1164 lines
39 KiB
C++
1164 lines
39 KiB
C++
/*
|
|
* Vulkan Example - Basic Android example
|
|
*
|
|
* Note :
|
|
* This is a basic android example. It may be integrated into the other examples at some point in the future.
|
|
* Until then this serves as a starting point for using Vulkan on Android, with some of the functionality required
|
|
* already moved to the example base classes (e.g. swap chain)
|
|
*
|
|
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
|
|
*
|
|
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include "vulkanandroid.h"
|
|
#include "vulkanswapchain.hpp"
|
|
#include <android/asset_manager.h>
|
|
|
|
#define GLM_FORCE_RADIANS
|
|
#define GLM_DEPTH_ZERO_TO_ONE
|
|
#include "glm/glm.hpp"
|
|
#include "glm/gtc/matrix_transform.hpp"
|
|
|
|
#define LOGI(...) ((void)__android_log_print(ANDROID_LOG_INFO, "AndroidProject1.NativeActivity", __VA_ARGS__))
|
|
#define LOGW(...) ((void)__android_log_print(ANDROID_LOG_WARN, "AndroidProject1.NativeActivity", __VA_ARGS__))
|
|
|
|
#define VERTEX_BUFFER_BIND_ID 0
|
|
|
|
struct saved_state {
|
|
glm::vec3 rotation;
|
|
float zoom;
|
|
};
|
|
|
|
struct VulkanExample
|
|
{
|
|
struct android_app* app;
|
|
|
|
int animating;
|
|
uint32_t width;
|
|
uint32_t height;
|
|
struct saved_state state;
|
|
|
|
// Vulkan
|
|
VkInstance instance;
|
|
VkPhysicalDevice physicalDevice;
|
|
VkDevice device;
|
|
VulkanSwapChain swapChain;
|
|
VkQueue queue;
|
|
VkCommandPool cmdPool;
|
|
VkRenderPass renderPass;
|
|
VkPipelineCache pipelineCache;
|
|
VkDescriptorPool descriptorPool;
|
|
VkDescriptorSetLayout descriptorSetLayout;
|
|
VkDescriptorSet descriptorSet;
|
|
VkPipelineLayout pipelineLayout;
|
|
std::vector<VkCommandBuffer> drawCmdBuffers;
|
|
VkCommandBuffer postPresentCmdBuffer = VK_NULL_HANDLE;
|
|
VkCommandBuffer setupCmdBuffer = VK_NULL_HANDLE;
|
|
VkPhysicalDeviceMemoryProperties deviceMemoryProperties;
|
|
std::vector<VkShaderModule> shaderModules;
|
|
|
|
struct {
|
|
VkBuffer buf;
|
|
VkDeviceMemory mem;
|
|
VkPipelineVertexInputStateCreateInfo inputState;
|
|
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
|
|
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
|
|
} vertices;
|
|
|
|
struct {
|
|
int count;
|
|
VkBuffer buf;
|
|
VkDeviceMemory mem;
|
|
} indices;
|
|
|
|
struct {
|
|
VkBuffer buffer;
|
|
VkDeviceMemory memory;
|
|
VkDescriptorBufferInfo descriptor;
|
|
} uniformDataVS;
|
|
|
|
struct {
|
|
glm::mat4 projectionMatrix;
|
|
glm::mat4 modelMatrix;
|
|
glm::mat4 viewMatrix;
|
|
} uboVS;
|
|
|
|
struct {
|
|
VkPipeline solid;
|
|
} pipelines;
|
|
|
|
uint32_t currentBuffer = 0;
|
|
|
|
struct
|
|
{
|
|
VkImage image;
|
|
VkDeviceMemory mem;
|
|
VkImageView view;
|
|
} depthStencil;
|
|
|
|
std::vector<VkFramebuffer>frameBuffers;
|
|
|
|
bool prepared = false;
|
|
|
|
VkBool32 getMemoryType(uint32_t typeBits, VkFlags properties, uint32_t * typeIndex)
|
|
{
|
|
for (uint32_t i = 0; i < 32; i++)
|
|
{
|
|
