procedural-3d-engine/android/triangle/triangle.NativeActivity/main.cpp
2016-03-06 01:20:03 -05:00

1164 lines
39 KiB
C++

/*
* Vulkan Example - Basic Android example
*
* Note :
* This is a basic android example. It may be integrated into the other examples at some point in the future.
* Until then this serves as a starting point for using Vulkan on Android, with some of the functionality required
* already moved to the example base classes (e.g. swap chain)
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <assert.h>
#include "vulkanandroid.h"
#include "vulkanswapchain.hpp"
#include <android/asset_manager.h>
#define GLM_FORCE_RADIANS
#define GLM_DEPTH_ZERO_TO_ONE
#include "glm/glm.hpp"
#include "glm/gtc/matrix_transform.hpp"
#define LOGI(...) ((void)__android_log_print(ANDROID_LOG_INFO, "AndroidProject1.NativeActivity", __VA_ARGS__))
#define LOGW(...) ((void)__android_log_print(ANDROID_LOG_WARN, "AndroidProject1.NativeActivity", __VA_ARGS__))
#define VERTEX_BUFFER_BIND_ID 0
struct saved_state {
glm::vec3 rotation;
float zoom;
};
struct VulkanExample
{
struct android_app* app;
int animating;
uint32_t width;
uint32_t height;
struct saved_state state;
// Vulkan
VkInstance instance;
VkPhysicalDevice physicalDevice;
VkDevice device;
VulkanSwapChain swapChain;
VkQueue queue;
VkCommandPool cmdPool;
VkRenderPass renderPass;
VkPipelineCache pipelineCache;
VkDescriptorPool descriptorPool;
VkDescriptorSetLayout descriptorSetLayout;
VkDescriptorSet descriptorSet;
VkPipelineLayout pipelineLayout;
std::vector<VkCommandBuffer> drawCmdBuffers;
VkCommandBuffer postPresentCmdBuffer = VK_NULL_HANDLE;
VkCommandBuffer setupCmdBuffer = VK_NULL_HANDLE;
VkPhysicalDeviceMemoryProperties deviceMemoryProperties;
std::vector<VkShaderModule> shaderModules;
struct {
VkBuffer buf;
VkDeviceMemory mem;
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
struct {
int count;
VkBuffer buf;
VkDeviceMemory mem;
} indices;
struct {
VkBuffer buffer;
VkDeviceMemory memory;
VkDescriptorBufferInfo descriptor;
} uniformDataVS;
struct {
glm::mat4 projectionMatrix;
glm::mat4 modelMatrix;
glm::mat4 viewMatrix;
} uboVS;
struct {
VkPipeline solid;
} pipelines;
uint32_t currentBuffer = 0;
struct
{
VkImage image;
VkDeviceMemory mem;
VkImageView view;
} depthStencil;
std::vector<VkFramebuffer>frameBuffers;
bool prepared = false;
VkBool32 getMemoryType(uint32_t typeBits, VkFlags properties, uint32_t * typeIndex)
{
for (uint32_t i = 0; i < 32; i++)
{
if ((typeBits & 1) == 1)
{
if ((deviceMemoryProperties.memoryTypes[i].propertyFlags & properties) == properties)
{
*typeIndex = i;
return true;
}
}
typeBits >>= 1;
}
return false;
}
VkShaderModule loadShaderModule(const char *fileName, VkShaderStageFlagBits stage)
{
// Load shader from compressed asset
AAsset* asset = AAssetManager_open(app->activity->assetManager, fileName, AASSET_MODE_STREAMING);
assert(asset);
size_t size = AAsset_getLength(asset);
assert(size > 0);
char *shaderCode = new char[size];
AAsset_read(asset, shaderCode, size);
AAsset_close(asset);
VkShaderModule shaderModule;
VkShaderModuleCreateInfo moduleCreateInfo;
VkResult err;
moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
moduleCreateInfo.pNext = NULL;
moduleCreateInfo.codeSize = size;
moduleCreateInfo.pCode = (uint32_t*)shaderCode;
moduleCreateInfo.flags = 0;
err = vkCreateShaderModule(device, &moduleCreateInfo, NULL, &shaderModule);
assert(!err);
return shaderModule;
}
VkPipelineShaderStageCreateInfo loadShader(const char * fileName, VkShaderStageFlagBits stage)
{
VkPipelineShaderStageCreateInfo shaderStage = {};
shaderStage.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
shaderStage.stage = stage;
shaderStage.module = loadShaderModule(fileName, stage);
shaderStage.pName = "main";
assert(shaderStage.module != NULL);
shaderModules.push_back(shaderStage.module);
return shaderStage;
}
void initVulkan()
{
prepared = false;
bool libLoaded = loadVulkanLibrary();
assert(libLoaded);
VkResult vkRes;
// Instance
VkApplicationInfo appInfo = {};
appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
appInfo.pApplicationName = "Vulkan Android Example";
appInfo.applicationVersion = 1;
appInfo.pEngineName = "VulkanAndroidExample";
appInfo.engineVersion = 1;
// todo : Workaround to support implementations that are not using the latest SDK
appInfo.apiVersion = VK_MAKE_VERSION(1, 0, 1);
VkInstanceCreateInfo instanceCreateInfo = {};
instanceCreateInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
instanceCreateInfo.pApplicationInfo = &appInfo;
vkRes = vkCreateInstance(&instanceCreateInfo, NULL, &instance);
assert(vkRes == VK_SUCCESS);
loadVulkanFunctions(instance);
// Device
// Always use first physical device
uint32_t gpuCount;
vkRes = vkEnumeratePhysicalDevices(instance, &gpuCount, &physicalDevice);
assert(vkRes == VK_SUCCESS);
// Find a queue that supports graphics operations
uint32_t graphicsQueueIndex = 0;
uint32_t queueCount;
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueCount, NULL);
assert(queueCount >= 1);
std::vector<VkQueueFamilyProperties> queueProps;
queueProps.resize(queueCount);
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueCount, queueProps.data());
for (graphicsQueueIndex = 0; graphicsQueueIndex < queueCount; graphicsQueueIndex++)
{
if (queueProps[graphicsQueueIndex].queueFlags & VK_QUEUE_GRAPHICS_BIT)
break;
}
assert(graphicsQueueIndex < queueCount);
// Request the queue
float queuePriorities = 0.0f;
VkDeviceQueueCreateInfo queueCreateInfo = {};
queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueCreateInfo.queueFamilyIndex = graphicsQueueIndex;
queueCreateInfo.queueCount = 1;
queueCreateInfo.pQueuePriorities = &queuePriorities;
// Create device
VkDeviceCreateInfo deviceCreateInfo = {};
deviceCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
deviceCreateInfo.queueCreateInfoCount = 1;
deviceCreateInfo.pQueueCreateInfos = &queueCreateInfo;
vkRes = vkCreateDevice(physicalDevice, &deviceCreateInfo, nullptr, &device);
assert(vkRes == VK_SUCCESS);
// Get graphics queue
vkGetDeviceQueue(device, graphicsQueueIndex, 0, &queue);
// Device memory properties (for finding appropriate memory types)
vkGetPhysicalDeviceMemoryProperties(physicalDevice, &deviceMemoryProperties);
// Swap chain
swapChain.connect(instance, physicalDevice, device);
swapChain.initSurface(app->window);
// Command buffer pool
VkCommandPoolCreateInfo cmdPoolInfo = {};
cmdPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
cmdPoolInfo.queueFamilyIndex = swapChain.queueNodeIndex;
cmdPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
vkRes = vkCreateCommandPool(device, &cmdPoolInfo, nullptr, &cmdPool);
assert(!vkRes);
// Pipeline cache
VkPipelineCacheCreateInfo pipelineCacheCreateInfo = {};
pipelineCacheCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
VkResult err = vkCreatePipelineCache(device, &pipelineCacheCreateInfo, nullptr, &pipelineCache);
assert(!err);
createSetupCommandBuffer();
startSetupCommandBuffer();
swapChain.create(setupCmdBuffer, &width, &height);
setupDepthStencil();
setupRenderPass();
setupFrameBuffer();
flushSetupCommandBuffer();
createCommandBuffers();
prepareVertices();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
state.zoom = -5.0f;
state.rotation = glm::vec3();
prepared = true;
}
void cleanupVulkan()
{
prepared = false;
vkDestroyPipeline(device, pipelines.solid, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vkDestroyBuffer(device, vertices.buf, nullptr);
vkFreeMemory(device, vertices.mem, nullptr);
vkDestroyBuffer(device, indices.buf, nullptr);
vkFreeMemory(device, indices.mem, nullptr);
vkDestroyBuffer(device, uniformDataVS.buffer, nullptr);
vkFreeMemory(device, uniformDataVS.memory, nullptr);
swapChain.cleanup();
vkDestroyDescriptorPool(device, descriptorPool, nullptr);
if (setupCmdBuffer != VK_NULL_HANDLE)
{
vkFreeCommandBuffers(device, cmdPool, 1, &setupCmdBuffer);
}
vkFreeCommandBuffers(device, cmdPool, drawCmdBuffers.size(), drawCmdBuffers.data());
vkFreeCommandBuffers(device, cmdPool, 1, &postPresentCmdBuffer);
vkDestroyRenderPass(device, renderPass, nullptr);
for (uint32_t i = 0; i < frameBuffers.size(); i++)
{
vkDestroyFramebuffer(device, frameBuffers[i], nullptr);
}
for (auto& shaderModule : shaderModules)
{
vkDestroyShaderModule(device, shaderModule, nullptr);
}
vkDestroyImageView(device, depthStencil.view, nullptr);
vkDestroyImage(device, depthStencil.image, nullptr);
vkFreeMemory(device, depthStencil.mem, nullptr);
vkDestroyPipelineCache(device, pipelineCache, nullptr);
vkDestroyDevice(device, nullptr);
vkDestroyInstance(instance, nullptr);
freeVulkanLibrary();
}
void createSetupCommandBuffer()
{
VkCommandBufferAllocateInfo cmdBufAllocateInfo =
vkTools::initializers::commandBufferAllocateInfo(
cmdPool,
VK_COMMAND_BUFFER_LEVEL_PRIMARY,
