procedural-3d-engine/skeletalanimation/skeletalanimation.cpp

1053 lines
No EOL
32 KiB
C++

/*
* Vulkan Example - Skeletal animation
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#include "vulkanbuffer.hpp"
#define VERTEX_BUFFER_BIND_ID 0
#define ENABLE_VALIDATION false
// Vertex layout used in this example
struct Vertex {
glm::vec3 pos;
glm::vec3 normal;
glm::vec2 uv;
glm::vec3 color;
// Max. four bones per vertex
float boneWeights[4];
uint32_t boneIDs[4];
};
std::vector<vkMeshLoader::VertexLayout> vertexLayout =
{
vkMeshLoader::VERTEX_LAYOUT_POSITION,
vkMeshLoader::VERTEX_LAYOUT_NORMAL,
vkMeshLoader::VERTEX_LAYOUT_UV,
vkMeshLoader::VERTEX_LAYOUT_COLOR,
vkMeshLoader::VERTEX_LAYOUT_DUMMY_VEC4,
vkMeshLoader::VERTEX_LAYOUT_DUMMY_VEC4
};
// Maximum number of bones per mesh
// Must not be higher than same const in skinning shader
#define MAX_BONES 64
// Maximum number of bones per vertex
#define MAX_BONES_PER_VERTEX 4
// Skinned mesh class
// Per-vertex bone IDs and weights
struct VertexBoneData
{
std::array<uint32_t, MAX_BONES_PER_VERTEX> IDs;
std::array<float, MAX_BONES_PER_VERTEX> weights;
// Ad bone weighting to vertex info
void add(uint32_t boneID, float weight)
{
for (uint32_t i = 0; i < MAX_BONES_PER_VERTEX; i++)
{
if (weights[i] == 0.0f)
{
IDs[i] = boneID;
weights[i] = weight;
return;
}
}
}
};
// Stores information on a single bone
struct BoneInfo
{
aiMatrix4x4 offset;
aiMatrix4x4 finalTransformation;
BoneInfo()
{
offset = aiMatrix4x4();
finalTransformation = aiMatrix4x4();
};
};
class SkinnedMesh
{
public:
// Bone related stuff
// Maps bone name with index
std::map<std::string, uint32_t> boneMapping;
// Bone details
std::vector<BoneInfo> boneInfo;
// Number of bones present
uint32_t numBones = 0;
// Root inverese transform matrix
aiMatrix4x4 globalInverseTransform;
// Per-vertex bone info
std::vector<VertexBoneData> bones;
// Bone transformations
std::vector<aiMatrix4x4> boneTransforms;
// Modifier for the animation
float animationSpeed = 0.75f;
// Currently active animation
aiAnimation* pAnimation;
// Vulkan buffers
vkMeshLoader::MeshBuffer meshBuffer;
// Reference to assimp mesh
// Required for animation
VulkanMeshLoader *meshLoader;
// Set active animation by index
void setAnimation(uint32_t animationIndex)
{
assert(animationIndex < meshLoader->pScene->mNumAnimations);
pAnimation = meshLoader->pScene->mAnimations[animationIndex];
}
// Load bone information from ASSIMP mesh
void loadBones(uint32_t meshIndex, const aiMesh* pMesh, std::vector<VertexBoneData>& Bones)
{
for (uint32_t i = 0; i < pMesh->mNumBones; i++)
{
uint32_t index = 0;
assert(pMesh->mNumBones <= MAX_BONES);
std::string name(pMesh->mBones[i]->mName.data);
if (boneMapping.find(name) == boneMapping.end())
{
// Bone not present, add new one
index = numBones;
numBones++;
BoneInfo bone;
boneInfo.push_back(bone);
boneInfo[index].offset = pMesh->mBones[i]->mOffsetMatrix;
boneMapping[name] = index;
}
else
{
index = boneMapping[name];
}
for (uint32_t j = 0; j < pMesh->mBones[i]->mNumWeights; j++)
{
uint32_t vertexID = meshLoader->m_Entries[meshIndex].vertexBase + pMesh->mBones[i]->mWeights[j].mVertexId;
Bones[vertexID].add(index, pMesh->mBones[i]->mWeights[j].mWeight);
}
}
boneTransforms.resize(numBones);
}
// Recursive bone transformation for given animation time
void update(float time)
{
float TicksPerSecond = (float)(meshLoader->pScene->mAnimations[0]->mTicksPerSecond != 0 ? meshLoader->pScene->mAnimations[0]->mTicksPerSecond : 25.0f);
float TimeInTicks = time * TicksPerSecond;
float AnimationTime = fmod(TimeInTicks, (float)meshLoader->pScene->mAnimations[0]->mDuration);
aiMatrix4x4 identity = aiMatrix4x4();
readNodeHierarchy(AnimationTime, meshLoader->pScene->mRootNode, identity);
for (uint32_t i = 0; i < boneTransforms.size(); i++)
{
boneTransforms[i] = boneInfo[i].finalTransformation;
}
}
private:
// Find animation for a given node
