkanDevice->queueFamilyIndices.compute)
|
|
{
|
|
// Acquire barrier for compute queue
|
|
imageMemoryBarrier.srcAccessMask = 0;
|
|
imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
|
|
imageMemoryBarrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
|
|
imageMemoryBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
|
|
vkCmdPipelineBarrier(
|
|
compute.commandBuffer,
|
|
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
|
|
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
|
|
VK_FLAGS_NONE,
|
|
0, nullptr,
|
|
0, nullptr,
|
|
1, &imageMemoryBarrier);
|
|
}
|
|
|
|
vkCmdBindPipeline(compute.commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipeline);
|
|
vkCmdBindDescriptorSets(compute.commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipelineLayout, 0, 1, &compute.descriptorSet, 0, 0);
|
|
|
|
vkCmdDispatch(compute.commandBuffer, textureComputeTarget.width / 16, textureComputeTarget.height / 16, 1);
|
|
|
|
if (vulkanDevice->queueFamilyIndices.graphics != vulkanDevice->queueFamilyIndices.compute)
|
|
{
|
|
// Release barrier from compute queue
|
|
imageMemoryBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
|
|
imageMemoryBarrier.dstAccessMask = 0;
|
|
imageMemoryBarrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
|
|
imageMemoryBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
|
|
vkCmdPipelineBarrier(
|
|
compute.commandBuffer,
|
|
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
|
|
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
|
|
VK_FLAGS_NONE,
|
|
0, nullptr,
|
|
0, nullptr,
|
|
1, &imageMemoryBarrier);
|
|
}
|
|
|
|
vkEndCommandBuffer(compute.commandBuffer);
|
|
}
|
|
|
|
uint32_t currentId = 0; // Id used to identify objects by the ray tracing shader
|
|
|
|
Sphere newSphere(glm::vec3 pos, float radius, glm::vec3 diffuse, float specular)
|
|
{
|
|
Sphere sphere;
|
|
sphere.id = currentId++;
|
|
sphere.pos = pos;
|
|
sphere.radius = radius;
|
|
sphere.diffuse = diffuse;
|
|
sphere.specular = specular;
|
|
return sphere;
|
|
}
|
|
|
|
Plane newPlane(glm::vec3 normal, float distance, glm::vec3 diffuse, float specular)
|
|
{
|
|
Plane plane;
|
|
plane.id = currentId++;
|
|
plane.normal = normal;
|
|
plane.distance = distance;
|
|
plane.diffuse = diffuse;
|
|
plane.specular = specular;
|
|
return plane;
|
|
}
|
|
|
|
// Setup and fill the compute shader storage buffers containing primitives for the raytraced scene
|
|
void prepareStorageBuffers()
|
|
{
|
|
// Spheres
|
|
std::vector<Sphere> spheres;
|
|
spheres.push_back(newSphere(glm::vec3(1.75f, -0.5f, 0.0f), 1.0f, glm::vec3(0.0f, 1.0f, 0.0f), 32.0f));
|
|
spheres.push_back(newSphere(glm::vec3(0.0f, 1.0f, -0.5f), 1.0f, glm::vec3(0.65f, 0.77f, 0.97f), 32.0f));
|
|
spheres.push_back(newSphere(glm::vec3(-1.75f, -0.75f, -0.5f), 1.25f, glm::vec3(0.9f, 0.76f, 0.46f), 32.0f));
|
|
VkDeviceSize storageBufferSize = spheres.size() * sizeof(Sphere);
|
|
|
|
// Stage
|
|
vks::Buffer stagingBuffer;
|
|
|
|
vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&stagingBuffer,
|
|
storageBufferSize,
|
|
spheres.data());
|
|
|
|
vulkanDevice->createBuffer(
|
|
// The SSBO will be used as a storage buffer for the compute pipeline and as a vertex buffer in the graphics pipeline
|
|
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
|
|
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
|
|
&compute.storageBuffers.spheres,
|
|
storageBufferSize);
|
|
|
|
// Copy to staging buffer
|
|
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
|
VkBufferCopy copyRegion = {};
|
|
copyRegion.size = storageBufferSize;
|
|
vkCmdCopyBuffer(copyCmd, stagingBuffer.buffer, compute.storageBuffers.spheres.buffer, 1, ©Region);
|
|
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
|
|
|
|
stagingBuffer.destroy();
|
|
|
|
// Planes
|
|
std::vector<Plane> planes;
|
|
const float roomDim = 4.0f;
|
|
