procedural-3d-engine/android/computeparticles/computeparticles.NativeActivity/main.cpp
2016-03-06 01:20:03 -05:00

1574 lines
50 KiB
C++

/*
* Vulkan Example - Compute shader particle system
*
* Note :
* This is a basic android example. It may be integrated into the other examples at some point in the future.
* Until then this serves as a starting point for using Vulkan on Android, with some of the functionality required
* already moved to the example base classes (e.g. swap chain)
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <assert.h>
#include "vulkanandroid.h"
#include "vulkanswapchain.hpp"
#include <android/asset_manager.h>
#define GLM_FORCE_RADIANS
#define GLM_DEPTH_ZERO_TO_ONE
#include "glm/glm.hpp"
#include "glm/gtc/matrix_transform.hpp"
#define LOGI(...) ((void)__android_log_print(ANDROID_LOG_INFO, "AndroidProject1.NativeActivity", __VA_ARGS__))
#define LOGW(...) ((void)__android_log_print(ANDROID_LOG_WARN, "AndroidProject1.NativeActivity", __VA_ARGS__))
#define VERTEX_BUFFER_BIND_ID 0
#define PARTICLE_COUNT 4 * 1024
struct saved_state {
glm::vec3 rotation;
float zoom;
};
struct VulkanExample
{
struct android_app* app;
int animating;
uint32_t width;
uint32_t height;
struct saved_state state;
float timer = 0.0f;
float animStart = 50.0f;
bool animate = true;
// Vulkan
struct Vertex {
float pos[3];
float uv[2];
};
struct Texture {
VkSampler sampler;
VkImage image;
VkImageLayout imageLayout;
VkDeviceMemory deviceMemory;
VkImageView view;
uint32_t width, height;
uint32_t mipLevels;
} texture;
VkInstance instance;
VkPhysicalDevice physicalDevice;
VkDevice device;
VulkanSwapChain swapChain;
VkQueue queue;
VkCommandPool cmdPool;
VkRenderPass renderPass;
VkPipelineCache pipelineCache;
VkDescriptorPool descriptorPool;
VkDescriptorSetLayout descriptorSetLayout;
VkDescriptorSet descriptorSet;
VkPipelineLayout pipelineLayout;
std::vector<VkCommandBuffer> drawCmdBuffers;
VkCommandBuffer postPresentCmdBuffer = VK_NULL_HANDLE;
VkCommandBuffer setupCmdBuffer = VK_NULL_HANDLE;
VkPhysicalDeviceMemoryProperties deviceMemoryProperties;
std::vector<VkShaderModule> shaderModules;
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
struct {
VkPipeline solid;
VkPipeline compute;
} pipelines;
uint32_t currentBuffer = 0;
struct
{
VkImage image;
VkDeviceMemory mem;
VkImageView view;
} depthStencil;
std::vector<VkFramebuffer>frameBuffers;
VkQueue computeQueue;
VkCommandBuffer computeCmdBuffer;
VkPipelineLayout computePipelineLayout;
VkDescriptorSet computeDescriptorSet;
VkDescriptorSetLayout computeDescriptorSetLayout;
vkTools::UniformData computeStorageBuffer;
struct Particle {
glm::vec4 pos;
glm::vec4 col;
glm::vec4 vel;
};
struct {
float deltaT;
float destX;
float destY;
int32_t particleCount = PARTICLE_COUNT;
} computeUbo;
vkTools::UniformData uniformDataCompute;
bool prepared = false;
VkBool32 getMemoryType(uint32_t typeBits, VkFlags properties, uint32_t * typeIndex)
{
for (uint32_t i = 0; i < 32; i++)
{
if ((typeBits & 1) == 1)
{
if ((deviceMemoryProperties.memoryTypes[i].propertyFlags & properties) == properties)
{
*typeIndex = i;
return true;
}
}
typeBits >>= 1;
}
return false;
}
VkShaderModule loadShaderModule(const char *fileName, VkShaderStageFlagBits stage)
{
// Load shader from compressed asset
AAsset* asset = AAssetManager_open(app->activity->assetManager, fileName, AASSET_MODE_STREAMING);
assert(asset);
size_t size = AAsset_getLength(asset);
assert(size > 0);
char *shaderCode = new char[size];
AAsset_read(asset, shaderCode, size);
AAsset_close(asset);
VkShaderModule shaderModule;
VkShaderModuleCreateInfo moduleCreateInfo;
VkResult err;
moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
moduleCreateInfo.pNext = NULL;
moduleCreateInfo.codeSize = size;
moduleCreateInfo.pCode = (uint32_t*)shaderCode;
moduleCreateInfo.flags = 0;
err = vkCreateShaderModule(device, &moduleCreateInfo, NULL, &shaderModule);
assert(!err);
return shaderModule;
}
VkPipelineShaderStageCreateInfo loadShader(const char * fileName, VkShaderStageFlagBits stage)
{
VkPipelineShaderStageCreateInfo shaderStage = {};
shaderStage.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
shaderStage.stage = stage;
shaderStage.module = loadShaderModule(fileName, stage);
shaderStage.pName = "main";
assert(shaderStage.module != NULL);
shaderModules.push_back(shaderStage.module);
return shaderStage;
}
void loadTexture(const char* fileName, VkFormat format, bool forceLinearTiling)
{
VkFormatProperties formatProperties;
VkResult err;
AAsset* asset = AAssetManager_open(app->activity->assetManager, fileName, AASSET_MODE_STREAMING);
assert(asset);
size_t size = AAsset_getLength(asset);
assert(size > 0);
//char *textureData = new char[size];
void *textureData = malloc(size);
AAsset_read(asset, textureData, size);
AAsset_close(asset);
gli::texture2D tex2D(gli::load((const char*)textureData, size));
assert(!tex2D.empty());
texture.width = tex2D[0].dimensions().x;
texture.height = tex2D[0].dimensions().y;
texture.mipLevels = tex2D.levels();
// Get device properites for the requested texture format
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
// Only use linear tiling if requested (and supported by the device)
// Support for linear tiling is mostly limited, so prefer to use
// optimal tiling instead
// On most implementations linear tiling will only support a very
// limited amount of formats and features (mip maps, cubemaps, arrays, etc.)
