procedural-3d-engine/examples/conservativeraster/conservativeraster.cpp
Sascha Willems 122288fe25 Split buffer class into header and implementation
Moved include to base class
2020-08-08 22:18:35 +02:00

729 lines
32 KiB
C++

/*
* Vulkan Example - Conservative rasterization
*
* Note: Requires a device that supports the VK_EXT_conservative_rasterization extension
*
* Uses an offscreen buffer with lower resolution to demonstrate the effect of conservative rasterization
*
* Copyright by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#define ENABLE_VALIDATION false
#define FB_COLOR_FORMAT VK_FORMAT_R8G8B8A8_UNORM
#define ZOOM_FACTOR 16
class VulkanExample : public VulkanExampleBase
{
public:
// Fetch and store conservative rasterization state props for display purposes
VkPhysicalDeviceConservativeRasterizationPropertiesEXT conservativeRasterProps{};
bool conservativeRasterEnabled = true;
struct Vertex {
float position[3];
float color[3];
};
struct Triangle {
vks::Buffer vertices;
vks::Buffer indices;
uint32_t indexCount;
} triangle;
vks::Buffer uniformBuffer;
struct UniformBuffers {
vks::Buffer scene;
} uniformBuffers;
struct UboScene {
glm::mat4 projection;
glm::mat4 model;
} uboScene;
struct PipelineLayouts {
VkPipelineLayout scene;
VkPipelineLayout fullscreen;
} pipelineLayouts;
struct Pipelines {
VkPipeline triangle;
VkPipeline triangleConservativeRaster;
VkPipeline triangleOverlay;
VkPipeline fullscreen;
} pipelines;
struct DescriptorSetLayouts {
VkDescriptorSetLayout scene;
VkDescriptorSetLayout fullscreen;
} descriptorSetLayouts;
struct DescriptorSets {
VkDescriptorSet scene;
VkDescriptorSet fullscreen;
} descriptorSets;
// Framebuffer for offscreen rendering
struct FrameBufferAttachment {
VkImage image;
VkDeviceMemory mem;
VkImageView view;
};
struct OffscreenPass {
int32_t width, height;
VkFramebuffer frameBuffer;
FrameBufferAttachment color, depth;
VkRenderPass renderPass;
VkSampler sampler;
VkDescriptorImageInfo descriptor;
} offscreenPass;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "Conservative rasterization";
settings.overlay = true;
camera.type = Camera::CameraType::lookat;
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
camera.setRotation(glm::vec3(0.0f));
camera.setTranslation(glm::vec3(0.0f, 0.0f, -2.0f));
// Enable extension required for conservative rasterization
enabledDeviceExtensions.push_back(VK_EXT_CONSERVATIVE_RASTERIZATION_EXTENSION_NAME);
// Reading device properties of conservative rasterization requires VK_KHR_get_physical_device_properties2 to be enabled
enabledInstanceExtensions.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
}
~VulkanExample()
{
// Frame buffer
vkDestroyImageView(device, offscreenPass.color.view, nullptr);
vkDestroyImage(device, offscreenPass.color.image, nullptr);
vkFreeMemory(device, offscreenPass.color.mem, nullptr);
vkDestroyImageView(device, offscreenPass.depth.view, nullptr);
vkDestroyImage(device, offscreenPass.depth.image, nullptr);
vkFreeMemory(device, offscreenPass.depth.mem, nullptr);
vkDestroyRenderPass(device, offscreenPass.renderPass, nullptr);
vkDestroySampler(device, offscreenPass.sampler, nullptr);
vkDestroyFramebuffer(device, offscreenPass.frameBuffer, nullptr);
vkDestroyPipeline(device, pipelines.triangle, nullptr);
vkDestroyPipeline(device, pipelines.triangleOverlay, nullptr);
vkDestroyPipeline(device, pipelines.triangleConservativeRaster, nullptr);
vkDestroyPipeline(device, pipelines.fullscreen, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.fullscreen, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.scene, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.scene, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.fullscreen, nullptr);
uniformBuffers.scene.destroy();
triangle.vertices.destroy();
triangle.indices.destroy();
}
void getEnabledFeatures()
{
enabledFeatures.fillModeNonSolid = deviceFeatures.fillModeNonSolid;
enabledFeatures.wideLines = deviceFeatures.wideLines;
}
/*
Setup offscreen framebuffer, attachments and render passes for lower resolution rendering of the scene
*/
void prepareOffscreen()
{
offscreenPass.width = width / ZOOM_FACTOR;
offscreenPass.height = height / ZOOM_FACTOR;
// Find a suitable depth format
VkFormat fbDepthFormat;
VkBool32 validDepthFormat = vks::tools::getSupportedDepthFormat(physicalDevice, &fbDepthFormat);
assert(validDepthFormat);
// Color attachment
VkImageCreateInfo image = vks::initializers::imageCreateInfo();
image.imageType = VK_IMAGE_TYPE_2D;
image.format = FB_COLOR_FORMAT;
image.extent.width = offscreenPass.width;
image.extent.height = offscreenPass.height;
image.extent.depth = 1;
image.mipLevels = 1;
image.arrayLayers = 1;
image.samples = VK_SAMPLE_COUNT_1_BIT;
image.tiling = VK_IMAGE_TILING_OPTIMAL;
// We will sample directly from the color attachment
image.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &offscreenPass.color.image));
