procedural-3d-engine/examples/shadowmapping/shadowmapping.cpp
2022-05-08 11:43:06 +02:00

626 lines
26 KiB
C++

/*
* Vulkan Example - Shadow mapping for directional light sources
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkanexamplebase.h"
#include "VulkanglTFModel.h"
#define ENABLE_VALIDATION false
// 16 bits of depth is enough for such a small scene
#define DEPTH_FORMAT VK_FORMAT_D16_UNORM
// Shadowmap properties
#if defined(__ANDROID__)
#define SHADOWMAP_DIM 1024
#else
#define SHADOWMAP_DIM 2048
#endif
#define DEFAULT_SHADOWMAP_FILTER VK_FILTER_LINEAR
class VulkanExample : public VulkanExampleBase
{
public:
bool displayShadowMap = false;
bool filterPCF = true;
// Keep depth range as small as possible
// for better shadow map precision
float zNear = 1.0f;
float zFar = 96.0f;
// Depth bias (and slope) are used to avoid shadowing artifacts
// Constant depth bias factor (always applied)
float depthBiasConstant = 1.25f;
// Slope depth bias factor, applied depending on polygon's slope
float depthBiasSlope = 1.75f;
glm::vec3 lightPos = glm::vec3();
float lightFOV = 45.0f;
std::vector<vkglTF::Model> scenes;
std::vector<std::string> sceneNames;
int32_t sceneIndex = 0;
struct {
vks::Buffer scene;
vks::Buffer offscreen;
} uniformBuffers;
struct {
glm::mat4 projection;
glm::mat4 view;
glm::mat4 model;
glm::mat4 depthBiasMVP;
glm::vec4 lightPos;
// Used for depth map visualization
float zNear;
float zFar;
} uboVSscene;
struct {
glm::mat4 depthMVP;
} uboOffscreenVS;
struct {
VkPipeline offscreen;
VkPipeline sceneShadow;
VkPipeline sceneShadowPCF;
VkPipeline debug;
} pipelines;
VkPipelineLayout pipelineLayout;
struct {
VkDescriptorSet offscreen;
VkDescriptorSet scene;
VkDescriptorSet debug;
} descriptorSets;
VkDescriptorSetLayout descriptorSetLayout;
// Framebuffer for offscreen rendering
struct FrameBufferAttachment {
VkImage image;
VkDeviceMemory mem;
VkImageView view;
};
struct OffscreenPass {
int32_t width, height;
VkFramebuffer frameBuffer;
FrameBufferAttachment depth;
VkRenderPass renderPass;
VkSampler depthSampler;
VkDescriptorImageInfo descriptor;
} offscreenPass;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "Projected shadow mapping";
camera.type = Camera::CameraType::lookat;
camera.setPosition(glm::vec3(0.0f, -0.0f, -20.0f));
camera.setRotation(glm::vec3(-15.0f, -390.0f, 0.0f));
camera.setPerspective(60.0f, (float)width / (float)height, 1.0f, 256.0f);
timerSpeed *= 0.5f;
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
// Frame buffer
vkDestroySampler(device, offscreenPass.depthSampler, nullptr);
// Depth attachment
vkDestroyImageView(device, offscreenPass.depth.view, nullptr);
vkDestroyImage(device, offscreenPass.depth.image, nullptr);
vkFreeMemory(device, offscreenPass.depth.mem, nullptr);
vkDestroyFramebuffer(device, offscreenPass.frameBuffer, nullptr);
vkDestroyRenderPass(device, offscreenPass.renderPass, nullptr);
vkDestroyPipeline(device, pipelines.debug, nullptr);
vkDestroyPipeline(device, pipelines.offscreen, nullptr);
vkDestroyPipeline(device, pipelines.sceneShadow, nullptr);
vkDestroyPipeline(device, pipelines.sceneShadowPCF, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
// Uniform buffers
uniformBuffers.offscreen.destroy();
uniformBuffers.scene.destroy();
}
// Set up a separate render pass for the offscreen frame buffer
// This is necessary as the offscreen frame buffer attachments use formats different to those from the example render pass
void prepareOffscreenRenderpass()
{
VkAttachmentDescription attachmentDescription{};
attachmentDescription.format = DEPTH_FORMAT;
attachmentDescription.samples = VK_SAMPLE_COUNT_1_BIT;
attachmentDescription.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; // Clear depth at beginning of the render pass
attachmentDescription.storeOp = VK_ATTACHMENT_STORE_OP_STORE; // We will read from depth, so it's important to store the depth attachment results
attachmentDescription.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachmentDescription.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachmentDescription.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; // We don't care about initial layout of the attachment