VkBool32 useStaging = true;
// Only use linear tiling if forced
if (forceLinearTiling)
{
// Don't use linear if format is not supported for (linear) shader sampling
useStaging = !(formatProperties.linearTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT);
}
VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_LINEAR;
imageCreateInfo.usage = (useStaging) ? VK_IMAGE_USAGE_TRANSFER_SRC_BIT : VK_IMAGE_USAGE_SAMPLED_BIT;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.flags = 0;
imageCreateInfo.extent = { texture.width, texture.height, 1 };
VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
startSetupCommandBuffer();
if (useStaging)
{
// Load all available mip levels into linear textures
// and copy to optimal tiling target
struct MipLevel {
VkImage image;
VkDeviceMemory memory;
};
std::vector<MipLevel> mipLevels;
mipLevels.resize(texture.mipLevels);
// Copy mip levels
for (uint32_t level = 0; level < texture.mipLevels; ++level)
{
imageCreateInfo.extent.width = tex2D[level].dimensions().x;
imageCreateInfo.extent.height = tex2D[level].dimensions().y;
imageCreateInfo.extent.depth = 1;
err = vkCreateImage(device, &imageCreateInfo, nullptr, &mipLevels[level].image);
assert(!err);
vkGetImageMemoryRequirements(device, mipLevels[level].image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAllocInfo.memoryTypeIndex);
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &mipLevels[level].memory);
assert(!err);
err = vkBindImageMemory(device, mipLevels[level].image, mipLevels[level].memory, 0);
assert(!err);
VkImageSubresource subRes = {};
subRes.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
VkSubresourceLayout subResLayout;
void *data;
vkGetImageSubresourceLayout(device, mipLevels[level].image, &subRes, &subResLayout);
assert(!err);
err = vkMapMemory(device, mipLevels[level].memory, 0, memReqs.size, 0, &data);
assert(!err);
size_t levelSize = tex2D[level].size();
memcpy(data, tex2D[level].data(), levelSize);
vkUnmapMemory(device, mipLevels[level].memory);
LOGW("setImageLayout %d", 1);
// Image barrier for linear image (base)
// Linear image will be used as a source for the copy
vkTools::setImageLayout(
setupCmdBuffer,
mipLevels[level].image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
}
// Setup texture as blit target with optimal tiling
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
imageCreateInfo.mipLevels = texture.mipLevels;
imageCreateInfo.extent = { texture.width, texture.height, 1 };
err = vkCreateImage(device, &imageCreateInfo, nullptr, &texture.image);
assert(!err);
vkGetImageMemoryRequirements(device, texture.image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAllocInfo.memoryTypeIndex);
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &texture.deviceMemory);
assert(!err);
err = vkBindImageMemory(device, texture.image, texture.deviceMemory, 0);
assert(!err);
// Image barrier for optimal image (target)
// Optimal image will be used as destination for the copy
vkTools::setImageLayout(
setupCmdBuffer,
texture.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
// Copy mip levels one by one
for (uint32_t level = 0; level < texture.mipLevels; ++level)
{
// Copy region for image blit
VkImageCopy copyRegion = {};
copyRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.srcSubresource.baseArrayLayer = 0;
copyRegion.srcSubresource.mipLevel = 0;
copyRegion.srcSubresource.layerCount = 1;
copyRegion.srcOffset = { 0, 0, 0 };
copyRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.dstSubresource.baseArrayLayer = 0;
// Set mip level to copy the linear image to
copyRegion.dstSubresource.mipLevel = level;
copyRegion.dstSubresource.layerCount = 1;
copyRegion.dstOffset = { 0, 0, 0 };
copyRegion.extent.width = tex2D[level].dimensions().x;
copyRegion.extent.height = tex2D[level].dimensions().y;
copyRegion.extent.depth = 1;
// Put image copy into command buffer
vkCmdCopyImage(
setupCmdBuffer,
mipLevels[level].image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
texture.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1, &copyRegion);
// Change texture image layout to shader read after the copy
texture.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
vkTools::setImageLayout(
setupCmdBuffer,
texture.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
texture.imageLayout);
}
// Clean up linear images
// No longer required after mip levels
// have been transformed over to optimal tiling
for (auto& level : mipLevels)
{
vkDestroyImage(device, level.image, nullptr);
vkFreeMemory(device, level.memory, nullptr);
}
}
else
{
// Prefer using optimal tiling, as linear tiling
// may support only a small set of features
// depending on implementation (e.g. no mip maps, only one layer, etc.)