planes.push_back(newPlane(glm::vec3(0.0f, 1.0f, 0.0f), roomDim, glm::vec3(1.0f), 32.0f));
|
|
planes.push_back(newPlane(glm::vec3(0.0f, -1.0f, 0.0f), roomDim, glm::vec3(1.0f), 32.0f));
|
|
planes.push_back(newPlane(glm::vec3(0.0f, 0.0f, 1.0f), roomDim, glm::vec3(1.0f), 32.0f));
|
|
planes.push_back(newPlane(glm::vec3(0.0f, 0.0f, -1.0f), roomDim, glm::vec3(0.0f), 32.0f));
|
|
planes.push_back(newPlane(glm::vec3(-1.0f, 0.0f, 0.0f), roomDim, glm::vec3(1.0f, 0.0f, 0.0f), 32.0f));
|
|
planes.push_back(newPlane(glm::vec3(1.0f, 0.0f, 0.0f), roomDim, glm::vec3(0.0f, 1.0f, 0.0f), 32.0f));
|
|
storageBufferSize = planes.size() * sizeof(Plane);
|
|
|
|
// Stage
|
|
vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&stagingBuffer,
|
|
storageBufferSize,
|
|
planes.data());
|
|
|
|
vulkanDevice->createBuffer(
|
|
// The SSBO will be used as a storage buffer for the compute pipeline and as a vertex buffer in the graphics pipeline
|
|
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
|
|
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
|
|
&compute.storageBuffers.planes,
|
|
storageBufferSize);
|
|
|
|
// Copy to staging buffer
|
|
copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
|
copyRegion.size = storageBufferSize;
|
|
vkCmdCopyBuffer(copyCmd, stagingBuffer.buffer, compute.storageBuffers.planes.buffer, 1, ©Region);
|
|
// Add an initial release barrier to the graphics queue,
|
|
// so that when the compute command buffer executes for the first time
|
|
// it doesn't complain about a lack of a corresponding "release" to its "acquire"
|
|
if (vulkanDevice->queueFamilyIndices.graphics != vulkanDevice->queueFamilyIndices.compute)
|
|
{
|
|
VkImageMemoryBarrier imageMemoryBarrier = {};
|
|
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
|
|
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_GENERAL;
|
|
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
|
|
imageMemoryBarrier.image = textureComputeTarget.image;
|
|
imageMemoryBarrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
|
|
imageMemoryBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
|
|
imageMemoryBarrier.dstAccessMask = 0;
|
|
imageMemoryBarrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
|
|
imageMemoryBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
|
|
vkCmdPipelineBarrier(
|
|
copyCmd,
|
|
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
|
|
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
|
|
VK_FLAGS_NONE,
|
|
0, nullptr,
|
|
0, nullptr,
|
|
1, &imageMemoryBarrier);
|
|
}
|
|
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
|
|
|
|
stagingBuffer.destroy();
|
|
}
|
|
|
|
void setupDescriptorPool()
|
|
{
|
|
std::vector<VkDescriptorPoolSize> poolSizes =
|
|
{
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2), // Compute UBO
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 4), // Graphics image samplers
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1), // Storage image for ray traced image output
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 2), // Storage buffer for the scene primitives
|
|
};
|
|
|
|
VkDescriptorPoolCreateInfo descriptorPoolInfo =
|
|
vks::initializers::descriptorPoolCreateInfo(
|
|
poolSizes.size(),
|
|
poolSizes.data(),
|
|
3);
|
|
|
|
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
|
|
}
|
|
|
|
void setupDescriptorSetLayout()
|
|
{
|
|
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
|
|
{
|
|
// Binding 0 : Fragment shader image sampler
|
|
vks::initializers::descriptorSetLayoutBinding(
|
|
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
|
|
VK_SHADER_STAGE_FRAGMENT_BIT,
|
|
0)
|
|
};
|
|
|
|
VkDescriptorSetLayoutCreateInfo descriptorLayout =
|
|
vks::initializers::descriptorSetLayoutCreateInfo(
|
|
setLayoutBindings.data(),
|
|
setLayoutBindings.size());
|
|
|
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &graphics.descriptorSetLayout));