attachmentDescription.finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL;// Attachment will be transitioned to shader read at render pass end
VkAttachmentReference depthReference = {};
depthReference.attachment = 0;
depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; // Attachment will be used as depth/stencil during render pass
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.colorAttachmentCount = 0; // No color attachments
subpass.pDepthStencilAttachment = &depthReference; // Reference to our depth attachment
// Use subpass dependencies for layout transitions
std::array<VkSubpassDependency, 2> dependencies;
dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL;
dependencies[0].dstSubpass = 0;
dependencies[0].srcStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
dependencies[0].dstStageMask = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT;
dependencies[0].srcAccessMask = VK_ACCESS_SHADER_READ_BIT;
dependencies[0].dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
dependencies[1].srcSubpass = 0;
dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL;
dependencies[1].srcStageMask = VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
dependencies[1].dstStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
dependencies[1].srcAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
dependencies[1].dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
VkRenderPassCreateInfo renderPassCreateInfo = vks::initializers::renderPassCreateInfo();
renderPassCreateInfo.attachmentCount = 1;
renderPassCreateInfo.pAttachments = &attachmentDescription;
renderPassCreateInfo.subpassCount = 1;
renderPassCreateInfo.pSubpasses = &subpass;
renderPassCreateInfo.dependencyCount = static_cast<uint32_t>(dependencies.size());
renderPassCreateInfo.pDependencies = dependencies.data();
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCreateInfo, nullptr, &offscreenPass.renderPass));
}
// Setup the offscreen framebuffer for rendering the scene from light's point-of-view to
// The depth attachment of this framebuffer will then be used to sample from in the fragment shader of the shadowing pass
void prepareOffscreenFramebuffer()
{
offscreenPass.width = SHADOWMAP_DIM;
offscreenPass.height = SHADOWMAP_DIM;
// For shadow mapping we only need a depth attachment
VkImageCreateInfo image = vks::initializers::imageCreateInfo();
image.imageType = VK_IMAGE_TYPE_2D;
image.extent.width = offscreenPass.width;
image.extent.height = offscreenPass.height;
image.extent.depth = 1;
image.mipLevels = 1;
image.arrayLayers = 1;
image.samples = VK_SAMPLE_COUNT_1_BIT;
image.tiling = VK_IMAGE_TILING_OPTIMAL;
image.format = DEPTH_FORMAT; // Depth stencil attachment
image.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; // We will sample directly from the depth attachment for the shadow mapping
VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &offscreenPass.depth.image));
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
vkGetImageMemoryRequirements(device, offscreenPass.depth.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &offscreenPass.depth.mem));
VK_CHECK_RESULT(vkBindImageMemory(device, offscreenPass.depth.image, offscreenPass.depth.mem, 0));
VkImageViewCreateInfo depthStencilView = vks::initializers::imageViewCreateInfo();
depthStencilView.viewType = VK_IMAGE_VIEW_TYPE_2D;
depthStencilView.format = DEPTH_FORMAT;
depthStencilView.subresourceRange = {};
depthStencilView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
depthStencilView.subresourceRange.baseMipLevel = 0;
depthStencilView.subresourceRange.levelCount = 1;
depthStencilView.subresourceRange.baseArrayLayer = 0;
depthStencilView.subresourceRange.layerCount = 1;
depthStencilView.image = offscreenPass.depth.image;
VK_CHECK_RESULT(vkCreateImageView(device, &depthStencilView, nullptr, &offscreenPass.depth.view));
// Create sampler to sample from to depth attachment
// Used to sample in the fragment shader for shadowed rendering
VkFilter shadowmap_filter = vks::tools::formatIsFilterable(physicalDevice, DEPTH_FORMAT, VK_IMAGE_TILING_OPTIMAL) ?