VkImage mappableImage;
VkDeviceMemory mappableMemory;
// Load mip map level 0 to linear tiling image
err = vkCreateImage(device, &imageCreateInfo, nullptr, &mappableImage);
assert(!err);
// Get memory requirements for this image
// like size and alignment
vkGetImageMemoryRequirements(device, mappableImage, &memReqs);
// Set memory allocation size to required memory size
memAllocInfo.allocationSize = memReqs.size;
// Get memory type that can be mapped to host memory
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAllocInfo.memoryTypeIndex);
// Allocate host memory
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &mappableMemory);
assert(!err);
// Bind allocated image for use
err = vkBindImageMemory(device, mappableImage, mappableMemory, 0);
assert(!err);
// Get sub resource layout
// Mip map count, array layer, etc.
VkImageSubresource subRes = {};
subRes.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
VkSubresourceLayout subResLayout;
void *data;
// Get sub resources layout
// Includes row pitch, size offsets, etc.
vkGetImageSubresourceLayout(device, mappableImage, &subRes, &subResLayout);
assert(!err);
// Map image memory
err = vkMapMemory(device, mappableMemory, 0, memReqs.size, 0, &data);
assert(!err);
// Copy image data into memory
memcpy(data, tex2D[subRes.mipLevel].data(), tex2D[subRes.mipLevel].size());
vkUnmapMemory(device, mappableMemory);
// Linear tiled images don't need to be staged
// and can be directly used as textures
texture.image = mappableImage;
texture.deviceMemory = mappableMemory;
texture.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
// Setup image memory barrier
vkTools::setImageLayout(
setupCmdBuffer,
texture.image,
VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED,
texture.imageLayout);
}
flushSetupCommandBuffer();
// Create sampler
// In Vulkan textures are accessed by samplers
// This separates all the sampling information from the
// texture data
// This means you could have multiple sampler objects
// for the same texture with different settings
// Similar to the samplers available with OpenGL 3.3
VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo();
sampler.magFilter = VK_FILTER_LINEAR;
sampler.minFilter = VK_FILTER_LINEAR;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
sampler.addressModeV = sampler.addressModeU;
sampler.addressModeW = sampler.addressModeU;
sampler.mipLodBias = 0.0f;
sampler.compareOp = VK_COMPARE_OP_NEVER;
sampler.minLod = 0.0f;
// Max level-of-detail should match mip level count
sampler.maxLod = (useStaging) ? (float)texture.mipLevels : 0.0f;
// Enable anisotropic filtering
sampler.maxAnisotropy = 8;
sampler.anisotropyEnable = VK_TRUE;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
err = vkCreateSampler(device, &sampler, nullptr, &texture.sampler);
assert(!err);
// Create image view
// Textures are not directly accessed by the shaders and
// are abstracted by image views containing additional
// information and sub resource ranges
VkImageViewCreateInfo view = vkTools::initializers::imageViewCreateInfo();
view.image = VK_NULL_HANDLE;
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
view.format = format;
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
view.subresourceRange.baseMipLevel = 0;
view.subresourceRange.baseArrayLayer = 0;
view.subresourceRange.layerCount = 1;
// Linear tiling usually won't support mip maps
// Only set mip map count if optimal tiling is used
view.subresourceRange.levelCount = (useStaging) ? texture.mipLevels : 1;
view.image = texture.image;
err = vkCreateImageView(device, &view, nullptr, &texture.view);
assert(!err);
}
// Free staging resources used while creating a texture
void destroyTextureImage(struct Texture texture)
{
vkDestroyImage(device, texture.image, nullptr);
vkFreeMemory(device, texture.deviceMemory, nullptr);
}
void initVulkan()
{
prepared = false;
bool libLoaded = loadVulkanLibrary();
assert(libLoaded);
VkResult vkRes;
// Instance
VkApplicationInfo appInfo = {};
appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
appInfo.pApplicationName = "Vulkan Android Example";
appInfo.applicationVersion = 1;
appInfo.pEngineName = "VulkanAndroidExample";
appInfo.engineVersion = 1;
// todo : Workaround to support implementations that are not using the latest SDK
appInfo.apiVersion = VK_MAKE_VERSION(1, 0, 1);
VkInstanceCreateInfo instanceCreateInfo = {};
instanceCreateInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
instanceCreateInfo.pApplicationInfo = &appInfo;
vkRes = vkCreateInstance(&instanceCreateInfo, NULL, &instance);
assert(vkRes == VK_SUCCESS);
loadVulkanFunctions(instance);
// Device
// Always use first physical device
uint32_t gpuCount;
vkRes = vkEnumeratePhysicalDevices(instance, &gpuCount, &physicalDevice);
assert(vkRes == VK_SUCCESS);
// Find a queue that supports graphics operations
uint32_t graphicsQueueIndex = 0;
uint32_t queueCount;
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueCount, NULL);
assert(queueCount >= 1);
std::vector<VkQueueFamilyProperties> queueProps;
queueProps.resize(queueCount);
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueCount, queueProps.data());
for (graphicsQueueIndex = 0; graphicsQueueIndex < queueCount; graphicsQueueIndex++)
{
if (queueProps[graphicsQueueIndex].queueFlags & VK_QUEUE_GRAPHICS_BIT)
break;
}
assert(graphicsQueueIndex < queueCount);