|
|
|
|
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
|
|
vks::initializers::pipelineLayoutCreateInfo(
|
|
&graphics.descriptorSetLayout,
|
|
1);
|
|
|
|
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &graphics.pipelineLayout));
|
|
}
|
|
|
|
void setupDescriptorSet()
|
|
{
|
|
VkDescriptorSetAllocateInfo allocInfo =
|
|
vks::initializers::descriptorSetAllocateInfo(
|
|
descriptorPool,
|
|
&graphics.descriptorSetLayout,
|
|
1);
|
|
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &graphics.descriptorSet));
|
|
|
|
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
|
|
{
|
|
// Binding 0 : Fragment shader texture sampler
|
|
vks::initializers::writeDescriptorSet(
|
|
graphics.descriptorSet,
|
|
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
|
|
0,
|
|
&textureComputeTarget.descriptor)
|
|
};
|
|
|
|
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
|
|
}
|
|
|
|
void preparePipelines()
|
|
{
|
|
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
|
|
vks::initializers::pipelineInputAssemblyStateCreateInfo(
|
|
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
|
|
0,
|
|
VK_FALSE);
|
|
|
|
VkPipelineRasterizationStateCreateInfo rasterizationState =
|
|
vks::initializers::pipelineRasterizationStateCreateInfo(
|
|
VK_POLYGON_MODE_FILL,
|
|
VK_CULL_MODE_FRONT_BIT,
|
|
VK_FRONT_FACE_COUNTER_CLOCKWISE,
|
|
0);
|
|
|
|
VkPipelineColorBlendAttachmentState blendAttachmentState =
|
|
vks::initializers::pipelineColorBlendAttachmentState(
|
|
0xf,
|
|
VK_FALSE);
|
|
|
|
VkPipelineColorBlendStateCreateInfo colorBlendState =
|
|
vks::initializers::pipelineColorBlendStateCreateInfo(
|
|
1,
|
|
&blendAttachmentState);
|
|
|
|
VkPipelineDepthStencilStateCreateInfo depthStencilState =
|
|
vks::initializers::pipelineDepthStencilStateCreateInfo(
|
|
VK_FALSE,
|
|
VK_FALSE,
|
|
VK_COMPARE_OP_LESS_OR_EQUAL);
|
|
|
|
VkPipelineViewportStateCreateInfo viewportState =
|
|
vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
|
|
|
VkPipelineMultisampleStateCreateInfo multisampleState =
|
|
vks::initializers::pipelineMultisampleStateCreateInfo(
|
|
VK_SAMPLE_COUNT_1_BIT,
|
|
0);
|
|
|
|
std::vector<VkDynamicState> dynamicStateEnables = {
|
|
VK_DYNAMIC_STATE_VIEWPORT,
|
|
VK_DYNAMIC_STATE_SCISSOR
|
|
};
|
|
VkPipelineDynamicStateCreateInfo dynamicState =
|
|
vks::initializers::pipelineDynamicStateCreateInfo(
|
|
dynamicStateEnables.data(),
|
|
dynamicStateEnables.size(),
|
|
0);
|
|
|
|
// Display pipeline
|
|
std::array<VkPipelineShaderStageCreateInfo,2> shaderStages;
|
|
|
|
shaderStages[0] = loadShader(getShadersPath() + "computeraytracing/texture.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
|
shaderStages[1] = loadShader(getShadersPath() + "computeraytracing/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
|
|
|
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
|
|
vks::initializers::pipelineCreateInfo(
|
|
graphics.pipelineLayout,
|
|
renderPass,
|
|
0);
|
|
|
|
VkPipelineVertexInputStateCreateInfo emptyInputState{};
|
|
emptyInputState.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
|
|
emptyInputState.vertexAttributeDescriptionCount = 0;
|
|
emptyInputState.pVertexAttributeDescriptions = nullptr;
|
|
emptyInputState.vertexBindingDescriptionCount = 0;
|
|
emptyInputState.pVertexBindingDescriptions = nullptr;
|
|
pipelineCreateInfo.pVertexInputState = &emptyInputState;
|
|
|
|
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
|
|
pipelineCreateInfo.pRasterizationState = &rasterizationState;
|
|
pipelineCreateInfo.pColorBlendState = &colorBlendState;
|
|
pipelineCreateInfo.pMultisampleState = &multisampleState;
|
|
pipelineCreateInfo.pViewportState = &viewportState;
|
|
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
|
|
pipelineCreateInfo.pDynamicState = &dynamicState;
|
|
pipelineCreateInfo.stageCount = shaderStages.size();
