procedural-3d-engine/examples/viewportarray/viewportarray.cpp
Sascha Willems feb939096f
Merge glTF branch (#747)
* Added helper function for easy pipeline vertex input state create info structure setup from glTF model vertex class

* Split glTF loader into header and implementation

* Updated sample to use glTF

* Removed collada files

Replaced assets are now part of the asset pack

* Return value for glTF model vertex input state create info helper

* Removed unused assets

* Use glTF assets

* Added default material for glTF node's without materials

* Use glTF assets

* Apply pre-transforms to normals

* Use glTF assets

* Use glTF assets

* Use vertex input state from glTF model class

* Scene setup

* Use glTF assets

* Use glTF assets

* Display error message and exit if glTF file could not be loaded

* Use glTF assets

* Use glTF assets

* Use glTF assets

* Remove unused buffer binds

* Use glTF assets

* Remove no longer used model files

* Remove no longer used model files

* Added support for rendering glTF models with images

* glTF model normal pre-transform ignores translation

* Use glTF assets

* Use glTF assets

* Use glTF assets

* Use glTF assets

* Use glTF assets

* Only add combined image samplers to pool if actually used in the scene

* Use global descriptor set layouts

* Use global descriptor set layouts

* Use glTF assets

* Use glTF assets

* Use glTF assets

Code cleanup
Updated GLSL and HLSL shaders

* Use glTF assets

Code cleanup

* Use glTF assets

Code cleanup
Updated GLSL and HLSL shaders

* Remove no-longer used model

* Use glTF assets

Code cleanup
Updated GLSL and HLSL shaders

* Use glTF assets

Code cleanup
Updated GLSL and HLSL shaders
Removed no-longer used model

* Use glTF assets

Code cleanup
Use RGBA texture instead of different compressed formats
Removed no-longer used assets

* Adnrdoid build file

* Use glTF assets

Code cleanup and refactoring
Updated GLSL and HLSL shaders

* Added vertex count and way of passing additional memory property type flags to glTF loader

* Use glTF assets

Updated GLSL and HLSL shaders
Removed no-longer used assets

* Use glTF assets

Updated GLSL and HLSL shaders

* Remove unfinished sample

* Completely reworked push constants sample

Use glTF assets
Updated GLSL and HLSL shaders
Removed no-longer used assets

* Android CMake build files

* Removed un-used asset

* Explicit buffer binding function

* Use glTF assets

Code cleanup
Updated GLSL and HLSL shaders

* Use glTF assets

Code cleanup

* Use glTF assets

Code cleanup
Removed no-longer used assets

* Use glTF assets

Code cleanup
Updated GLSL and HLSL shaders
Removed no-longer used assets

* Remove no-longer used asset

* Use glTF assets

Code cleanup and refactoring
Performance optimizations
Updated GLSL and HLSL shaders
Removed no-longer used assets

* Use glTF assets

Code cleanup and refactoring
Updated GLSL and HLSL shaders
Removed no-longer used assets

* Use glTF assets

Code cleanup and refactoring
Updated GLSL and HLSL shaders
Removed no-longer used assets

* Use glTF assets

Code cleanup and refactoring
Removed no-longer used assets

* Use glTF assets

Code cleanup and refactoring
Removed no-longer used assets

* Use glTF assets

Code cleanup and refactoring

* Use glTF assets

Code cleanup and refactoring

* Use glTF assets

Code cleanup and refactoring
Removed no-longer used assets

* Pass vertex size and calculate multiplier in shaders instead of hard-coding

With this, changes to the glTF vertex structure won't break the ray tracing samples

* Load tangents (if present)

* Use glTF assets

Code cleanup and heavy refactoring
Reworked debug display code

* Android build

* Normal mapping fixes

Udpated HLSL shaders

* Use glTF assets

Code cleanup and heavy refactoring
Reworked debug display code
Updated GLSL and HLSL shaders

* Code cleanup, comments

* Use glTF assets

Code cleanup and heavy refactoring
Reworked debug display code
Updated GLSL and HLSL shaders

* Added sample count to framebuffer create info

* Removed no-longer used assets

* Android build

Removed no-longer used assets

* Code cleanup and heavy refactoring

Updated GLSL and HLSL shaders
Use tangents stored in GLSL instead of calculating them in the fragment shader

* Renamed textured PBR sample main cpp file

* Use glTF assets

Code cleanup and refactoring
Updated GLSL and HLSL shaders
Removed no-longer used assets