DEFAULT_SHADOWMAP_FILTER :
VK_FILTER_NEAREST;
VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo();
sampler.magFilter = shadowmap_filter;
sampler.minFilter = shadowmap_filter;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
sampler.addressModeV = sampler.addressModeU;
sampler.addressModeW = sampler.addressModeU;
sampler.mipLodBias = 0.0f;
sampler.maxAnisotropy = 1.0f;
sampler.minLod = 0.0f;
sampler.maxLod = 1.0f;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &offscreenPass.depthSampler));
prepareOffscreenRenderpass();
// Create frame buffer
VkFramebufferCreateInfo fbufCreateInfo = vks::initializers::framebufferCreateInfo();
fbufCreateInfo.renderPass = offscreenPass.renderPass;
fbufCreateInfo.attachmentCount = 1;
fbufCreateInfo.pAttachments = &offscreenPass.depth.view;
fbufCreateInfo.width = offscreenPass.width;
fbufCreateInfo.height = offscreenPass.height;
fbufCreateInfo.layers = 1;
VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offscreenPass.frameBuffer));
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
VkViewport viewport;
VkRect2D scissor;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
/*
First render pass: Generate shadow map by rendering the scene from light's POV
*/
{
clearValues[0].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = offscreenPass.renderPass;
renderPassBeginInfo.framebuffer = offscreenPass.frameBuffer;
renderPassBeginInfo.renderArea.extent.width = offscreenPass.width;
renderPassBeginInfo.renderArea.extent.height = offscreenPass.height;
renderPassBeginInfo.clearValueCount = 1;
renderPassBeginInfo.pClearValues = clearValues;
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
viewport = vks::initializers::viewport((float)offscreenPass.width, (float)offscreenPass.height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
scissor = vks::initializers::rect2D(offscreenPass.width, offscreenPass.height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
// Set depth bias (aka "Polygon offset")
// Required to avoid shadow mapping artifacts
vkCmdSetDepthBias(
drawCmdBuffers[i],
depthBiasConstant,
0.0f,
depthBiasSlope);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.offscreen);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.offscreen, 0, nullptr);
scenes[sceneIndex].draw(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
}
/*
Note: Explicit synchronization is not required between the render pass, as this is done implicit via sub pass dependencies
*/
/*
Second pass: Scene rendering with applied shadow map
*/
{
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.framebuffer = frameBuffers[i];
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
// Visualize shadow map
if (displayShadowMap) {
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.debug, 0, nullptr);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.debug);
vkCmdDraw(drawCmdBuffers[i], 3, 1, 0, 0);
}
// 3D scene
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.scene, 0, nullptr);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, (filterPCF) ? pipelines.sceneShadowPCF : pipelines.sceneShadow);
scenes[sceneIndex].draw(drawCmdBuffers[i]);
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
}
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void loadAssets()
{
const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY;
scenes.resize(2);
scenes[0].loadFromFile(getAssetPath() + "models/vulkanscene_shadow.gltf", vulkanDevice, queue, glTFLoadingFlags);
scenes[1].loadFromFile(getAssetPath() + "models/samplescene.gltf", vulkanDevice, queue, glTFLoadingFlags);
sceneNames = {"Vulkan scene", "Teapots and pillars" };
}
void setupDescriptorPool()
{
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 3)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 3);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
// Shared pipeline layout for all pipelines used in this sample
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0),
// Binding 1 : Fragment shader image sampler (shadow map)
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
}
void setupDescriptorSets()
{
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
// Image descriptor for the shadow map attachment
VkDescriptorImageInfo shadowMapDescriptor =
vks::initializers::descriptorImageInfo(
offscreenPass.depthSampler,
offscreenPass.depth.view,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL);
// Debug display
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.debug));
writeDescriptorSets = {
// Binding 0 : Parameters uniform buffer
vks::initializers::writeDescriptorSet(descriptorSets.debug, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.scene.descriptor),
// Binding 1 : Fragment shader texture sampler
vks::initializers::writeDescriptorSet(descriptorSets.debug, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &shadowMapDescriptor)
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, nullptr);
// Offscreen shadow map generation
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.offscreen));
writeDescriptorSets = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSets.offscreen, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.offscreen.descriptor),
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, nullptr);
// Scene rendering with shadow map applied
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.scene));
writeDescriptorSets = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSets.scene, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.scene.descriptor),
// Binding 1 : Fragment shader shadow sampler