|
|
pipelineCreateInfo.pStages = shaderStages.data();
|
|
pipelineCreateInfo.renderPass = renderPass;
|
|
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &graphics.pipeline));
|
|
}
|
|
|
|
// Prepare the compute pipeline that generates the ray traced image
|
|
void prepareCompute()
|
|
{
|
|
// Create a compute capable device queue
|
|
// The VulkanDevice::createLogicalDevice functions finds a compute capable queue and prefers queue families that only support compute
|
|
// Depending on the implementation this may result in different queue family indices for graphics and computes,
|
|
// requiring proper synchronization (see the memory barriers in buildComputeCommandBuffer)
|
|
VkDeviceQueueCreateInfo queueCreateInfo = {};
|
|
queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
|
|
queueCreateInfo.pNext = NULL;
|
|
queueCreateInfo.queueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
|
|
queueCreateInfo.queueCount = 1;
|
|
vkGetDeviceQueue(device, vulkanDevice->queueFamilyIndices.compute, 0, &compute.queue);
|
|
|
|
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
|
|
// Binding 0: Storage image (raytraced output)
|
|
vks::initializers::descriptorSetLayoutBinding(
|
|
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
|
|
VK_SHADER_STAGE_COMPUTE_BIT,
|
|
0),
|
|
// Binding 1: Uniform buffer block
|
|
vks::initializers::descriptorSetLayoutBinding(
|
|
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
|
|
VK_SHADER_STAGE_COMPUTE_BIT,
|
|
1),
|
|
// Binding 1: Shader storage buffer for the spheres
|
|
vks::initializers::descriptorSetLayoutBinding(
|
|
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
|
|
VK_SHADER_STAGE_COMPUTE_BIT,
|
|
2),
|
|
// Binding 1: Shader storage buffer for the planes
|
|
vks::initializers::descriptorSetLayoutBinding(
|
|
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
|
|
VK_SHADER_STAGE_COMPUTE_BIT,
|
|
3)
|
|
};
|
|
|
|
VkDescriptorSetLayoutCreateInfo descriptorLayout =
|
|
vks::initializers::descriptorSetLayoutCreateInfo(
|
|
setLayoutBindings.data(),
|
|
setLayoutBindings.size());
|
|
|
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &compute.descriptorSetLayout));
|
|
|
|
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
|
|
vks::initializers::pipelineLayoutCreateInfo(
|
|
&compute.descriptorSetLayout,
|
|
1);
|
|
|
|
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &compute.pipelineLayout));
|
|
|
|
VkDescriptorSetAllocateInfo allocInfo =
|
|
vks::initializers::descriptorSetAllocateInfo(
|
|
descriptorPool,
|
|
&compute.descriptorSetLayout,
|
|
1);
|
|
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &compute.descriptorSet));
|
|
|
|
std::vector<VkWriteDescriptorSet> computeWriteDescriptorSets =
|
|
{
|
|
// Binding 0: Output storage image
|
|
vks::initializers::writeDescriptorSet(
|
|
compute.descriptorSet,
|
|
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
|
|
0,
|
|
&textureComputeTarget.descriptor),
|
|
// Binding 1: Uniform buffer block
|
|
vks::initializers::writeDescriptorSet(
|
|
compute.descriptorSet,
|
|
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
|
|
1,
|
|
&compute.uniformBuffer.descriptor),
|
|
// Binding 2: Shader storage buffer for the spheres
|
|
vks::initializers::writeDescriptorSet(
|
|
compute.descriptorSet,
|
|
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
|
|
2,
|
|
&compute.storageBuffers.spheres.descriptor),
|
|
// Binding 2: Shader storage buffer for the planes
|
|
vks::initializers::writeDescriptorSet(
|
|
compute.descriptorSet,
|
|
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
|
|
3,
|
|
&compute.storageBuffers.planes.descriptor)
|
|
};
|
|
|
|
vkUpdateDescriptorSets(device, computeWriteDescriptorSets.size(), computeWriteDescriptorSets.data(), 0, NULL);
|
|
|
|
// Create compute shader pipelines
|
|