if ((typeBits & 1) == 1)
|
|
{
|
|
if ((deviceMemoryProperties.memoryTypes[i].propertyFlags & properties) == properties)
|
|
{
|
|
*typeIndex = i;
|
|
return true;
|
|
}
|
|
}
|
|
typeBits >>= 1;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
VkShaderModule loadShaderModule(const char *fileName, VkShaderStageFlagBits stage)
|
|
{
|
|
// Load shader from compressed asset
|
|
AAsset* asset = AAssetManager_open(app->activity->assetManager, fileName, AASSET_MODE_STREAMING);
|
|
assert(asset);
|
|
size_t size = AAsset_getLength(asset);
|
|
assert(size > 0);
|
|
|
|
char *shaderCode = new char[size];
|
|
AAsset_read(asset, shaderCode, size);
|
|
AAsset_close(asset);
|
|
|
|
VkShaderModule shaderModule;
|
|
VkShaderModuleCreateInfo moduleCreateInfo;
|
|
VkResult err;
|
|
|
|
moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
|
|
moduleCreateInfo.pNext = NULL;
|
|
|
|
moduleCreateInfo.codeSize = size;
|
|
moduleCreateInfo.pCode = (uint32_t*)shaderCode;
|
|
moduleCreateInfo.flags = 0;
|
|
err = vkCreateShaderModule(device, &moduleCreateInfo, NULL, &shaderModule);
|
|
assert(!err);
|
|
|
|
return shaderModule;
|
|
}
|
|
|
|
VkPipelineShaderStageCreateInfo loadShader(const char * fileName, VkShaderStageFlagBits stage)
|
|
{
|
|
VkPipelineShaderStageCreateInfo shaderStage = {};
|
|
shaderStage.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
|
|
shaderStage.stage = stage;
|
|
shaderStage.module = loadShaderModule(fileName, stage);
|
|
shaderStage.pName = "main";
|
|
assert(shaderStage.module != NULL);
|
|
shaderModules.push_back(shaderStage.module);
|
|
return shaderStage;
|
|
}
|
|
|
|
void initVulkan()
|
|
{
|
|
prepared = false;
|
|
|
|
bool libLoaded = loadVulkanLibrary();
|
|
assert(libLoaded);
|
|
|
|
VkResult vkRes;
|
|
|
|
// Instance
|
|
VkApplicationInfo appInfo = {};
|
|
appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
|
|
appInfo.pApplicationName = "Vulkan Android Example";
|
|
appInfo.applicationVersion = 1;
|
|
appInfo.pEngineName = "VulkanAndroidExample";
|
|
appInfo.engineVersion = 1;
|
|
// todo : Workaround to support implementations that are not using the latest SDK
|
|
appInfo.apiVersion = VK_MAKE_VERSION(1, 0, 1);
|
|
|
|
VkInstanceCreateInfo instanceCreateInfo = {};
|
|
instanceCreateInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
|
|
instanceCreateInfo.pApplicationInfo = &appInfo;
|
|
|
|
vkRes = vkCreateInstance(&instanceCreateInfo, NULL, &instance);
|
|
assert(vkRes == VK_SUCCESS);
|
|
|
|
loadVulkanFunctions(instance);
|
|
|
|
// Device
|
|
// Always use first physical device
|
|
uint32_t gpuCount;
|
|
vkRes = vkEnumeratePhysicalDevices(instance, &gpuCount, &physicalDevice);
|
|
assert(vkRes == VK_SUCCESS);
|
|
|
|
// Find a queue that supports graphics operations
|
|
uint32_t graphicsQueueIndex = 0;
|
|
uint32_t queueCount;
|
|
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueCount, NULL);
|
|
assert(queueCount >= 1);
|
|
|
|