const aiNodeAnim* findNodeAnim(const aiAnimation* animation, const std::string nodeName)
{
for (uint32_t i = 0; i < animation->mNumChannels; i++)
{
const aiNodeAnim* nodeAnim = animation->mChannels[i];
if (std::string(nodeAnim->mNodeName.data) == nodeName)
{
return nodeAnim;
}
}
return nullptr;
}
// Returns a 4x4 matrix with interpolated translation between current and next frame
aiMatrix4x4 interpolateTranslation(float time, const aiNodeAnim* pNodeAnim)
{
aiVector3D translation;
if (pNodeAnim->mNumPositionKeys == 1)
{
translation = pNodeAnim->mPositionKeys[0].mValue;
}
else
{
uint32_t frameIndex = 0;
for (uint32_t i = 0; i < pNodeAnim->mNumPositionKeys - 1; i++)
{
if (time < (float)pNodeAnim->mPositionKeys[i + 1].mTime)
{
frameIndex = i;
break;
}
}
aiVectorKey currentFrame = pNodeAnim->mPositionKeys[frameIndex];
aiVectorKey nextFrame = pNodeAnim->mPositionKeys[(frameIndex + 1) % pNodeAnim->mNumPositionKeys];
float delta = (time - (float)currentFrame.mTime) / (float)(nextFrame.mTime - currentFrame.mTime);
const aiVector3D& start = currentFrame.mValue;
const aiVector3D& end = nextFrame.mValue;
translation = (start + delta * (end - start));
}
aiMatrix4x4 mat;
aiMatrix4x4::Translation(translation, mat);
return mat;
}
// Returns a 4x4 matrix with interpolated rotation between current and next frame
aiMatrix4x4 interpolateRotation(float time, const aiNodeAnim* pNodeAnim)
{
aiQuaternion rotation;
if (pNodeAnim->mNumRotationKeys == 1)
{
rotation = pNodeAnim->mRotationKeys[0].mValue;
}
else
{
uint32_t frameIndex = 0;
for (uint32_t i = 0; i < pNodeAnim->mNumRotationKeys - 1; i++)
{
if (time < (float)pNodeAnim->mRotationKeys[i + 1].mTime)
{
frameIndex = i;
break;
}
}
aiQuatKey currentFrame = pNodeAnim->mRotationKeys[frameIndex];
aiQuatKey nextFrame = pNodeAnim->mRotationKeys[(frameIndex + 1) % pNodeAnim->mNumRotationKeys];
float delta = (time - (float)currentFrame.mTime) / (float)(nextFrame.mTime - currentFrame.mTime);
const aiQuaternion& start = currentFrame.mValue;
const aiQuaternion& end = nextFrame.mValue;
aiQuaternion::Interpolate(rotation, start, end, delta);
rotation.Normalize();
}
aiMatrix4x4 mat(rotation.GetMatrix());
return mat;
}
// Returns a 4x4 matrix with interpolated scaling between current and next frame
aiMatrix4x4 interpolateScale(float time, const aiNodeAnim* pNodeAnim)
{
aiVector3D scale;
if (pNodeAnim->mNumScalingKeys == 1)
{
scale = pNodeAnim->mScalingKeys[0].mValue;
}
else
{
uint32_t frameIndex = 0;
for (uint32_t i = 0; i < pNodeAnim->mNumScalingKeys - 1; i++)
{
if (time < (float)pNodeAnim->mScalingKeys[i + 1].mTime)
{
frameIndex = i;
break;
}
}
aiVectorKey currentFrame = pNodeAnim->mScalingKeys[frameIndex];
aiVectorKey nextFrame = pNodeAnim->mScalingKeys[(frameIndex + 1) % pNodeAnim->mNumScalingKeys];
float delta = (time - (float)currentFrame.mTime) / (float)(nextFrame.mTime - currentFrame.mTime);
const aiVector3D& start = currentFrame.mValue;
const aiVector3D& end = nextFrame.mValue;
scale = (start + delta * (end - start));
}
aiMatrix4x4 mat;
aiMatrix4x4::Scaling(scale, mat);
return mat;
}
// Get node hierarchy for current animation time
void readNodeHierarchy(float AnimationTime, const aiNode* pNode, const aiMatrix4x4& ParentTransform)
{
std::string NodeName(pNode->mName.data);
aiMatrix4x4 NodeTransformation(pNode->mTransformation);
const aiNodeAnim* pNodeAnim = findNodeAnim(pAnimation, NodeName);
if (pNodeAnim)
{
// Get interpolated matrices between current and next frame
aiMatrix4x4 matScale = interpolateScale(AnimationTime, pNodeAnim);
aiMatrix4x4 matRotation = interpolateRotation(AnimationTime, pNodeAnim);
aiMatrix4x4 matTranslation = interpolateTranslation(AnimationTime, pNodeAnim);
NodeTransformation = matTranslation * matRotation * matScale;
}
aiMatrix4x4 GlobalTransformation = ParentTransform * NodeTransformation;
if (boneMapping.find(NodeName) != boneMapping.end())
{
uint32_t BoneIndex = boneMapping[NodeName];