1);
VkResult vkRes = vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &setupCmdBuffer);
assert(!vkRes);
}
void startSetupCommandBuffer()
{
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
vkBeginCommandBuffer(setupCmdBuffer, &cmdBufInfo);
}
void flushSetupCommandBuffer()
{
VkResult err;
if (setupCmdBuffer == VK_NULL_HANDLE)
return;
err = vkEndCommandBuffer(setupCmdBuffer);
assert(!err);
VkSubmitInfo submitInfo = {};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &setupCmdBuffer;
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
assert(!err);
err = vkQueueWaitIdle(queue);
assert(!err);
}
void createCommandBuffers()
{
drawCmdBuffers.resize(swapChain.imageCount);
VkCommandBufferAllocateInfo cmdBufAllocateInfo =
vkTools::initializers::commandBufferAllocateInfo(
cmdPool,
VK_COMMAND_BUFFER_LEVEL_PRIMARY,
drawCmdBuffers.size());
VkResult vkRes = vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, drawCmdBuffers.data());
assert(!vkRes);
cmdBufAllocateInfo.commandBufferCount = 1;
vkRes = vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &postPresentCmdBuffer);
assert(!vkRes);
}
void prepareVertices()
{
struct Vertex {
float pos[3];
float col[3];
};
// Setup vertices
std::vector<Vertex> vertexBuffer;
vertexBuffer.push_back({ { 1.0f, 1.0f, 0.0f },{ 1.0f, 0.0f, 0.0f } });
vertexBuffer.push_back({ { -1.0f, 1.0f, 0.0f },{ 0.0f, 1.0f, 0.0f } });
vertexBuffer.push_back({ { 0.0f, -1.0f, 0.0f },{ 0.0f, 0.0f, 1.0f } });
int vertexBufferSize = vertexBuffer.size() * sizeof(Vertex);
// Setup indices
std::vector<uint32_t> indexBuffer;
indexBuffer.push_back(0);
indexBuffer.push_back(1);
indexBuffer.push_back(2);
int indexBufferSize = indexBuffer.size() * sizeof(uint32_t);
VkMemoryAllocateInfo memAlloc = {};
memAlloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
memAlloc.pNext = NULL;
memAlloc.allocationSize = 0;
memAlloc.memoryTypeIndex = 0;
VkMemoryRequirements memReqs;
VkResult err;
void *data;
// Generate vertex buffer
// Setup
VkBufferCreateInfo bufInfo = {};
bufInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufInfo.pNext = NULL;
bufInfo.size = vertexBufferSize;
bufInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
bufInfo.flags = 0;
// Copy vertex data to VRAM
memset(&vertices, 0, sizeof(vertices));
err = vkCreateBuffer(device, &bufInfo, nullptr, &vertices.buf);
assert(!err);
vkGetBufferMemoryRequirements(device, vertices.buf, &memReqs);
memAlloc.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex);
vkAllocateMemory(device, &memAlloc, nullptr, &vertices.mem);
assert(!err);
err = vkMapMemory(device, vertices.mem, 0, memAlloc.allocationSize, 0, &data);
assert(!err);
memcpy(data, vertexBuffer.data(), vertexBufferSize);
vkUnmapMemory(device, vertices.mem);
assert(!err);
err = vkBindBufferMemory(device, vertices.buf, vertices.mem, 0);
assert(!err);
// Generate index buffer
// Setup
VkBufferCreateInfo indexbufferInfo = {};
indexbufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
indexbufferInfo.pNext = NULL;
indexbufferInfo.size = indexBufferSize;
indexbufferInfo.usage = VK_BUFFER_USAGE_INDEX_BUFFER_BIT;
indexbufferInfo.flags = 0;
// Copy index data to VRAM
memset(&indices, 0, sizeof(indices));
err = vkCreateBuffer(device, &bufInfo, nullptr, &indices.buf);
assert(!err);
vkGetBufferMemoryRequirements(device, indices.buf, &memReqs);
memAlloc.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex);
err = vkAllocateMemory(device, &memAlloc, nullptr, &indices.mem);
assert(!err);
err = vkMapMemory(device, indices.mem, 0, indexBufferSize, 0, &data);
assert(!err);
memcpy(data, indexBuffer.data(), indexBufferSize);
vkUnmapMemory(device, indices.mem);
err = vkBindBufferMemory(device, indices.buf, indices.mem, 0);
assert(!err);
indices.count = indexBuffer.size();
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0].binding = VERTEX_BUFFER_BIND_ID;
vertices.bindingDescriptions[0].stride = sizeof(Vertex);
vertices.bindingDescriptions[0].inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
// Attribute descriptions
// Describes memory layout and shader attribute locations
vertices.attributeDescriptions.resize(2);
// Location 0 : Position
vertices.attributeDescriptions[0].binding = VERTEX_BUFFER_BIND_ID;
vertices.attributeDescriptions[0].location = 0;
vertices.attributeDescriptions[0].format = VK_FORMAT_R32G32B32_SFLOAT;
vertices.attributeDescriptions[0].offset = 0;