VkComputePipelineCreateInfo computePipelineCreateInfo =
|
|
vks::initializers::computePipelineCreateInfo(
|
|
compute.pipelineLayout,
|
|
0);
|
|
|
|
computePipelineCreateInfo.stage = loadShader(getShadersPath() + "computeraytracing/raytracing.comp.spv", VK_SHADER_STAGE_COMPUTE_BIT);
|
|
VK_CHECK_RESULT(vkCreateComputePipelines(device, pipelineCache, 1, &computePipelineCreateInfo, nullptr, &compute.pipeline));
|
|
|
|
// Separate command pool as queue family for compute may be different than graphics
|
|
VkCommandPoolCreateInfo cmdPoolInfo = {};
|
|
cmdPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
|
|
cmdPoolInfo.queueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
|
|
cmdPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
|
|
VK_CHECK_RESULT(vkCreateCommandPool(device, &cmdPoolInfo, nullptr, &compute.commandPool));
|
|
|
|
// Create a command buffer for compute operations
|
|
VkCommandBufferAllocateInfo cmdBufAllocateInfo =
|
|
vks::initializers::commandBufferAllocateInfo(
|
|
compute.commandPool,
|
|
VK_COMMAND_BUFFER_LEVEL_PRIMARY,
|
|
1);
|
|
|
|
VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &compute.commandBuffer));
|
|
|
|
// Fence for compute CB sync
|
|
VkFenceCreateInfo fenceCreateInfo = vks::initializers::fenceCreateInfo(VK_FENCE_CREATE_SIGNALED_BIT);
|
|
VK_CHECK_RESULT(vkCreateFence(device, &fenceCreateInfo, nullptr, &compute.fence));
|
|
|
|
// Build a single command buffer containing the compute dispatch commands
|
|
buildComputeCommandBuffer();
|
|
}
|
|
|
|
// Prepare and initialize uniform buffer containing shader uniforms
|
|
void prepareUniformBuffers()
|
|
{
|
|
// Compute shader parameter uniform buffer block
|
|
vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&compute.uniformBuffer,
|
|
sizeof(compute.ubo));
|
|
|
|
updateUniformBuffers();
|
|
}
|
|
|
|
void updateUniformBuffers()
|
|
{
|
|
compute.ubo.lightPos.x = 0.0f + sin(glm::radians(timer * 360.0f)) * cos(glm::radians(timer * 360.0f)) * 2.0f;
|
|
compute.ubo.lightPos.y = 0.0f + sin(glm::radians(timer * 360.0f)) * 2.0f;
|
|
compute.ubo.lightPos.z = 0.0f + cos(glm::radians(timer * 360.0f)) * 2.0f;
|
|
compute.ubo.camera.pos = camera.position * -1.0f;
|
|
VK_CHECK_RESULT(compute.uniformBuffer.map());
|
|
memcpy(compute.uniformBuffer.mapped, &compute.ubo, sizeof(compute.ubo));
|
|
compute.uniformBuffer.unmap();
|
|
}
|
|
|
|
void draw()
|
|
{
|
|
// Submit compute commands
|
|
// Use a fence to ensure that compute command buffer has finished executing before using it again
|
|
vkWaitForFences(device, 1, &compute.fence, VK_TRUE, UINT64_MAX);
|
|
vkResetFences(device, 1, &compute.fence);
|
|
|
|
VkSubmitInfo computeSubmitInfo = vks::initializers::submitInfo();
|
|
computeSubmitInfo.commandBufferCount = 1;
|
|
computeSubmitInfo.pCommandBuffers = &compute.commandBuffer;
|
|
|
|
VK_CHECK_RESULT(vkQueueSubmit(compute.queue, 1, &computeSubmitInfo, compute.fence));
|
|
|
|
VulkanExampleBase::prepareFrame();
|
|
|
|
// Command buffer to be submitted to the queue
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
|
|
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
|
|
|
|
VulkanExampleBase::submitFrame();
|
|
}
|
|
|
|
void prepare()
|
|
{
|
|
VulkanExampleBase::prepare();
|
|
prepareTextureTarget(&textureComputeTarget, TEX_DIM, TEX_DIM, VK_FORMAT_R8G8B8A8_UNORM);
|
|
prepareStorageBuffers();
|
|
prepareUniformBuffers();
|
|
setupDescriptorSetLayout();
|
|
preparePipelines();
|
|
setupDescriptorPool();
|
|
setupDescriptorSet();
|
|
prepareCompute();
|
|
buildCommandBuffers();
|
|
prepared = true;
|
|
}
|
|
|
|
virtual void render()
|
|
{
|
|
if (!prepared)
|
|
return;
|
|
draw();
|
|
if (!paused)
|
|
{
|
|
updateUniformBuffers();
|
|
}
|
|
}
|
|
|
|
virtual void viewChanged()
|
|
{
|
|
compute.ubo.aspectRatio = (float)width / (float)height;
|
|
updateUniformBuffers();
|
|
}
|
|
};
|
|
|
|
VULKAN_EXAMPLE_MAIN()
|