vkGetImageMemoryRequirements(device, offscreenPass.color.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &offscreenPass.color.mem));
VK_CHECK_RESULT(vkBindImageMemory(device, offscreenPass.color.image, offscreenPass.color.mem, 0));
VkImageViewCreateInfo colorImageView = vks::initializers::imageViewCreateInfo();
colorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D;
colorImageView.format = FB_COLOR_FORMAT;
colorImageView.subresourceRange = {};
colorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
colorImageView.subresourceRange.baseMipLevel = 0;
colorImageView.subresourceRange.levelCount = 1;
colorImageView.subresourceRange.baseArrayLayer = 0;
colorImageView.subresourceRange.layerCount = 1;
colorImageView.image = offscreenPass.color.image;
VK_CHECK_RESULT(vkCreateImageView(device, &colorImageView, nullptr, &offscreenPass.color.view));
// Create sampler to sample from the attachment in the fragment shader
VkSamplerCreateInfo samplerInfo = vks::initializers::samplerCreateInfo();
samplerInfo.magFilter = VK_FILTER_NEAREST;
samplerInfo.minFilter = VK_FILTER_NEAREST;
samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerInfo.addressModeV = samplerInfo.addressModeU;
samplerInfo.addressModeW = samplerInfo.addressModeU;
samplerInfo.mipLodBias = 0.0f;
samplerInfo.maxAnisotropy = 1.0f;
samplerInfo.minLod = 0.0f;
samplerInfo.maxLod = 1.0f;
samplerInfo.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &samplerInfo, nullptr, &offscreenPass.sampler));
// Depth stencil attachment
image.format = fbDepthFormat;
image.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &offscreenPass.depth.image));
vkGetImageMemoryRequirements(device, offscreenPass.depth.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &offscreenPass.depth.mem));
VK_CHECK_RESULT(vkBindImageMemory(device, offscreenPass.depth.image, offscreenPass.depth.mem, 0));
VkImageViewCreateInfo depthStencilView = vks::initializers::imageViewCreateInfo();
depthStencilView.viewType = VK_IMAGE_VIEW_TYPE_2D;
depthStencilView.format = fbDepthFormat;
depthStencilView.flags = 0;
depthStencilView.subresourceRange = {};
depthStencilView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
depthStencilView.subresourceRange.baseMipLevel = 0;
depthStencilView.subresourceRange.levelCount = 1;
depthStencilView.subresourceRange.baseArrayLayer = 0;
depthStencilView.subresourceRange.layerCount = 1;
depthStencilView.image = offscreenPass.depth.image;
VK_CHECK_RESULT(vkCreateImageView(device, &depthStencilView, nullptr, &offscreenPass.depth.view));
// Create a separate render pass for the offscreen rendering as it may differ from the one used for scene rendering
std::array<VkAttachmentDescription, 2> attchmentDescriptions = {};
// Color attachment
attchmentDescriptions[0].format = FB_COLOR_FORMAT;
attchmentDescriptions[0].samples = VK_SAMPLE_COUNT_1_BIT;
attchmentDescriptions[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attchmentDescriptions[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attchmentDescriptions[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attchmentDescriptions[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attchmentDescriptions[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attchmentDescriptions[0].finalLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
// Depth attachment
attchmentDescriptions[1].format = fbDepthFormat;
attchmentDescriptions[1].samples = VK_SAMPLE_COUNT_1_BIT;
attchmentDescriptions[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attchmentDescriptions[1].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attchmentDescriptions[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attchmentDescriptions[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attchmentDescriptions[1].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attchmentDescriptions[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkAttachmentReference colorReference = { 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL };
VkAttachmentReference depthReference = { 1, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL };
VkSubpassDescription subpassDescription = {};
subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpassDescription.colorAttachmentCount = 1;
subpassDescription.pColorAttachments = &colorReference;
subpassDescription.pDepthStencilAttachment = &depthReference;
// Use subpass dependencies for layout transitions
std::array<VkSubpassDependency, 2> dependencies;
dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL;
dependencies[0].dstSubpass = 0;
dependencies[0].srcStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[0].srcAccessMask = VK_ACCESS_SHADER_READ_BIT;
dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
dependencies[1].srcSubpass = 0;
dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL;
dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[1].dstStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[1].dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
// Create the actual renderpass
VkRenderPassCreateInfo renderPassInfo = {};
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
renderPassInfo.attachmentCount = static_cast<uint32_t>(attchmentDescriptions.size());
renderPassInfo.pAttachments = attchmentDescriptions.data();
renderPassInfo.subpassCount = 1;
renderPassInfo.pSubpasses = &subpassDescription;
renderPassInfo.dependencyCount = static_cast<uint32_t>(dependencies.size());
renderPassInfo.pDependencies = dependencies.data();
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassInfo, nullptr, &offscreenPass.renderPass));
VkImageView attachments[2];
attachments[0] = offscreenPass.color.view;
attachments[1] = offscreenPass.depth.view;
VkFramebufferCreateInfo fbufCreateInfo = vks::initializers::framebufferCreateInfo();
fbufCreateInfo.renderPass = offscreenPass.renderPass;
fbufCreateInfo.attachmentCount = 2;
fbufCreateInfo.pAttachments = attachments;
fbufCreateInfo.width = offscreenPass.width;
fbufCreateInfo.height = offscreenPass.height;
fbufCreateInfo.layers = 1;
VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offscreenPass.frameBuffer));
// Fill a descriptor for later use in a descriptor set
offscreenPass.descriptor.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
offscreenPass.descriptor.imageView = offscreenPass.color.view;
offscreenPass.descriptor.sampler = offscreenPass.sampler;
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) {
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
/*
First render pass: Render a low res triangle to an offscreen framebuffer to use for visualization in second pass
*/
{
VkClearValue clearValues[2];
clearValues[0].color = { { 0.25f, 0.25f, 0.25f, 0.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = offscreenPass.renderPass;
renderPassBeginInfo.framebuffer = offscreenPass.frameBuffer;
renderPassBeginInfo.renderArea.extent.width = offscreenPass.width;
renderPassBeginInfo.renderArea.extent.height = offscreenPass.height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
VkViewport viewport = vks::initializers::viewport((float)offscreenPass.width, (float)offscreenPass.height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(offscreenPass.width, offscreenPass.height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.scene, 0, 1, &descriptorSets.scene, 0, nullptr);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, conservativeRasterEnabled ? pipelines.triangleConservativeRaster : pipelines.triangle);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &triangle.vertices.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], triangle.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
vkCmdDrawIndexed(drawCmdBuffers[i], triangle.indexCount, 1, 0, 0, 0);
vkCmdEndRenderPass(drawCmdBuffers[i]);
}
/*
Note: Explicit synchronization is not required between the render pass, as this is done implicit via sub pass dependencies
*/
/*
Second render pass: Render scene with conservative rasterization
*/
{
VkClearValue clearValues[2];
clearValues[0].color = { { 0.25f, 0.25f, 0.25f, 0.25f } };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.framebuffer = frameBuffers[i];
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
// Low-res triangle from offscreen framebuffer
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.fullscreen);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.fullscreen, 0, 1, &descriptorSets.fullscreen, 0, nullptr);
vkCmdDraw(drawCmdBuffers[i], 3, 1, 0, 0);
// Overlay actual triangle
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &triangle.vertices.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], triangle.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.triangleOverlay);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.scene, 0, 1, &descriptorSets.scene, 0, nullptr);
vkCmdDraw(drawCmdBuffers[i], 3, 1, 0, 0);
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
}
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void loadAssets()
{
// Create a single triangle
struct Vertex {
float position[3];
float color[3];
};
std::vector<Vertex> vertexBuffer = {
{ { 1.0f, 1.0f, 0.0f }, { 1.0f, 0.0f, 0.0f } },
{ { -1.0f, 1.0f, 0.0f }, { 0.0f, 1.0f, 0.0f } },
{ { 0.0f, -1.0f, 0.0f }, { 0.0f, 0.0f, 1.0f } }
};
uint32_t vertexBufferSize = static_cast<uint32_t>(vertexBuffer.size()) * sizeof(Vertex);
std::vector<uint32_t> indexBuffer = { 0, 1, 2 };
triangle.indexCount = static_cast<uint32_t>(indexBuffer.size());
uint32_t indexBufferSize = triangle.indexCount * sizeof(uint32_t);
struct StagingBuffers {
vks::Buffer vertices;
vks::Buffer indices;
} stagingBuffers;
// Host visible source buffers (staging)
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&stagingBuffers.vertices,
vertexBufferSize,
vertexBuffer.data()));