vertices.attributeDescriptions[0].binding = 0;
// Location 1 : Color
vertices.attributeDescriptions[1].binding = VERTEX_BUFFER_BIND_ID;
vertices.attributeDescriptions[1].location = 1;
vertices.attributeDescriptions[1].format = VK_FORMAT_R32G32B32_SFLOAT;
vertices.attributeDescriptions[1].offset = sizeof(float) * 3;
vertices.attributeDescriptions[1].binding = 0;
// Assign to vertex buffer
vertices.inputState.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
vertices.inputState.pNext = NULL;
vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void updateUniformBuffers()
{
// Update matrices
uboVS.projectionMatrix = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.1f, 256.0f);
uboVS.viewMatrix = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, state.zoom));
uboVS.modelMatrix = glm::mat4();
uboVS.modelMatrix = glm::rotate(uboVS.modelMatrix, glm::radians(state.rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
uboVS.modelMatrix = glm::rotate(uboVS.modelMatrix, glm::radians(state.rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
uboVS.modelMatrix = glm::rotate(uboVS.modelMatrix, glm::radians(state.rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
// Map uniform buffer and update it
uint8_t *pData;
VkResult err = vkMapMemory(device, uniformDataVS.memory, 0, sizeof(uboVS), 0, (void **)&pData);
assert(!err);
memcpy(pData, &uboVS, sizeof(uboVS));
vkUnmapMemory(device, uniformDataVS.memory);
assert(!err);
}
void prepareUniformBuffers()
{
// Prepare and initialize uniform buffer containing shader uniforms
VkMemoryRequirements memReqs;
// Vertex shader uniform buffer block
VkBufferCreateInfo bufferInfo = {};
VkMemoryAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
allocInfo.pNext = NULL;
allocInfo.allocationSize = 0;
allocInfo.memoryTypeIndex = 0;
VkResult err;
bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferInfo.size = sizeof(uboVS);
bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
// Create a new buffer
err = vkCreateBuffer(device, &bufferInfo, nullptr, &uniformDataVS.buffer);
assert(!err);
// Get memory requirements including size, alignment and memory type
vkGetBufferMemoryRequirements(device, uniformDataVS.buffer, &memReqs);
allocInfo.allocationSize = memReqs.size;
// Gets the appropriate memory type for this type of buffer allocation
// Only memory types that are visible to the host
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &allocInfo.memoryTypeIndex);
// Allocate memory for the uniform buffer
err = vkAllocateMemory(device, &allocInfo, nullptr, &(uniformDataVS.memory));
assert(!err);
// Bind memory to buffer
err = vkBindBufferMemory(device, uniformDataVS.buffer, uniformDataVS.memory, 0);
assert(!err);
// Store information in the uniform's descriptor
uniformDataVS.descriptor.buffer = uniformDataVS.buffer;
uniformDataVS.descriptor.offset = 0;
uniformDataVS.descriptor.range = sizeof(uboVS);
updateUniformBuffers();
}
void preparePipelines()
{
VkGraphicsPipelineCreateInfo pipelineCreateInfo = {};
VkResult err;
pipelineCreateInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
// The layout used for this pipeline
pipelineCreateInfo.layout = pipelineLayout;
// Renderpass this pipeline is attached to
pipelineCreateInfo.renderPass = renderPass;
// Vertex input state
// Describes the topoloy used with this pipeline
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = {};
inputAssemblyState.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
// This pipeline renders vertex data as triangle lists
inputAssemblyState.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
// Rasterization state
VkPipelineRasterizationStateCreateInfo rasterizationState = {};
rasterizationState.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
// Solid polygon mode
rasterizationState.polygonMode = VK_POLYGON_MODE_FILL;
// No culling
rasterizationState.cullMode = VK_CULL_MODE_NONE;
rasterizationState.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
rasterizationState.depthClampEnable = VK_FALSE;
rasterizationState.rasterizerDiscardEnable = VK_FALSE;
rasterizationState.depthBiasEnable = VK_FALSE;
// Color blend state
// Describes blend modes and color masks
VkPipelineColorBlendStateCreateInfo colorBlendState = {};
colorBlendState.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
// One blend attachment state
// Blending is not used in this example