boneInfo[BoneIndex].finalTransformation = globalInverseTransform * GlobalTransformation * boneInfo[BoneIndex].offset;
}
for (uint32_t i = 0; i < pNode->mNumChildren; i++)
{
readNodeHierarchy(AnimationTime, pNode->mChildren[i], GlobalTransformation);
}
}
};
class VulkanExample : public VulkanExampleBase
{
public:
struct {
vkTools::VulkanTexture colorMap;
vkTools::VulkanTexture floor;
} textures;
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
SkinnedMesh *skinnedMesh = nullptr;
struct {
vk::Buffer mesh;
vk::Buffer floor;
} uniformBuffers;
struct {
glm::mat4 projection;
glm::mat4 model;
glm::mat4 view;
glm::mat4 bones[MAX_BONES];
glm::vec4 lightPos = glm::vec4(0.0f, -250.0f, 250.0f, 1.0);
glm::vec4 viewPos;
} uboVS;
struct {
glm::mat4 projection;
glm::mat4 model;
glm::mat4 view;
glm::vec4 lightPos = glm::vec4(0.0, 0.0f, -25.0f, 1.0);
glm::vec4 viewPos;
glm::vec2 uvOffset;
} uboFloor;
struct {
VkPipeline skinning;
VkPipeline texture;
} pipelines;
struct {
vkMeshLoader::MeshBuffer floor;
} meshes;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
struct {
VkDescriptorSet skinning;
VkDescriptorSet floor;
} descriptorSets;
float runningTime = 0.0f;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
zoom = -150.0f;
zoomSpeed = 2.5f;
rotationSpeed = 0.5f;
rotation = { -182.5f, -38.5f, 180.0f };
enableTextOverlay = true;
title = "Vulkan Example - Skeletal animation";
cameraPos = { 0.0f, 0.0f, 12.0f };
paused = true;
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
vkDestroyPipeline(device, pipelines.skinning, nullptr);
vkDestroyPipeline(device, pipelines.texture, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
textureLoader->destroyTexture(textures.colorMap);
textureLoader->destroyTexture(textures.floor);
uniformBuffers.mesh.destroy();
uniformBuffers.floor.destroy();
// Destroy and free mesh resources
vkMeshLoader::freeMeshBufferResources(device, &meshes.floor);
vkMeshLoader::freeMeshBufferResources(device, &skinnedMesh->meshBuffer);
delete(skinnedMesh->meshLoader);
delete(skinnedMesh);
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 0.0f} };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vkTools::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
// Skinned mesh
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.skinning);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &skinnedMesh->meshBuffer.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], skinnedMesh->meshBuffer.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], skinnedMesh->meshBuffer.indexCount, 1, 0, 0, 0);
// Floor
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.floor, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.texture);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.floor.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.floor.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], meshes.floor.indexCount, 1, 0, 0, 0);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
// Load a mesh based on data read via assimp
// The other example will use the VulkanMesh loader which has some additional functionality for loading meshes
void loadMesh()
{
skinnedMesh = new SkinnedMesh();
skinnedMesh->meshLoader = new VulkanMeshLoader(vulkanDevice);
#if defined(__ANDROID__)
skinnedMesh->meshLoader->assetManager = androidApp->activity->assetManager;
#endif
skinnedMesh->meshLoader->LoadMesh(getAssetPath() + "models/goblin.dae", 0);
skinnedMesh->setAnimation(0);
// Setup bones
// One vertex bone info structure per vertex
skinnedMesh->bones.resize(skinnedMesh->meshLoader->numVertices);
// Store global inverse transform matrix of root node
skinnedMesh->globalInverseTransform = skinnedMesh->meshLoader->pScene->mRootNode->mTransformation;
skinnedMesh->globalInverseTransform.Inverse();
// Load bones (weights and IDs)
for (uint32_t m = 0; m < skinnedMesh->meshLoader->m_Entries.size(); m++)
{
aiMesh *paiMesh = skinnedMesh->meshLoader->pScene->mMeshes[m];
if (paiMesh->mNumBones > 0)
{