// Request the queue
float queuePriorities = 0.0f;
VkDeviceQueueCreateInfo queueCreateInfo = {};
queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueCreateInfo.queueFamilyIndex = graphicsQueueIndex;
queueCreateInfo.queueCount = 1;
queueCreateInfo.pQueuePriorities = &queuePriorities;
// Create device
VkDeviceCreateInfo deviceCreateInfo = {};
deviceCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
deviceCreateInfo.queueCreateInfoCount = 1;
deviceCreateInfo.pQueueCreateInfos = &queueCreateInfo;
vkRes = vkCreateDevice(physicalDevice, &deviceCreateInfo, nullptr, &device);
assert(vkRes == VK_SUCCESS);
// Get graphics queue
vkGetDeviceQueue(device, graphicsQueueIndex, 0, &queue);
// Device memory properties (for finding appropriate memory types)
vkGetPhysicalDeviceMemoryProperties(physicalDevice, &deviceMemoryProperties);
// Swap chain
swapChain.connect(instance, physicalDevice, device);
swapChain.initSurface(app->window);
// Command buffer pool
VkCommandPoolCreateInfo cmdPoolInfo = {};
cmdPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
cmdPoolInfo.queueFamilyIndex = swapChain.queueNodeIndex;
cmdPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
vkRes = vkCreateCommandPool(device, &cmdPoolInfo, nullptr, &cmdPool);
assert(!vkRes);
// Pipeline cache
VkPipelineCacheCreateInfo pipelineCacheCreateInfo = {};
pipelineCacheCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
VkResult err = vkCreatePipelineCache(device, &pipelineCacheCreateInfo, nullptr, &pipelineCache);
assert(!err);
createSetupCommandBuffer();
startSetupCommandBuffer();
swapChain.create(setupCmdBuffer, &width, &height);
setupDepthStencil();
setupRenderPass();
setupFrameBuffer();
flushSetupCommandBuffer();
loadTexture(
"textures/android_robot.ktx",
VK_FORMAT_R8G8B8A8_UNORM,
false);
createCommandBuffers();
// Compute stuff
getComputeQueue();
createComputeCommandBuffer();
prepareStorageBuffers();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
prepareCompute();
buildCommandBuffers();
buildComputeCommandBuffer();
state.zoom = -5.0f;
state.rotation = glm::vec3();
prepared = true;
}
void cleanupVulkan()
{
prepared = false;
vkDestroyPipeline(device, pipelines.solid, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyPipelineLayout(device, computePipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vkDestroyDescriptorSetLayout(device, computeDescriptorSetLayout, nullptr);
vkDestroyBuffer(device, uniformDataCompute.buffer, nullptr);
vkFreeMemory(device, uniformDataCompute.memory, nullptr);
vkDestroyBuffer(device, computeStorageBuffer.buffer, nullptr);
vkFreeMemory(device, computeStorageBuffer.memory, nullptr);
destroyTextureImage(texture);
swapChain.cleanup();
vkDestroyDescriptorPool(device, descriptorPool, nullptr);
if (setupCmdBuffer != VK_NULL_HANDLE)
{
vkFreeCommandBuffers(device, cmdPool, 1, &setupCmdBuffer);
}
vkFreeCommandBuffers(device, cmdPool, drawCmdBuffers.size(), drawCmdBuffers.data());
vkFreeCommandBuffers(device, cmdPool, 1, &postPresentCmdBuffer);
vkFreeCommandBuffers(device, cmdPool, 1, &computeCmdBuffer);
vkDestroyRenderPass(device, renderPass, nullptr);
for (uint32_t i = 0; i < frameBuffers.size(); i++)
{
vkDestroyFramebuffer(device, frameBuffers[i], nullptr);
}
for (auto& shaderModule : shaderModules)
{
vkDestroyShaderModule(device, shaderModule, nullptr);
}
vkDestroyImageView(device, depthStencil.view, nullptr);
vkDestroyImage(device, depthStencil.image, nullptr);
vkFreeMemory(device, depthStencil.mem, nullptr);
vkDestroyPipelineCache(device, pipelineCache, nullptr);
vkDestroyDevice(device, nullptr);
vkDestroyInstance(instance, nullptr);
freeVulkanLibrary();
}
void createSetupCommandBuffer()
{
VkCommandBufferAllocateInfo cmdBufAllocateInfo =
vkTools::initializers::commandBufferAllocateInfo(
cmdPool,
VK_COMMAND_BUFFER_LEVEL_PRIMARY,
1);
VkResult vkRes = vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &setupCmdBuffer);
assert(!vkRes);
}
void startSetupCommandBuffer()
{
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
vkBeginCommandBuffer(setupCmdBuffer, &cmdBufInfo);
}
void flushSetupCommandBuffer()
{
VkResult err;
if (setupCmdBuffer == VK_NULL_HANDLE)
return;
err = vkEndCommandBuffer(setupCmdBuffer);
assert(!err);
VkSubmitInfo submitInfo = {};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &setupCmdBuffer;
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
assert(!err);
err = vkQueueWaitIdle(queue);
assert(!err);
}
void createCommandBuffers()
{
drawCmdBuffers.resize(swapChain.imageCount);
VkCommandBufferAllocateInfo cmdBufAllocateInfo =
vkTools::initializers::commandBufferAllocateInfo(
cmdPool,
VK_COMMAND_BUFFER_LEVEL_PRIMARY,
drawCmdBuffers.size());
VkResult vkRes = vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, drawCmdBuffers.data());
assert(!vkRes);
cmdBufAllocateInfo.commandBufferCount = 1;
vkRes = vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &postPresentCmdBuffer);
assert(!vkRes);
}
// Find and create a compute capable device queue
void getComputeQueue()
{
uint32_t queueIndex = 0;
uint32_t queueCount;
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueCount, NULL);
assert(queueCount >= 1);
std::vector<VkQueueFamilyProperties> queueProps;
queueProps.resize(queueCount);
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueCount, queueProps.data());