std::vector<VkQueueFamilyProperties> queueProps;
|
|
queueProps.resize(queueCount);
|
|
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueCount, queueProps.data());
|
|
|
|
for (graphicsQueueIndex = 0; graphicsQueueIndex < queueCount; graphicsQueueIndex++)
|
|
{
|
|
if (queueProps[graphicsQueueIndex].queueFlags & VK_QUEUE_GRAPHICS_BIT)
|
|
break;
|
|
}
|
|
assert(graphicsQueueIndex < queueCount);
|
|
|
|
// Request the queue
|
|
float queuePriorities = 0.0f;
|
|
VkDeviceQueueCreateInfo queueCreateInfo = {};
|
|
queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
|
|
queueCreateInfo.queueFamilyIndex = graphicsQueueIndex;
|
|
queueCreateInfo.queueCount = 1;
|
|
queueCreateInfo.pQueuePriorities = &queuePriorities;
|
|
|
|
// Create device
|
|
VkDeviceCreateInfo deviceCreateInfo = {};
|
|
deviceCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
|
|
deviceCreateInfo.queueCreateInfoCount = 1;
|
|
deviceCreateInfo.pQueueCreateInfos = &queueCreateInfo;
|
|
|
|
vkRes = vkCreateDevice(physicalDevice, &deviceCreateInfo, nullptr, &device);
|
|
assert(vkRes == VK_SUCCESS);
|
|
|
|
// Get graphics queue
|
|
vkGetDeviceQueue(device, graphicsQueueIndex, 0, &queue);
|
|
|
|
// Device memory properties (for finding appropriate memory types)
|
|
vkGetPhysicalDeviceMemoryProperties(physicalDevice, &deviceMemoryProperties);
|
|
|
|
// Swap chain
|
|
swapChain.connect(instance, physicalDevice, device);
|
|
swapChain.initSurface(app->window);
|
|
|
|
// Command buffer pool
|
|
VkCommandPoolCreateInfo cmdPoolInfo = {};
|
|
cmdPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
|
|
cmdPoolInfo.queueFamilyIndex = swapChain.queueNodeIndex;
|
|
cmdPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
|
|
vkRes = vkCreateCommandPool(device, &cmdPoolInfo, nullptr, &cmdPool);
|
|
assert(!vkRes);
|
|
|
|
// Pipeline cache
|
|
VkPipelineCacheCreateInfo pipelineCacheCreateInfo = {};
|
|
pipelineCacheCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
|
|
VkResult err = vkCreatePipelineCache(device, &pipelineCacheCreateInfo, nullptr, &pipelineCache);
|
|
assert(!err);
|
|
|
|
createSetupCommandBuffer();
|
|
startSetupCommandBuffer();
|
|
|
|
swapChain.create(setupCmdBuffer, &width, &height);
|
|
|
|
setupDepthStencil();
|
|
setupRenderPass();
|
|
setupFrameBuffer();
|
|
|
|
flushSetupCommandBuffer();
|
|
|
|
createCommandBuffers();
|
|
|
|
prepareVertices();
|
|
prepareUniformBuffers();
|
|
setupDescriptorSetLayout();
|
|
preparePipelines();
|
|
setupDescriptorPool();
|
|
setupDescriptorSet();
|
|
|
|
buildCommandBuffers();
|
|
|
|
state.zoom = -5.0f;
|
|
state.rotation = glm::vec3();
|
|
|
|
prepared = true;
|
|
}
|
|
|
|
void cleanupVulkan()
|
|
{
|
|
prepared = false;
|
|
vkDestroyPipeline(device, pipelines.solid, nullptr);
|
|
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
|
|
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
|
|
vkDestroyBuffer(device, vertices.buf, nullptr);
|
|
vkFreeMemory(device, vertices.mem, nullptr);