skinnedMesh->loadBones(m, paiMesh, skinnedMesh->bones);
}
}
// Generate vertex buffer
std::vector<Vertex> vertexBuffer;
// Iterate through all meshes in the file
// and extract the vertex information used in this demo
for (uint32_t m = 0; m < skinnedMesh->meshLoader->m_Entries.size(); m++)
{
for (uint32_t i = 0; i < skinnedMesh->meshLoader->m_Entries[m].Vertices.size(); i++)
{
Vertex vertex;
vertex.pos = skinnedMesh->meshLoader->m_Entries[m].Vertices[i].m_pos;
vertex.pos.y = -vertex.pos.y;
vertex.normal = skinnedMesh->meshLoader->m_Entries[m].Vertices[i].m_normal;
vertex.uv = skinnedMesh->meshLoader->m_Entries[m].Vertices[i].m_tex;
vertex.color = skinnedMesh->meshLoader->m_Entries[m].Vertices[i].m_color;
// Fetch bone weights and IDs
for (uint32_t j = 0; j < MAX_BONES_PER_VERTEX; j++)
{
vertex.boneWeights[j] = skinnedMesh->bones[skinnedMesh->meshLoader->m_Entries[m].vertexBase + i].weights[j];
vertex.boneIDs[j] = skinnedMesh->bones[skinnedMesh->meshLoader->m_Entries[m].vertexBase + i].IDs[j];
}
vertexBuffer.push_back(vertex);
}
}
VkDeviceSize vertexBufferSize = vertexBuffer.size() * sizeof(Vertex);
// Generate index buffer from loaded mesh file
std::vector<uint32_t> indexBuffer;
for (uint32_t m = 0; m < skinnedMesh->meshLoader->m_Entries.size(); m++)
{
uint32_t indexBase = static_cast<uint32_t>(indexBuffer.size());
for (uint32_t i = 0; i < skinnedMesh->meshLoader->m_Entries[m].Indices.size(); i++)
{
indexBuffer.push_back(skinnedMesh->meshLoader->m_Entries[m].Indices[i] + indexBase);
}
}
VkDeviceSize indexBufferSize = indexBuffer.size() * sizeof(uint32_t);
skinnedMesh->meshBuffer.indexCount = indexBuffer.size();
bool useStaging = true;
if (useStaging)
{
struct {
VkBuffer buffer;
VkDeviceMemory memory;
} vertexStaging, indexStaging;
// Create staging buffers
// Vertex data
createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
vertexBufferSize,
vertexBuffer.data(),
&vertexStaging.buffer,
&vertexStaging.memory);
// Index data
createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
indexBufferSize,
indexBuffer.data(),
&indexStaging.buffer,
&indexStaging.memory);
// Create device local buffers
// Vertex buffer
createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
vertexBufferSize,
nullptr,
&skinnedMesh->meshBuffer.vertices.buf,
&skinnedMesh->meshBuffer.vertices.mem);
// Index buffer
createBuffer(
VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
indexBufferSize,
nullptr,
&skinnedMesh->meshBuffer.indices.buf,
&skinnedMesh->meshBuffer.indices.mem);
// Copy from staging buffers
VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
VkBufferCopy copyRegion = {};
copyRegion.size = vertexBufferSize;
vkCmdCopyBuffer(
copyCmd,
vertexStaging.buffer,
skinnedMesh->meshBuffer.vertices.buf,
1,
&copyRegion);
copyRegion.size = indexBufferSize;
vkCmdCopyBuffer(
copyCmd,
indexStaging.buffer,
skinnedMesh->meshBuffer.indices.buf,
1,
&copyRegion);
VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true);
vkDestroyBuffer(device, vertexStaging.buffer, nullptr);
vkFreeMemory(device, vertexStaging.memory, nullptr);
vkDestroyBuffer(device, indexStaging.buffer, nullptr);
vkFreeMemory(device, indexStaging.memory, nullptr);
}
else
{
// Vertex buffer
createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
vertexBufferSize,
vertexBuffer.data(),
&skinnedMesh->meshBuffer.vertices.buf,
&skinnedMesh->meshBuffer.vertices.mem);
// Index buffer
createBuffer(
VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
indexBufferSize,
indexBuffer.data(),
&skinnedMesh->meshBuffer.indices.buf,
&skinnedMesh->meshBuffer.indices.mem);
}
}
void loadAssets()
{
textureLoader->loadTexture(getAssetPath() + "textures/goblin_bc3.ktx", VK_FORMAT_BC3_UNORM_BLOCK, &textures.colorMap);
textureLoader->loadTexture(getAssetPath() + "textures/trail_bc3.ktx", VK_FORMAT_BC3_UNORM_BLOCK, &textures.floor);
VulkanExampleBase::loadMesh(getAssetPath() + "models/plane_z.obj", &meshes.floor, vertexLayout, 512.0f);