VkPipelineColorBlendAttachmentState blendAttachmentState[1] = {};
blendAttachmentState[0].colorWriteMask = 0xf;
blendAttachmentState[0].blendEnable = VK_FALSE;
colorBlendState.attachmentCount = 1;
colorBlendState.pAttachments = blendAttachmentState;
// Viewport state
VkPipelineViewportStateCreateInfo viewportState = {};
viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
// One viewport
viewportState.viewportCount = 1;
// One scissor rectangle
viewportState.scissorCount = 1;
// Enable dynamic states
// Describes the dynamic states to be used with this pipeline
// Dynamic states can be set even after the pipeline has been created
// So there is no need to create new pipelines just for changing
// a viewport's dimensions or a scissor box
VkPipelineDynamicStateCreateInfo dynamicState = {};
// The dynamic state properties themselves are stored in the command buffer
std::vector<VkDynamicState> dynamicStateEnables;
dynamicStateEnables.push_back(VK_DYNAMIC_STATE_VIEWPORT);
dynamicStateEnables.push_back(VK_DYNAMIC_STATE_SCISSOR);
dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dynamicState.pDynamicStates = dynamicStateEnables.data();
dynamicState.dynamicStateCount = dynamicStateEnables.size();
// Depth and stencil state
// Describes depth and stenctil test and compare ops
VkPipelineDepthStencilStateCreateInfo depthStencilState = {};
// Basic depth compare setup with depth writes and depth test enabled
// No stencil used
depthStencilState.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
depthStencilState.depthTestEnable = VK_TRUE;
depthStencilState.depthWriteEnable = VK_TRUE;
depthStencilState.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL;
depthStencilState.depthBoundsTestEnable = VK_FALSE;
depthStencilState.back.failOp = VK_STENCIL_OP_KEEP;
depthStencilState.back.passOp = VK_STENCIL_OP_KEEP;
depthStencilState.back.compareOp = VK_COMPARE_OP_ALWAYS;
depthStencilState.stencilTestEnable = VK_FALSE;
depthStencilState.front = depthStencilState.back;
// Multi sampling state
VkPipelineMultisampleStateCreateInfo multisampleState = {};
multisampleState.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
multisampleState.pSampleMask = NULL;
// No multi sampling used in this example
multisampleState.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
// Load shaders
VkPipelineShaderStageCreateInfo shaderStages[2] = { {},{} };
shaderStages[0] = loadShader("shaders/triangle.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader("shaders/triangle.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// Assign states
// Two shader stages
pipelineCreateInfo.stageCount = 2;
// Assign pipeline state create information
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pStages = shaderStages;
pipelineCreateInfo.renderPass = renderPass;
pipelineCreateInfo.pDynamicState = &dynamicState;
// Create rendering pipeline
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid);
assert(!err);
}
void setupDescriptorPool()
{
VkDescriptorPoolSize typeCounts[1];
typeCounts[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
typeCounts[0].descriptorCount = 1;
VkDescriptorPoolCreateInfo descriptorPoolInfo = {};
descriptorPoolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
descriptorPoolInfo.pNext = NULL;
descriptorPoolInfo.poolSizeCount = 1;
descriptorPoolInfo.pPoolSizes = typeCounts;
descriptorPoolInfo.maxSets = 1;
VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool);
assert(!vkRes);
}
void setupDescriptorSetLayout()
{
// Binding 0 : Uniform buffer (Vertex shader)
VkDescriptorSetLayoutBinding layoutBinding = {};
layoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
layoutBinding.descriptorCount = 1;
layoutBinding.stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
layoutBinding.pImmutableSamplers = NULL;
VkDescriptorSetLayoutCreateInfo descriptorLayout = {};
descriptorLayout.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
descriptorLayout.pNext = NULL;
descriptorLayout.bindingCount = 1;
descriptorLayout.pBindings = &layoutBinding;
VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, NULL, &descriptorSetLayout);
assert(!err);
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = {};
pPipelineLayoutCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pPipelineLayoutCreateInfo.pNext = NULL;
pPipelineLayoutCreateInfo.setLayoutCount = 1;