for (queueIndex = 0; queueIndex < queueCount; queueIndex++)
{
if (queueProps[queueIndex].queueFlags & VK_QUEUE_COMPUTE_BIT)
break;
}
assert(queueIndex < queueCount);
VkDeviceQueueCreateInfo queueCreateInfo = {};
queueCreateInfo.queueFamilyIndex = queueIndex;
queueCreateInfo.queueCount = 1;
vkGetDeviceQueue(device, queueIndex, 0, &computeQueue);
}
void createComputeCommandBuffer()
{
VkCommandBufferAllocateInfo cmdBufAllocateInfo =
vkTools::initializers::commandBufferAllocateInfo(
cmdPool,
VK_COMMAND_BUFFER_LEVEL_PRIMARY,
1);
VkResult vkRes = vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &computeCmdBuffer);
assert(!vkRes);
}
void buildComputeCommandBuffer()
{
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();;
vkBeginCommandBuffer(computeCmdBuffer, &cmdBufInfo);
vkCmdBindPipeline(computeCmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipelines.compute);
vkCmdBindDescriptorSets(computeCmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, computePipelineLayout, 0, 1, &computeDescriptorSet, 0, 0);
vkCmdDispatch(computeCmdBuffer, PARTICLE_COUNT / 16, 1, 1);
vkEndCommandBuffer(computeCmdBuffer);
}
void updateUniformBuffers()
{
computeUbo.deltaT = (1.0f / 60.0f) * 4.0f;
computeUbo.destX = sin(glm::radians(timer*360.0)) * 0.75f;
computeUbo.destY = cos(glm::radians(timer*360.0)) * 0.10f;
uint8_t *pData;
VkResult err = vkMapMemory(device, uniformDataCompute.memory, 0, sizeof(computeUbo), 0, (void **)&pData);
assert(!err);
memcpy(pData, &computeUbo, sizeof(computeUbo));
vkUnmapMemory(device, uniformDataCompute.memory);
}
void prepareUniformBuffers()
{
// Prepare and initialize uniform buffer containing shader uniforms
VkMemoryRequirements memReqs;
// Vertex shader uniform buffer block
VkBufferCreateInfo bufferInfo = {};
VkMemoryAllocateInfo allocInfo = vkTools::initializers::memoryAllocateInfo();
VkResult err;
bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferInfo.size = sizeof(computeUbo);
bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
err = vkCreateBuffer(device, &bufferInfo, nullptr, &uniformDataCompute.buffer);
assert(!err);
vkGetBufferMemoryRequirements(device, uniformDataCompute.buffer, &memReqs);
allocInfo.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &allocInfo.memoryTypeIndex);
err = vkAllocateMemory(device, &allocInfo, nullptr, &(uniformDataCompute.memory));
assert(!err);
err = vkBindBufferMemory(device, uniformDataCompute.buffer, uniformDataCompute.memory, 0);
assert(!err);
uniformDataCompute.descriptor.buffer = uniformDataCompute.buffer;
uniformDataCompute.descriptor.offset = 0;
uniformDataCompute.descriptor.range = sizeof(computeUbo);
updateUniformBuffers();
}
void preparePipelines()
{
VkResult err;
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_POINT_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vkTools::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_NONE,
VK_FRONT_FACE_COUNTER_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vkTools::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vkTools::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vkTools::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables;
dynamicStateEnables.push_back(VK_DYNAMIC_STATE_VIEWPORT);
dynamicStateEnables.push_back(VK_DYNAMIC_STATE_SCISSOR);
VkPipelineDynamicStateCreateInfo dynamicState =
vkTools::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
dynamicStateEnables.size(),
0);
// Rendering pipeline
// Load shaders
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
shaderStages[0] = loadShader("shaders/particle.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader("shaders/particle.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vkTools::initializers::pipelineCreateInfo(
pipelineLayout,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data();
pipelineCreateInfo.renderPass = renderPass;
// Additive blending
blendAttachmentState.colorWriteMask = 0xF;
blendAttachmentState.blendEnable = VK_TRUE;
blendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD;
blendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_ONE;
blendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE;
blendAttachmentState.alphaBlendOp = VK_BLEND_OP_ADD;
blendAttachmentState.srcAlphaBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
blendAttachmentState.dstAlphaBlendFactor = VK_BLEND_FACTOR_DST_ALPHA;
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid);
assert(!err);
}
// Setup and fill the compute shader storage buffers for
// vertex positions and velocities
void prepareStorageBuffers()
{
float destPosX = 0.0f;
float destPosY = 0.0f;
// Initial particle positions
std::vector<Particle> particleBuffer;
for (int i = 0; i < PARTICLE_COUNT; ++i)
{
// Position
float aspectRatio = (float)height / (float)width;
float rndVal = (float)rand() / (float)(RAND_MAX / (360.0f * 3.14f * 2.0f));
float rndRad = (float)rand() / (float)(RAND_MAX)* 0.65f;
Particle p;
p.pos = glm::vec4(
destPosX + cos(rndVal) * rndRad * aspectRatio,
destPosY + sin(rndVal) * rndRad,
0.0f,
1.0f);
p.col = glm::vec4(
(float)(rand() % 255) / 255.0f,
(float)(rand() % 255) / 255.0f,
(float)(rand() % 255) / 255.0f,
1.0f);
p.vel = glm::vec4(0.0f);
particleBuffer.push_back(p);
}
// Buffer size is the same for all storage buffers
uint32_t storageBufferSize = particleBuffer.size() * sizeof(Particle);
VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