}
void setupVertexDescriptions()
{
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vkTools::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
sizeof(Vertex),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
// Describes memory layout and shader positions
vertices.attributeDescriptions.resize(6);
// Location 0 : Position
vertices.attributeDescriptions[0] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32_SFLOAT,
0);
// Location 1 : Normal
vertices.attributeDescriptions[1] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 3);
// Location 2 : Texture coordinates
vertices.attributeDescriptions[2] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
2,
VK_FORMAT_R32G32_SFLOAT,
sizeof(float) * 6);
// Location 3 : Color
vertices.attributeDescriptions[3] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
3,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 8);
// Location 4 : Bone weights
vertices.attributeDescriptions[4] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
4,
VK_FORMAT_R32G32B32A32_SFLOAT,
sizeof(float) * 11);
// Location 5 : Bone IDs
vertices.attributeDescriptions[5] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
5,
VK_FORMAT_R32G32B32A32_SINT,
sizeof(float) * 15);
vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupDescriptorPool()
{
// Example uses one ubo and one combined image sampler
std::vector<VkDescriptorPoolSize> poolSizes =
{
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2),
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2),
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vkTools::initializers::descriptorPoolCreateInfo(
poolSizes.size(),
poolSizes.data(),
2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT,
0),
// Binding 1 : Fragment shader combined sampler
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
1),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vkTools::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
setLayoutBindings.size());
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vkTools::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
}
void setupDescriptorSet()
{
VkDescriptorSetAllocateInfo allocInfo =
vkTools::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
VkDescriptorImageInfo texDescriptor =
vkTools::initializers::descriptorImageInfo(
textures.colorMap.sampler,
textures.colorMap.view,
VK_IMAGE_LAYOUT_GENERAL);
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformBuffers.mesh.descriptor),
// Binding 1 : Color map
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&texDescriptor)
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
// Floor
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.floor));
texDescriptor.imageView = textures.floor.view;
texDescriptor.sampler = textures.floor.sampler;
writeDescriptorSets.clear();
// Binding 0 : Vertex shader uniform buffer
writeDescriptorSets.push_back(
vkTools::initializers::writeDescriptorSet(
descriptorSets.floor,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformBuffers.floor.descriptor));
// Binding 1 : Color map
writeDescriptorSets.push_back(
vkTools::initializers::writeDescriptorSet(
descriptorSets.floor,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&texDescriptor));
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vkTools::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_BACK_BIT,
VK_FRONT_FACE_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vkTools::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vkTools::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vkTools::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vkTools::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
dynamicStateEnables.size(),
0);
// Skinned rendering pipeline
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
shaderStages[0] = loadShader(getAssetPath() + "shaders/skeletalanimation/mesh.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/skeletalanimation/mesh.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vkTools::initializers::pipelineCreateInfo(