vks::initializers::writeDescriptorSet(descriptorSets.scene, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &shadowMapDescriptor)
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, nullptr);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), dynamicStateEnables.size(), 0);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
pipelineCI.pInputAssemblyState = &inputAssemblyStateCI;
pipelineCI.pRasterizationState = &rasterizationStateCI;
pipelineCI.pColorBlendState = &colorBlendStateCI;
pipelineCI.pMultisampleState = &multisampleStateCI;
pipelineCI.pViewportState = &viewportStateCI;
pipelineCI.pDepthStencilState = &depthStencilStateCI;
pipelineCI.pDynamicState = &dynamicStateCI;
pipelineCI.stageCount = shaderStages.size();
pipelineCI.pStages = shaderStages.data();
// Shadow mapping debug quad display
rasterizationStateCI.cullMode = VK_CULL_MODE_NONE;
shaderStages[0] = loadShader(getShadersPath() + "shadowmapping/quad.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "shadowmapping/quad.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// Empty vertex input state
VkPipelineVertexInputStateCreateInfo emptyInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
pipelineCI.pVertexInputState = &emptyInputState;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.debug));
// Scene rendering with shadows applied
pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({vkglTF::VertexComponent::Position, vkglTF::VertexComponent::UV, vkglTF::VertexComponent::Color, vkglTF::VertexComponent::Normal});
rasterizationStateCI.cullMode = VK_CULL_MODE_BACK_BIT;
shaderStages[0] = loadShader(getShadersPath() + "shadowmapping/scene.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "shadowmapping/scene.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// Use specialization constants to select between horizontal and vertical blur
uint32_t enablePCF = 0;
VkSpecializationMapEntry specializationMapEntry = vks::initializers::specializationMapEntry(0, 0, sizeof(uint32_t));
VkSpecializationInfo specializationInfo = vks::initializers::specializationInfo(1, &specializationMapEntry, sizeof(uint32_t), &enablePCF);
shaderStages[1].pSpecializationInfo = &specializationInfo;
// No filtering
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.sceneShadow));
// PCF filtering
enablePCF = 1;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.sceneShadowPCF));
// Offscreen pipeline (vertex shader only)
shaderStages[0] = loadShader(getShadersPath() + "shadowmapping/offscreen.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
pipelineCI.stageCount = 1;
// No blend attachment states (no color attachments used)
colorBlendStateCI.attachmentCount = 0;
// Cull front faces
depthStencilStateCI.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL;
// Enable depth bias
rasterizationStateCI.depthBiasEnable = VK_TRUE;
// Add depth bias to dynamic state, so we can change it at runtime
dynamicStateEnables.push_back(VK_DYNAMIC_STATE_DEPTH_BIAS);
dynamicStateCI =
vks::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
dynamicStateEnables.size(),
0);
pipelineCI.renderPass = offscreenPass.renderPass;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.offscreen));
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Offscreen vertex shader uniform buffer block
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.offscreen,
sizeof(uboOffscreenVS)));
// Scene vertex shader uniform buffer block
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.scene,
sizeof(uboVSscene)));
// Map persistent
VK_CHECK_RESULT(uniformBuffers.offscreen.map());
VK_CHECK_RESULT(uniformBuffers.scene.map());
updateLight();
updateUniformBufferOffscreen();
updateUniformBuffers();
}
void updateLight()
{
// Animate the light source
lightPos.x = cos(glm::radians(timer * 360.0f)) * 40.0f;
lightPos.y = -50.0f + sin(glm::radians(timer * 360.0f)) * 20.0f;
lightPos.z = 25.0f + sin(glm::radians(timer * 360.0f)) * 5.0f;
}
void updateUniformBuffers()
{
uboVSscene.projection = camera.matrices.perspective;
uboVSscene.view = camera.matrices.view;
uboVSscene.model = glm::mat4(1.0f);
uboVSscene.lightPos = glm::vec4(lightPos, 1.0f);
uboVSscene.depthBiasMVP = uboOffscreenVS.depthMVP;
uboVSscene.zNear = zNear;
uboVSscene.zFar = zFar;
memcpy(uniformBuffers.scene.mapped, &uboVSscene, sizeof(uboVSscene));
}
void updateUniformBufferOffscreen()
{
// Matrix from light's point of view
glm::mat4 depthProjectionMatrix = glm::perspective(glm::radians(lightFOV), 1.0f, zNear, zFar);
glm::mat4 depthViewMatrix = glm::lookAt(lightPos, glm::vec3(0.0f), glm::vec3(0, 1, 0));
glm::mat4 depthModelMatrix = glm::mat4(1.0f);
uboOffscreenVS.depthMVP = depthProjectionMatrix * depthViewMatrix * depthModelMatrix;
memcpy(uniformBuffers.offscreen.mapped, &uboOffscreenVS, sizeof(uboOffscreenVS));
}
void draw()
{
VulkanExampleBase::prepareFrame();
// Command buffer to be submitted to the queue
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
// Submit to queue
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
prepareOffscreenFramebuffer();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSets();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
if (!paused || camera.updated)
{
updateLight();
updateUniformBufferOffscreen();
updateUniformBuffers();
}
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Settings")) {
if (overlay->comboBox("Scenes", &sceneIndex, sceneNames)) {
buildCommandBuffers();
}
if (overlay->checkBox("Display shadow render target", &displayShadowMap)) {
buildCommandBuffers();
}
if (overlay->checkBox("PCF filtering", &filterPCF)) {
buildCommandBuffers();
}
}
}
};
VULKAN_EXAMPLE_MAIN()