VkResult err;
void *data;
// Allocate and fill storage buffer object
VkBufferCreateInfo vBufferInfo =
vkTools::initializers::bufferCreateInfo(
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT,
storageBufferSize);
err = vkCreateBuffer(device, &vBufferInfo, nullptr, &computeStorageBuffer.buffer);
assert(!err);
vkGetBufferMemoryRequirements(device, computeStorageBuffer.buffer, &memReqs);
memAlloc.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex);
err = vkAllocateMemory(device, &memAlloc, nullptr, &computeStorageBuffer.memory);
assert(!err);
err = vkMapMemory(device, computeStorageBuffer.memory, 0, storageBufferSize, 0, &data);
assert(!err);
memcpy(data, particleBuffer.data(), storageBufferSize);
vkUnmapMemory(device, computeStorageBuffer.memory);
err = vkBindBufferMemory(device, computeStorageBuffer.buffer, computeStorageBuffer.memory, 0);
assert(!err);
computeStorageBuffer.descriptor.buffer = computeStorageBuffer.buffer;
computeStorageBuffer.descriptor.offset = 0;
computeStorageBuffer.descriptor.range = storageBufferSize;
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vkTools::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
sizeof(Particle),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
// Describes memory layout and shader positions
vertices.attributeDescriptions.resize(2);
// Location 0 : Position
vertices.attributeDescriptions[0] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32A32_SFLOAT,
0);
// Location 1 : Color
vertices.attributeDescriptions[1] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32B32A32_SFLOAT,
sizeof(float) * 4);
// Assign to vertex buffer
vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void prepareCompute()
{
// Create compute pipeline
// Compute pipelines are created separate from graphics pipelines
// even if they use the same queue
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings;
setLayoutBindings.push_back(
// Binding 0 : Particle position storage buffer
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
VK_SHADER_STAGE_COMPUTE_BIT,
0));
setLayoutBindings.push_back(
// Binding 1 : Uniform buffer
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_COMPUTE_BIT,
1));
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vkTools::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
setLayoutBindings.size());
VkResult err = vkCreateDescriptorSetLayout(
device,
&descriptorLayout,
nullptr,
&computeDescriptorSetLayout);
assert(!err);
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vkTools::initializers::pipelineLayoutCreateInfo(
&computeDescriptorSetLayout,
1);
err = vkCreatePipelineLayout(
device,
&pPipelineLayoutCreateInfo,
nullptr,
&computePipelineLayout);
assert(!err);
VkDescriptorSetAllocateInfo allocInfo =
vkTools::initializers::descriptorSetAllocateInfo(
descriptorPool,
&computeDescriptorSetLayout,
1);
err = vkAllocateDescriptorSets(device, &allocInfo, &computeDescriptorSet);
assert(!err);
std::vector<VkWriteDescriptorSet> computeWriteDescriptorSets;
computeWriteDescriptorSets.push_back(
// Binding 0 : Particle position storage buffer
vkTools::initializers::writeDescriptorSet(
computeDescriptorSet,
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
0,
&computeStorageBuffer.descriptor));
computeWriteDescriptorSets.push_back(
// Binding 1 : Uniform buffer
vkTools::initializers::writeDescriptorSet(
computeDescriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
1,
&uniformDataCompute.descriptor));
vkUpdateDescriptorSets(device, computeWriteDescriptorSets.size(), computeWriteDescriptorSets.data(), 0, NULL);
// Create pipeline
VkComputePipelineCreateInfo computePipelineCreateInfo =
vkTools::initializers::computePipelineCreateInfo(
computePipelineLayout,
0);
computePipelineCreateInfo.stage = loadShader("shaders/particle.comp.spv", VK_SHADER_STAGE_COMPUTE_BIT);
err = vkCreateComputePipelines(device, pipelineCache, 1, &computePipelineCreateInfo, nullptr, &pipelines.compute);
assert(!err);
}
void setupDescriptorPool()
{
std::vector<VkDescriptorPoolSize> poolSizes;
poolSizes.push_back(vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1));
poolSizes.push_back(vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1));
poolSizes.push_back(vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1));
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vkTools::initializers::descriptorPoolCreateInfo(
poolSizes.size(),
poolSizes.data(),
2);
VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool);
assert(!vkRes);
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings;
setLayoutBindings.push_back(
// Binding 0 : Fragment shader image sampler
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
0));
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vkTools::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
setLayoutBindings.size());
VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout);
assert(!err);
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vkTools::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout);
assert(!err);
}
void setupDescriptorSet()
{
VkDescriptorSetAllocateInfo allocInfo =
vkTools::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet);
assert(!vkRes);
// Image descriptor for the color map texture
VkDescriptorImageInfo texDescriptor =
vkTools::initializers::descriptorImageInfo(
texture.sampler,
texture.view,