pPipelineLayoutCreateInfo.pSetLayouts = &descriptorSetLayout;
err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout);
assert(!err);
}
void setupDescriptorSet()
{
// Update descriptor sets determining the shader binding points
// For every binding point used in a shader there needs to be one
// descriptor set matching that binding point
VkWriteDescriptorSet writeDescriptorSet = {};
VkDescriptorSetAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
allocInfo.descriptorPool = descriptorPool;
allocInfo.descriptorSetCount = 1;
allocInfo.pSetLayouts = &descriptorSetLayout;
VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet);
assert(!vkRes);
// Binding 0 : Uniform buffer
writeDescriptorSet.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writeDescriptorSet.dstSet = descriptorSet;
writeDescriptorSet.descriptorCount = 1;
writeDescriptorSet.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
writeDescriptorSet.pBufferInfo = &uniformDataVS.descriptor;
// Binds this uniform buffer to binding point 0
writeDescriptorSet.dstBinding = 0;
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, NULL);
}
void setupDepthStencil()
{
VkImageCreateInfo image = {};
image.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
image.pNext = NULL;
image.imageType = VK_IMAGE_TYPE_2D;
image.format = VK_FORMAT_D24_UNORM_S8_UINT;
image.extent = { width, height, 1 };
image.mipLevels = 1;
image.arrayLayers = 1;
image.samples = VK_SAMPLE_COUNT_1_BIT;
image.tiling = VK_IMAGE_TILING_OPTIMAL;
image.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
image.flags = 0;
VkMemoryAllocateInfo mem_alloc = {};
mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
mem_alloc.pNext = NULL;
mem_alloc.allocationSize = 0;
mem_alloc.memoryTypeIndex = 0;
VkImageViewCreateInfo depthStencilView = {};
depthStencilView.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
depthStencilView.pNext = NULL;
depthStencilView.viewType = VK_IMAGE_VIEW_TYPE_2D;
depthStencilView.format = VK_FORMAT_D24_UNORM_S8_UINT;
depthStencilView.flags = 0;
depthStencilView.subresourceRange = {};
depthStencilView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
depthStencilView.subresourceRange.baseMipLevel = 0;
depthStencilView.subresourceRange.levelCount = 1;
depthStencilView.subresourceRange.baseArrayLayer = 0;
depthStencilView.subresourceRange.layerCount = 1;
VkMemoryRequirements memReqs;
VkResult err;
err = vkCreateImage(device, &image, nullptr, &depthStencil.image);
assert(!err);
vkGetImageMemoryRequirements(device, depthStencil.image, &memReqs);
mem_alloc.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &mem_alloc.memoryTypeIndex);
err = vkAllocateMemory(device, &mem_alloc, nullptr, &depthStencil.mem);
assert(!err);
err = vkBindImageMemory(device, depthStencil.image, depthStencil.mem, 0);
assert(!err);
vkTools::setImageLayout(setupCmdBuffer, depthStencil.image, VK_IMAGE_ASPECT_DEPTH_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
depthStencilView.image = depthStencil.image;
err = vkCreateImageView(device, &depthStencilView, nullptr, &depthStencil.view);
assert(!err);
}
void setupFrameBuffer()
{
VkImageView attachments[2];
// Depth/Stencil attachment is the same for all frame buffers
attachments[1] = depthStencil.view;
VkFramebufferCreateInfo frameBufferCreateInfo = {};
frameBufferCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
frameBufferCreateInfo.pNext = NULL;
frameBufferCreateInfo.renderPass = renderPass;
frameBufferCreateInfo.attachmentCount = 2;
frameBufferCreateInfo.pAttachments = attachments;
frameBufferCreateInfo.width = width;
frameBufferCreateInfo.height = height;
frameBufferCreateInfo.layers = 1;
// Create frame buffers for every swap chain image
frameBuffers.resize(swapChain.imageCount);
for (uint32_t i = 0; i < frameBuffers.size(); i++)
{
attachments[0] = swapChain.buffers[i].view;
VkResult err = vkCreateFramebuffer(device, &frameBufferCreateInfo, nullptr, &frameBuffers[i]);
assert(!err);
}
}
void setupRenderPass()
{
VkAttachmentDescription attachments[2];
attachments[0].format = VK_FORMAT_R8G8B8A8_UNORM;
attachments[0].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[0].initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
attachments[0].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
attachments[1].format = VK_FORMAT_D24_UNORM_S8_UINT;