* Use glTF assets

Removed no-longer used assets

* Android build files

* Android build files

* Use glTF assets

Removed no-longer used assets

* Fixed HLSL shaders

* Android build files

* Use glTF assets

Updated GLSL and HLSL shaders
Removed no-longer used assets

* Use glTF assets

Updated GLSL and HLSL shaders
Removed no-longer used assets

* Added flag to disable glTF image loading

Useful for samples that use their own textures or don't use textures at all to speed up loading

* Use glTF assets

Code cleanup
Use Sponza scene instead of Sibenik to better highlight the effect
Updated GLSL and HLSL shaders

* Updated Android build files

* Removed left-over comment

* Use Sponza scene for the SSAO sample

* Removed unused code

* Removed ASSIMP

No longer required as all samples now use the glTF file format

* Added missing vertex shader stage

* Removed old ASSIMP-based model loader

* Added support for loading external glTF images from ktx

Android fixes for loading external buffer files

* Scene setup

* Added missing shader stages

* Removed ASSIMP from build files

* Fixed compiler warning

* Removed ASSIMP from readmes

* Android build files cleanup

* Replaced ktx submodule with only the files required for this repo

The ktx submodule was a tad too big and contained lots of files not required for this repo

* Moved ktx build files into base project

* Use glTF assets

* Use glTF assets

* Removed license files, will be moved to asset pack

* Use RGBA textures

* Use RGBA cubemp texture with face assignment based on original images

Refs #679

* Android build files

* Removed textures

All textures will be moved to the asset pack

* Ignore asset folders

* Removed font

Fonts will be moved to the asset pack

* Link to gltf asset pack

* Updated gitignore

* Android build file
2020-07-28 20:20:38 +02:00

340 lines
No EOL
12 KiB
C++

/*
* Vulkan Example - Viewport array with single pass rendering using geometry shaders
*
* Copyright (C) 2017 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#include "VulkanglTFModel.h"
#define ENABLE_VALIDATION false
class VulkanExample : public VulkanExampleBase
{
public:
vkglTF::Model scene;
struct UBOGS {
glm::mat4 projection[2];
glm::mat4 modelview[2];
glm::vec4 lightPos = glm::vec4(-2.5f, -3.5f, 0.0f, 1.0f);
} uboGS;
vks::Buffer uniformBufferGS;
VkPipeline pipeline;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
// Camera and view properties
float eyeSeparation = 0.08f;
const float focalLength = 0.5f;
const float fov = 90.0f;
const float zNear = 0.1f;
const float zFar = 256.0f;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "Viewport arrays";
camera.type = Camera::CameraType::firstperson;
camera.setRotation(glm::vec3(0.0f, 90.0f, 0.0f));
camera.setTranslation(glm::vec3(7.0f, 3.2f, 0.0f));
camera.setMovementSpeed(5.0f);
settings.overlay = true;
}
~VulkanExample()
{
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
uniformBufferGS.destroy();
}
// Enable physical device features required for this example
virtual void getEnabledFeatures()
{
// Geometry shader support is required for this example
if (deviceFeatures.geometryShader) {
enabledFeatures.geometryShader = VK_TRUE;
}
else {
vks::tools::exitFatal("Selected GPU does not support geometry shaders!", VK_ERROR_FEATURE_NOT_PRESENT);
}
// Multiple viewports must be supported
if (deviceFeatures.multiViewport) {
enabledFeatures.multiViewport = VK_TRUE;
}
else {
vks::tools::exitFatal("Selected GPU does not support multi viewports!", VK_ERROR_FEATURE_NOT_PRESENT);
}
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewports[2];
// Left
viewports[0] = { 0, 0, (float)width / 2.0f, (float)height, 0.0, 1.0f };
// Right
viewports[1] = { (float)width / 2.0f, 0, (float)width / 2.0f, (float)height, 0.0, 1.0f };
vkCmdSetViewport(drawCmdBuffers[i], 0, 2, viewports);
VkRect2D scissorRects[2] = {
vks::initializers::rect2D(width/2, height, 0, 0),
vks::initializers::rect2D(width/2, height, width / 2, 0),
};
vkCmdSetScissor(drawCmdBuffers[i], 0, 2, scissorRects);
vkCmdSetLineWidth(drawCmdBuffers[i], 1.0f);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
scene.draw(drawCmdBuffers[i]);
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void loadAssets()
{
scene.loadFromFile(getAssetPath() + "models/sampleroom.gltf", vulkanDevice, queue, vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY);
}
void setupDescriptorPool()
{
// Example uses two ubos