VK_IMAGE_LAYOUT_GENERAL);
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
writeDescriptorSets.push_back(
// Binding 0 : Fragment shader texture sampler
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
0,
&texDescriptor));
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
}
void setupDepthStencil()
{
VkImageCreateInfo image = {};
image.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
image.pNext = NULL;
image.imageType = VK_IMAGE_TYPE_2D;
image.format = VK_FORMAT_D24_UNORM_S8_UINT;
image.extent = { width, height, 1 };
image.mipLevels = 1;
image.arrayLayers = 1;
image.samples = VK_SAMPLE_COUNT_1_BIT;
image.tiling = VK_IMAGE_TILING_OPTIMAL;
image.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
image.flags = 0;
VkMemoryAllocateInfo mem_alloc = {};
mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
mem_alloc.pNext = NULL;
mem_alloc.allocationSize = 0;
mem_alloc.memoryTypeIndex = 0;
VkImageViewCreateInfo depthStencilView = {};
depthStencilView.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
depthStencilView.pNext = NULL;
depthStencilView.viewType = VK_IMAGE_VIEW_TYPE_2D;
depthStencilView.format = VK_FORMAT_D24_UNORM_S8_UINT;
depthStencilView.flags = 0;
depthStencilView.subresourceRange = {};
depthStencilView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
depthStencilView.subresourceRange.baseMipLevel = 0;
depthStencilView.subresourceRange.levelCount = 1;
depthStencilView.subresourceRange.baseArrayLayer = 0;
depthStencilView.subresourceRange.layerCount = 1;
VkMemoryRequirements memReqs;
VkResult err;
err = vkCreateImage(device, &image, nullptr, &depthStencil.image);
assert(!err);
vkGetImageMemoryRequirements(device, depthStencil.image, &memReqs);
mem_alloc.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &mem_alloc.memoryTypeIndex);
err = vkAllocateMemory(device, &mem_alloc, nullptr, &depthStencil.mem);
assert(!err);
err = vkBindImageMemory(device, depthStencil.image, depthStencil.mem, 0);
assert(!err);
vkTools::setImageLayout(setupCmdBuffer, depthStencil.image, VK_IMAGE_ASPECT_DEPTH_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
depthStencilView.image = depthStencil.image;
err = vkCreateImageView(device, &depthStencilView, nullptr, &depthStencil.view);
assert(!err);
}
void setupFrameBuffer()
{
VkImageView attachments[2];
// Depth/Stencil attachment is the same for all frame buffers
attachments[1] = depthStencil.view;
VkFramebufferCreateInfo frameBufferCreateInfo = {};
frameBufferCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
frameBufferCreateInfo.pNext = NULL;
frameBufferCreateInfo.renderPass = renderPass;
frameBufferCreateInfo.attachmentCount = 2;
frameBufferCreateInfo.pAttachments = attachments;
frameBufferCreateInfo.width = width;
frameBufferCreateInfo.height = height;
frameBufferCreateInfo.layers = 1;
// Create frame buffers for every swap chain image
frameBuffers.resize(swapChain.imageCount);
for (uint32_t i = 0; i < frameBuffers.size(); i++)
{
attachments[0] = swapChain.buffers[i].view;
VkResult err = vkCreateFramebuffer(device, &frameBufferCreateInfo, nullptr, &frameBuffers[i]);
assert(!err);
}
}
void setupRenderPass()
{
VkAttachmentDescription attachments[2];
attachments[0].format = VK_FORMAT_R8G8B8A8_UNORM;
attachments[0].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[0].initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
attachments[0].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
attachments[1].format = VK_FORMAT_D24_UNORM_S8_UINT;
attachments[1].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[1].initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
attachments[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkAttachmentReference colorReference = {};
colorReference.attachment = 0;
colorReference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkAttachmentReference depthReference = {};
depthReference.attachment = 1;
depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.flags = 0;
subpass.inputAttachmentCount = 0;
subpass.pInputAttachments = NULL;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &colorReference;
subpass.pResolveAttachments = NULL;
subpass.pDepthStencilAttachment = &depthReference;
subpass.preserveAttachmentCount = 0;
subpass.pPreserveAttachments = NULL;
VkRenderPassCreateInfo renderPassInfo = {};
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
renderPassInfo.pNext = NULL;
renderPassInfo.attachmentCount = 2;
renderPassInfo.pAttachments = attachments;
renderPassInfo.subpassCount = 1;
renderPassInfo.pSubpasses = &subpass;
renderPassInfo.dependencyCount = 0;
renderPassInfo.pDependencies = NULL;
VkResult err;
err = vkCreateRenderPass(device, &renderPassInfo, nullptr, &renderPass);
assert(!err);
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 0.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
VkResult err;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo);
assert(!err);
// Buffer memory barrier to make sure that compute shader
// writes are finished before using the storage buffer
// in the vertex shader
VkBufferMemoryBarrier bufferBarrier = vkTools::initializers::bufferMemoryBarrier();
// Source access : Compute shader buffer write
bufferBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
// Dest access : Vertex shader access (attribute binding)
bufferBarrier.dstAccessMask = VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT;