attachments[1].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[1].initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
attachments[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkAttachmentReference colorReference = {};
colorReference.attachment = 0;
colorReference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkAttachmentReference depthReference = {};
depthReference.attachment = 1;
depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.flags = 0;
subpass.inputAttachmentCount = 0;
subpass.pInputAttachments = NULL;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &colorReference;
subpass.pResolveAttachments = NULL;
subpass.pDepthStencilAttachment = &depthReference;
subpass.preserveAttachmentCount = 0;
subpass.pPreserveAttachments = NULL;
VkRenderPassCreateInfo renderPassInfo = {};
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
renderPassInfo.pNext = NULL;
renderPassInfo.attachmentCount = 2;
renderPassInfo.pAttachments = attachments;
renderPassInfo.subpassCount = 1;
renderPassInfo.pSubpasses = &subpass;
renderPassInfo.dependencyCount = 0;
renderPassInfo.pDependencies = NULL;
VkResult err;
err = vkCreateRenderPass(device, &renderPassInfo, nullptr, &renderPass);
assert(!err);
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = {};
cmdBufInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
cmdBufInfo.pNext = NULL;
VkClearValue clearValues[2];
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 1.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = {};
renderPassBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
renderPassBeginInfo.pNext = NULL;
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
VkResult err;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo);
assert(!err);
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
// Update dynamic viewport state
VkViewport viewport = {};
viewport.height = (float)height;
viewport.width = (float)width;
viewport.minDepth = (float) 0.0f;
viewport.maxDepth = (float) 1.0f;
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
// Update dynamic scissor state
VkRect2D scissor = {};
scissor.extent.width = width;
scissor.extent.height = height;
scissor.offset.x = 0;
scissor.offset.y = 0;
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
// Bind descriptor sets describing shader binding points
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
// Bind the rendering pipeline (including the shaders)
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.solid);
// Bind triangle vertices
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &vertices.buf, offsets);
// Bind triangle indices
vkCmdBindIndexBuffer(drawCmdBuffers[i], indices.buf, 0, VK_INDEX_TYPE_UINT32);
// Draw indexed triangle
vkCmdDrawIndexed(drawCmdBuffers[i], indices.count, 1, 0, 0, 1);
vkCmdEndRenderPass(drawCmdBuffers[i]);
// Add a present memory barrier to the end of the command buffer
// This will transform the frame buffer color attachment to a
// new layout for presenting it to the windowing system integration
VkImageMemoryBarrier prePresentBarrier = {};
prePresentBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
prePresentBarrier.pNext = NULL;
prePresentBarrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
prePresentBarrier.dstAccessMask = 0;
prePresentBarrier.oldLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
prePresentBarrier.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
prePresentBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
prePresentBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
prePresentBarrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
prePresentBarrier.image = swapChain.buffers[i].image;
vkCmdPipelineBarrier(
drawCmdBuffers[i],
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_FLAGS_NONE,
0, nullptr,
0, nullptr,
1, &prePresentBarrier);
err = vkEndCommandBuffer(drawCmdBuffers[i]);
assert(!err);
}
}
void draw()
{
VkResult err;
VkSemaphore presentCompleteSemaphore;
VkSemaphoreCreateInfo presentCompleteSemaphoreCreateInfo = {};
presentCompleteSemaphoreCreateInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
presentCompleteSemaphoreCreateInfo.pNext = NULL;
err = vkCreateSemaphore(device, &presentCompleteSemaphoreCreateInfo, nullptr, &presentCompleteSemaphore);
assert(!err);
// Get next image in the swap chain (back/front buffer)
err = swapChain.acquireNextImage(presentCompleteSemaphore, &currentBuffer);
assert(!err);