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vks::initializers::descriptorPoolCreateInfo(static_cast<uint32_t>(poolSizes.size()), poolSizes.data(), 1);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_GEOMETRY_BIT, 0) // Binding 1: Geometry shader ubo
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
}
void setupDescriptorSet()
{
VkDescriptorSetAllocateInfo allocInfo =
vks::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBufferGS.descriptor), // Binding 0 :Geometry shader ubo
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
// We use two viewports
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(2, 2, 0);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, VK_DYNAMIC_STATE_LINE_WIDTH };
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
std::array<VkPipelineShaderStageCreateInfo, 3> shaderStages;
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass);
pipelineCI.pInputAssemblyState = &inputAssemblyState;
pipelineCI.pRasterizationState = &rasterizationState;
pipelineCI.pColorBlendState = &colorBlendState;
pipelineCI.pMultisampleState = &multisampleState;
pipelineCI.pViewportState = &viewportState;
pipelineCI.pDepthStencilState = &depthStencilState;
pipelineCI.pDynamicState = &dynamicState;
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCI.pStages = shaderStages.data();
pipelineCI.renderPass = renderPass;
pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({vkglTF::VertexComponent::Position, vkglTF::VertexComponent::Normal, vkglTF::VertexComponent::Color});
shaderStages[0] = loadShader(getShadersPath() + "viewportarray/scene.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "viewportarray/scene.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// A geometry shader is used to output geometry to multiple viewports in one single pass
// See the "invoctations" decorator of the layout input in the shader
shaderStages[2] = loadShader(getShadersPath() + "viewportarray/multiview.geom.spv", VK_SHADER_STAGE_GEOMETRY_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline));
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Geometry shader uniform buffer block
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBufferGS,
sizeof(uboGS)));
// Map persistent
VK_CHECK_RESULT(uniformBufferGS.map());
updateUniformBuffers();
}
void updateUniformBuffers()
{
// Geometry shader matrices for the two viewports
// See http://paulbourke.net/stereographics/stereorender/
// Calculate some variables
float aspectRatio = (float)(width * 0.5f) / (float)height;
float wd2 = zNear * tan(glm::radians(fov / 2.0f));
float ndfl = zNear / focalLength;
float left, right;
float top = wd2;
float bottom = -wd2;
glm::vec3 camFront;
camFront.x = -cos(glm::radians(camera.rotation.x)) * sin(glm::radians(camera.rotation.y));
camFront.y = sin(glm::radians(camera.rotation.x));
camFront.z = cos(glm::radians(camera.rotation.x)) * cos(glm::radians(camera.rotation.y));
camFront = glm::normalize(camFront);
glm::vec3 camRight = glm::normalize(glm::cross(camFront, glm::vec3(0.0f, 1.0f, 0.0f)));
glm::mat4 rotM = glm::mat4(1.0f);
glm::mat4 transM;
rotM = glm::rotate(rotM, glm::radians(camera.rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
rotM = glm::rotate(rotM, glm::radians(camera.rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
rotM = glm::rotate(rotM, glm::radians(camera.rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
// Left eye
left = -aspectRatio * wd2 + 0.5f * eyeSeparation * ndfl;
right = aspectRatio * wd2 + 0.5f * eyeSeparation * ndfl;
transM = glm::translate(glm::mat4(1.0f), camera.position - camRight * (eyeSeparation / 2.0f));
uboGS.projection[0] = glm::frustum(left, right, bottom, top, zNear, zFar);
uboGS.modelview[0] = rotM * transM;
// Right eye
left = -aspectRatio * wd2 - 0.5f * eyeSeparation * ndfl;
right = aspectRatio * wd2 - 0.5f * eyeSeparation * ndfl;
transM = glm::translate(glm::mat4(1.0f), camera.position + camRight * (eyeSeparation / 2.0f));
uboGS.projection[1] = glm::frustum(left, right, bottom, top, zNear, zFar);
uboGS.modelview[1] = rotM * transM;
memcpy(uniformBufferGS.mapped, &uboGS, sizeof(uboGS));
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
}
virtual void viewChanged()
{
updateUniformBuffers();
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Settings")) {
if (overlay->sliderFloat("Eye separation", &eyeSeparation, -1.0f, 1.0f)) {
updateUniformBuffers();
}
}
}
};
VULKAN_EXAMPLE_MAIN()