bufferBarrier.buffer = computeStorageBuffer.buffer;
bufferBarrier.offset = 0;
bufferBarrier.size = computeStorageBuffer.descriptor.range;
bufferBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
bufferBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
vkCmdPipelineBarrier(
drawCmdBuffers[i],
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_FLAGS_NONE,
0, nullptr,
1, &bufferBarrier,
0, nullptr);
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vkTools::initializers::viewport(
(float)width,
(float)height,
0.0f,
1.0f
);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D(
width,
height,
0,
0
);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.solid);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &computeStorageBuffer.buffer, offsets);
vkCmdDraw(drawCmdBuffers[i], PARTICLE_COUNT, 1, 0, 0);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VkImageMemoryBarrier prePresentBarrier = vkTools::prePresentBarrier(swapChain.buffers[i].image);
vkCmdPipelineBarrier(
drawCmdBuffers[i],
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_FLAGS_NONE,
0, nullptr,
0, nullptr,
1, &prePresentBarrier);
err = vkEndCommandBuffer(drawCmdBuffers[i]);
assert(!err);
}
}
void draw()
{
VkResult err;
VkSemaphore presentCompleteSemaphore;
VkSemaphoreCreateInfo presentCompleteSemaphoreCreateInfo = vkTools::initializers::semaphoreCreateInfo();
err = vkCreateSemaphore(device, &presentCompleteSemaphoreCreateInfo, nullptr, &presentCompleteSemaphore);
assert(!err);
// Get next image in the swap chain (back/front buffer)
err = swapChain.acquireNextImage(presentCompleteSemaphore, &currentBuffer);
assert(!err);
VkSubmitInfo submitInfo = vkTools::initializers::submitInfo();
submitInfo.waitSemaphoreCount = 1;
submitInfo.pWaitSemaphores = &presentCompleteSemaphore;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
// Submit draw command buffer
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
assert(!err);
err = swapChain.queuePresent(queue, currentBuffer);
assert(!err);
vkDestroySemaphore(device, presentCompleteSemaphore, nullptr);
VkImageMemoryBarrier postPresentBarrier = vkTools::postPresentBarrier(swapChain.buffers[currentBuffer].image);
// Use dedicated command buffer from example base class for submitting the post present barrier
VkCommandBufferBeginInfo cmdBufInfo = {};
cmdBufInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
err = vkBeginCommandBuffer(postPresentCmdBuffer, &cmdBufInfo);
assert(!err);
// Put post present barrier into command buffer
vkCmdPipelineBarrier(
postPresentCmdBuffer,
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_FLAGS_NONE,
0, nullptr,
0, nullptr,
1, &postPresentBarrier);
err = vkEndCommandBuffer(postPresentCmdBuffer);
assert(!err);
// Submit to the queue
submitInfo = {};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &postPresentCmdBuffer;
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
assert(!err);
err = vkQueueWaitIdle(queue);
assert(!err);
// Compute
VkSubmitInfo computeSubmitInfo = vkTools::initializers::submitInfo();
computeSubmitInfo.commandBufferCount = 1;
computeSubmitInfo.pCommandBuffers = &computeCmdBuffer;
err = vkQueueSubmit(computeQueue, 1, &computeSubmitInfo, VK_NULL_HANDLE);
assert(!err);
err = vkQueueWaitIdle(computeQueue);
assert(!err);
}
};
static int32_t handleInput(struct android_app* app, AInputEvent* event)
{
struct VulkanExample* vulkanExample = (struct VulkanExample*)app->userData;
if (AInputEvent_getType(event) == AINPUT_EVENT_TYPE_MOTION)
{
// todo
return 1;
}
return 0;
}
static void handleCommand(struct android_app* app, int32_t cmd)
{
VulkanExample* vulkanExample = (VulkanExample*)app->userData;
switch (cmd)
{
case APP_CMD_SAVE_STATE:
vulkanExample->app->savedState = malloc(sizeof(struct saved_state));
*((struct saved_state*)vulkanExample->app->savedState) = vulkanExample->state;
vulkanExample->app->savedStateSize = sizeof(struct saved_state);
break;
case APP_CMD_INIT_WINDOW:
if (vulkanExample->app->window != NULL)
{
vulkanExample->initVulkan();
assert(vulkanExample->prepared);
}
break;
case APP_CMD_LOST_FOCUS:
vulkanExample->animating = 0;
break;
}
}
/**
* This is the main entry point of a native application that is using
* android_native_app_glue. It runs in its own thread, with its own
* event loop for receiving input events and doing other things.
*/
void android_main(struct android_app* state)
{
VulkanExample *engine = new VulkanExample();
//memset(&engine, 0, sizeof(engine));
state->userData = engine;
state->onAppCmd = handleCommand;
state->onInputEvent = handleInput;
engine->app = state;
engine->animating = 1;
// loop waiting for stuff to do.
while (1)
{
// Read all pending events.
int ident;
int events;
struct android_poll_source* source;
while ((ident = ALooper_pollAll(engine->animating ? 0 : -1, NULL, &events, (void**)&source)) >= 0)
{
if (source != NULL)
{
source->process(state, source);
}
if (state->destroyRequested != 0)
{
engine->cleanupVulkan();
return;
}
}
// Render frame
if (engine->prepared)
{
if (engine->animating)
{
if (engine->animStart > 0.0f)
{
engine->animStart -= (1.0f / 60.0f) * 5.0f;
}
if ((engine->animate) & (engine->animStart <= 0.0f))
{
engine->timer += (1.0f / 60.0f) * 0.1f;
if (engine->timer > 1.0)
{
engine->timer -= 1.0f;
}
}
engine->updateUniformBuffers();
}
engine->draw();
}
}
}