pipelineLayout,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data();
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.skinning));
shaderStages[0] = loadShader(getAssetPath() + "shaders/skeletalanimation/texture.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/skeletalanimation/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.texture));
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Mesh uniform buffer block
vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.mesh,
sizeof(uboVS));
// Map persistant
VK_CHECK_RESULT(uniformBuffers.mesh.map());
// Floor uniform buffer block
vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.floor,
sizeof(uboFloor));
// Map persistant
VK_CHECK_RESULT(uniformBuffers.floor.map());
updateUniformBuffers(true);
}
void updateUniformBuffers(bool viewChanged)
{
if (viewChanged)
{
uboVS.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.1f, 1024.0f);
glm::mat4 viewMatrix = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, zoom));
viewMatrix = glm::rotate(viewMatrix, glm::radians(90.0f), glm::vec3(1.0f, 0.0f, 0.0f));
viewMatrix = glm::scale(viewMatrix, glm::vec3(0.025f));
uboVS.view = viewMatrix * glm::translate(glm::mat4(), glm::vec3(cameraPos.x, -cameraPos.z, cameraPos.y) * 100.0f);
uboVS.view = glm::rotate(uboVS.view, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
uboVS.view = glm::rotate(uboVS.view, glm::radians(rotation.z), glm::vec3(0.0f, 1.0f, 0.0f));
uboVS.view = glm::rotate(uboVS.view, glm::radians(-rotation.y), glm::vec3(0.0f, 0.0f, 1.0f));
uboVS.viewPos = glm::vec4(0.0f, 0.0f, -zoom, 0.0f);
uboFloor.projection = uboVS.projection;
uboFloor.view = viewMatrix;
uboFloor.model = glm::translate(glm::mat4(), glm::vec3(cameraPos.x, -cameraPos.z, cameraPos.y) * 100.0f);
uboFloor.model = glm::rotate(uboFloor.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
uboFloor.model = glm::rotate(uboFloor.model, glm::radians(rotation.z), glm::vec3(0.0f, 1.0f, 0.0f));
uboFloor.model = glm::rotate(uboFloor.model, glm::radians(-rotation.y), glm::vec3(0.0f, 0.0f, 1.0f));
uboFloor.model = glm::translate(uboFloor.model, glm::vec3(0.0f, 0.0f, -1800.0f));
uboFloor.viewPos = glm::vec4(0.0f, 0.0f, -zoom, 0.0f);
}
// Update bones
skinnedMesh->update(runningTime);
for (uint32_t i = 0; i < skinnedMesh->boneTransforms.size(); i++)
{
uboVS.bones[i] = glm::transpose(glm::make_mat4(&skinnedMesh->boneTransforms[i].a1));
}
uniformBuffers.mesh.copyTo(&uboVS, sizeof(uboVS));
// Update floor animation
uboFloor.uvOffset.t -= 0.25f * skinnedMesh->animationSpeed * frameTimer;
uniformBuffers.floor.copyTo(&uboFloor, sizeof(uboFloor));
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
loadMesh();
setupVertexDescriptions();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
if (!paused)
{
runningTime += frameTimer * skinnedMesh->animationSpeed;
vkDeviceWaitIdle(device);
updateUniformBuffers(false);
}
}
virtual void viewChanged()
{
vkDeviceWaitIdle(device);
updateUniformBuffers(true);
}
void changeAnimationSpeed(float delta)
{
skinnedMesh->animationSpeed += delta;
}
virtual void keyPressed(uint32_t keyCode)
{
switch (keyCode)
{
case KEY_KPADD:
case GAMEPAD_BUTTON_R1:
changeAnimationSpeed(0.1f);
break;
case KEY_KPSUB:
case GAMEPAD_BUTTON_L1:
changeAnimationSpeed(-0.1f);
break;
}
}
virtual void getOverlayText(VulkanTextOverlay *textOverlay)
{
if (skinnedMesh != nullptr)
{
std::stringstream ss;
ss << std::setprecision(2) << std::fixed << skinnedMesh->animationSpeed;
#if defined(__ANDROID__)
textOverlay->addText("Animation speed: " + ss.str() + " (Buttons L1/R1 to change)", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
#else
textOverlay->addText("Animation speed: " + ss.str() + " (numpad +/- to change)", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
#endif
}
}
};
VULKAN_EXAMPLE_MAIN()