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&stagingBuffers.indices,
indexBufferSize,
indexBuffer.data()));
// Device local destination buffers
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
&triangle.vertices,
vertexBufferSize));
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
&triangle.indices,
indexBufferSize));
// Copy from host do device
vulkanDevice->copyBuffer(&stagingBuffers.vertices, &triangle.vertices, queue);
vulkanDevice->copyBuffer(&stagingBuffers.indices, &triangle.indices, queue);
// Clean up
stagingBuffers.vertices.destroy();
stagingBuffers.indices.destroy();
}
void setupDescriptorPool()
{
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings;
VkDescriptorSetLayoutCreateInfo descriptorLayout;
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo;
// Scene rendering
setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 0: Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1), // Binding 1: Fragment shader image sampler
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_FRAGMENT_BIT, 2) // Binding 2: Fragment shader uniform buffer
};
descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings.data(), static_cast<uint32_t>(setLayoutBindings.size()));
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayouts.scene));
pPipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayouts.scene, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.scene));
// Fullscreen pass
setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 0: Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1) // Binding 1: Fragment shader image sampler
};
descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings.data(), static_cast<uint32_t>(setLayoutBindings.size()));
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayouts.fullscreen));
pPipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayouts.fullscreen, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.fullscreen));
}
void setupDescriptorSet()
{
VkDescriptorSetAllocateInfo descriptorSetAllocInfo;
// Scene rendering
descriptorSetAllocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.scene, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &descriptorSetAllocInfo, &descriptorSets.scene));
std::vector<VkWriteDescriptorSet> offScreenWriteDescriptorSets = {
vks::initializers::writeDescriptorSet(descriptorSets.scene, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.scene.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(offScreenWriteDescriptorSets.size()), offScreenWriteDescriptorSets.data(), 0, nullptr);
// Fullscreen pass
descriptorSetAllocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.fullscreen, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &descriptorSetAllocInfo, &descriptorSets.fullscreen));
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
vks::initializers::writeDescriptorSet(descriptorSets.fullscreen, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &offscreenPass.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI =
vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendStateCI =
vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI =
vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportStateCI =
vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleStateCI =
vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR,
};
VkPipelineDynamicStateCreateInfo dynamicStateCI =
vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vks::initializers::pipelineCreateInfo(pipelineLayouts.fullscreen, renderPass, 0);
VkPipelineRasterizationStateCreateInfo rasterizationStateCI =
vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_CLOCKWISE, 0);
/*
Conservative rasterization setup
*/
/*
Get device properties for conservative rasterization
Requires VK_KHR_get_physical_device_properties2 and manual function pointer creation
*/
PFN_vkGetPhysicalDeviceProperties2KHR vkGetPhysicalDeviceProperties2KHR = reinterpret_cast<PFN_vkGetPhysicalDeviceProperties2KHR>(vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceProperties2KHR"));
assert(vkGetPhysicalDeviceProperties2KHR);
VkPhysicalDeviceProperties2KHR deviceProps2{};
conservativeRasterProps.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONSERVATIVE_RASTERIZATION_PROPERTIES_EXT;
deviceProps2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2_KHR;
deviceProps2.pNext = &conservativeRasterProps;
vkGetPhysicalDeviceProperties2KHR(physicalDevice, &deviceProps2);
// Vertex bindings and attributes
std::vector<VkVertexInputBindingDescription> vertexInputBindings = {
vks::initializers::vertexInputBindingDescription(0, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX),
};
std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, 0), // Location 0: Position
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3), // Location 1: Color
};
VkPipelineVertexInputStateCreateInfo vertexInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
vertexInputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertexInputBindings.size());
vertexInputState.pVertexBindingDescriptions = vertexInputBindings.data();
vertexInputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
vertexInputState.pVertexAttributeDescriptions = vertexInputAttributes.data();
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyStateCI;
pipelineCreateInfo.pRasterizationState = &rasterizationStateCI;
pipelineCreateInfo.pColorBlendState = &colorBlendStateCI;
pipelineCreateInfo.pMultisampleState = &multisampleStateCI;
pipelineCreateInfo.pViewportState = &viewportStateCI;
pipelineCreateInfo.pDepthStencilState = &depthStencilStateCI;
pipelineCreateInfo.pDynamicState = &dynamicStateCI;
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCreateInfo.pStages = shaderStages.data();
// Full screen pass
shaderStages[0] = loadShader(getShadersPath() + "conservativeraster/fullscreen.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "conservativeraster/fullscreen.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// Empty vertex input state (full screen triangle generated in vertex shader)
VkPipelineVertexInputStateCreateInfo emptyInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
pipelineCreateInfo.pVertexInputState = &emptyInputState;
pipelineCreateInfo.layout = pipelineLayouts.fullscreen;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.fullscreen));
pipelineCreateInfo.pVertexInputState = &vertexInputState;
pipelineCreateInfo.layout = pipelineLayouts.scene;
// Original triangle outline
// TODO: Check support for lines
rasterizationStateCI.lineWidth = 2.0f;
rasterizationStateCI.polygonMode = VK_POLYGON_MODE_LINE;
shaderStages[0] = loadShader(getShadersPath() + "conservativeraster/triangle.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "conservativeraster/triangleoverlay.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.triangleOverlay));
pipelineCreateInfo.renderPass = offscreenPass.renderPass;
/*
Triangle rendering
*/
rasterizationStateCI.polygonMode = VK_POLYGON_MODE_FILL;
shaderStages[0] = loadShader(getShadersPath() + "conservativeraster/triangle.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "conservativeraster/triangle.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
/*
Basic pipeline
*/
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.triangle));
/*
Pipeline with conservative rasterization enabled
*/
VkPipelineRasterizationConservativeStateCreateInfoEXT conservativeRasterStateCI{};
conservativeRasterStateCI.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_CONSERVATIVE_STATE_CREATE_INFO_EXT;
conservativeRasterStateCI.conservativeRasterizationMode = VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT;
conservativeRasterStateCI.extraPrimitiveOverestimationSize = conservativeRasterProps.maxExtraPrimitiveOverestimationSize;
// Conservative rasterization state has to be chained into the pipeline rasterization state create info structure
rasterizationStateCI.pNext = &conservativeRasterStateCI;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.triangleConservativeRaster));
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.scene,
sizeof(uboScene)));
VK_CHECK_RESULT(uniformBuffers.scene.map());
updateUniformBuffersScene();
}
void updateUniformBuffersScene()
{
uboScene.projection = camera.matrices.perspective;
uboScene.model = camera.matrices.view;
memcpy(uniformBuffers.scene.mapped, &uboScene, sizeof(uboScene));
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
prepareOffscreen();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
if (camera.updated)
updateUniformBuffersScene();
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Settings")) {
if (overlay->checkBox("Conservative rasterization", &conservativeRasterEnabled)) {
buildCommandBuffers();
}
}
if (overlay->header("Device properties")) {
overlay->text("maxExtraPrimitiveOverestimationSize: %f", conservativeRasterProps.maxExtraPrimitiveOverestimationSize);
overlay->text("extraPrimitiveOverestimationSizeGranularity: %f", conservativeRasterProps.extraPrimitiveOverestimationSizeGranularity);
overlay->text("primitiveUnderestimation: %s", conservativeRasterProps.primitiveUnderestimation ? "yes" : "no");
overlay->text("conservativePointAndLineRasterization: %s", conservativeRasterProps.conservativePointAndLineRasterization ? "yes" : "no");
overlay->text("degenerateTrianglesRasterized: %s", conservativeRasterProps.degenerateTrianglesRasterized ? "yes" : "no");
overlay->text("degenerateLinesRasterized: %s", conservativeRasterProps.degenerateLinesRasterized ? "yes" : "no");
overlay->text("fullyCoveredFragmentShaderInputVariable: %s", conservativeRasterProps.fullyCoveredFragmentShaderInputVariable ? "yes" : "no");
overlay->text("conservativeRasterizationPostDepthCoverage: %s", conservativeRasterProps.conservativeRasterizationPostDepthCoverage ? "yes" : "no");
}
}
};
VULKAN_EXAMPLE_MAIN()