// The submit infor strcuture contains a list of
// command buffers and semaphores to be submitted to a queue
// If you want to submit multiple command buffers, pass an array
VkSubmitInfo submitInfo = {};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.waitSemaphoreCount = 1;
submitInfo.pWaitSemaphores = &presentCompleteSemaphore;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
// Submit to the graphics queue
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
assert(!err);
// Present the current buffer to the swap chain
// This will display the image
err = swapChain.queuePresent(queue, currentBuffer);
assert(!err);
vkDestroySemaphore(device, presentCompleteSemaphore, nullptr);
// Add a post present image memory barrier
// This will transform the frame buffer color attachment back
// to it's initial layout after it has been presented to the
// windowing system
// See buildCommandBuffers for the pre present barrier that
// does the opposite transformation
VkImageMemoryBarrier postPresentBarrier = {};
postPresentBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
postPresentBarrier.pNext = NULL;
postPresentBarrier.srcAccessMask = 0;
postPresentBarrier.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
postPresentBarrier.oldLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
postPresentBarrier.newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
postPresentBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
postPresentBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
postPresentBarrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
postPresentBarrier.image = swapChain.buffers[currentBuffer].image;
// Use dedicated command buffer from example base class for submitting the post present barrier
VkCommandBufferBeginInfo cmdBufInfo = {};
cmdBufInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
err = vkBeginCommandBuffer(postPresentCmdBuffer, &cmdBufInfo);
assert(!err);
// Put post present barrier into command buffer
vkCmdPipelineBarrier(
postPresentCmdBuffer,
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_FLAGS_NONE,
0, nullptr,
0, nullptr,
1, &postPresentBarrier);
err = vkEndCommandBuffer(postPresentCmdBuffer);
assert(!err);
// Submit to the queue
submitInfo = {};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &postPresentCmdBuffer;
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
assert(!err);
err = vkQueueWaitIdle(queue);
assert(!err);
}
};
static int32_t handleInput(struct android_app* app, AInputEvent* event)
{
struct VulkanExample* vulkanExample = (struct VulkanExample*)app->userData;
if (AInputEvent_getType(event) == AINPUT_EVENT_TYPE_MOTION)
{
// todo
return 1;
}
return 0;
}
static void handleCommand(struct android_app* app, int32_t cmd)
{
VulkanExample* vulkanExample = (VulkanExample*)app->userData;
switch (cmd)
{
case APP_CMD_SAVE_STATE:
vulkanExample->app->savedState = malloc(sizeof(struct saved_state));
*((struct saved_state*)vulkanExample->app->savedState) = vulkanExample->state;
vulkanExample->app->savedStateSize = sizeof(struct saved_state);
break;
case APP_CMD_INIT_WINDOW:
if (vulkanExample->app->window != NULL)
{
vulkanExample->initVulkan();
assert(vulkanExample->prepared);
}
break;
case APP_CMD_LOST_FOCUS:
vulkanExample->animating = 0;
break;
}
}
/**
* This is the main entry point of a native application that is using
* android_native_app_glue. It runs in its own thread, with its own
* event loop for receiving input events and doing other things.
*/
void android_main(struct android_app* state)
{
VulkanExample *engine = new VulkanExample();
//memset(&engine, 0, sizeof(engine));
state->userData = engine;
state->onAppCmd = handleCommand;
state->onInputEvent = handleInput;
engine->app = state;
engine->animating = 1;
// loop waiting for stuff to do.
while (1)
{
// Read all pending events.
int ident;
int events;
struct android_poll_source* source;
while ((ident = ALooper_pollAll(engine->animating ? 0 : -1, NULL, &events, (void**)&source)) >= 0)
{
if (source != NULL)
{
source->process(state, source);
}
if (state->destroyRequested != 0)
{
engine->cleanupVulkan();
return;
}
}
// Render frame
if (engine->prepared)
{
if (engine->animating)
{
// Update rotation
engine->state.rotation.y += 1.0f;
if (engine->state.rotation.y > 360.0f)
{
engine->state.rotation.y -= 360.0f;
}
engine->updateUniformBuffers();
}
engine->draw();
}
}
}