|
|
vkDestroyBuffer(device, indices.buf, nullptr);
|
|
vkFreeMemory(device, indices.mem, nullptr);
|
|
vkDestroyBuffer(device, uniformDataVS.buffer, nullptr);
|
|
vkFreeMemory(device, uniformDataVS.memory, nullptr);
|
|
|
|
swapChain.cleanup();
|
|
|
|
vkDestroyDescriptorPool(device, descriptorPool, nullptr);
|
|
if (setupCmdBuffer != VK_NULL_HANDLE)
|
|
{
|
|
vkFreeCommandBuffers(device, cmdPool, 1, &setupCmdBuffer);
|
|
|
|
}
|
|
vkFreeCommandBuffers(device, cmdPool, drawCmdBuffers.size(), drawCmdBuffers.data());
|
|
vkFreeCommandBuffers(device, cmdPool, 1, &postPresentCmdBuffer);
|
|
|
|
vkDestroyRenderPass(device, renderPass, nullptr);
|
|
for (uint32_t i = 0; i < frameBuffers.size(); i++)
|
|
{
|
|
vkDestroyFramebuffer(device, frameBuffers[i], nullptr);
|
|
}
|
|
|
|
for (auto& shaderModule : shaderModules)
|
|
{
|
|
vkDestroyShaderModule(device, shaderModule, nullptr);
|
|
}
|
|
|
|
vkDestroyImageView(device, depthStencil.view, nullptr);
|
|
vkDestroyImage(device, depthStencil.image, nullptr);
|
|
vkFreeMemory(device, depthStencil.mem, nullptr);
|
|
|
|
vkDestroyPipelineCache(device, pipelineCache, nullptr);
|
|
vkDestroyDevice(device, nullptr);
|
|
vkDestroyInstance(instance, nullptr);
|
|
|
|
freeVulkanLibrary();
|
|
}
|
|
|
|
void createSetupCommandBuffer()
|
|
{
|
|
VkCommandBufferAllocateInfo cmdBufAllocateInfo =
|
|
vkTools::initializers::commandBufferAllocateInfo(
|
|
cmdPool,
|
|
VK_COMMAND_BUFFER_LEVEL_PRIMARY,
|
|
1);
|
|
|
|
VkResult vkRes = vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &setupCmdBuffer);
|
|
assert(!vkRes);
|
|
}
|
|
|
|
void startSetupCommandBuffer()
|
|
{
|
|
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
|
|
vkBeginCommandBuffer(setupCmdBuffer, &cmdBufInfo);
|
|
}
|
|
|
|
void flushSetupCommandBuffer()
|
|
{
|
|
VkResult err;
|
|
|
|
if (setupCmdBuffer == VK_NULL_HANDLE)
|
|
return;
|
|
|
|
err = vkEndCommandBuffer(setupCmdBuffer);
|
|
assert(!err);
|
|
|
|
VkSubmitInfo submitInfo = {};
|
|
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = &setupCmdBuffer;
|
|
|
|
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
|
|
assert(!err);
|
|
|
|
err = vkQueueWaitIdle(queue);
|
|
assert(!err);
|
|
}
|
|
|
|
void createCommandBuffers()
|
|
{
|
|
drawCmdBuffers.resize(swapChain.imageCount);
|
|
|
|
VkCommandBufferAllocateInfo cmdBufAllocateInfo =
|
|
vkTools::initializers::commandBufferAllocateInfo(
|
|
cmdPool,
|
|
VK_COMMAND_BUFFER_LEVEL_PRIMARY,
|
|
drawCmdBuffers.size());
|
|
|
|
VkResult vkRes = vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, drawCmdBuffers.data());
|
|
assert(!vkRes);
|
|
|
|
cmdBufAllocateInfo.commandBufferCount = 1;
|
|
|
|
vkRes = vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &postPresentCmdBuffer);
|
|
assert(!vkRes);
|
|
}
|
|
|
|
void prepareVertices()
|
|
{
|
|
struct Vertex {
|
|
float pos[3];
|
|
float col[3];
|
|
};
|
|
|
|
// Setup vertices
|
|
std::vector<Vertex> vertexBuffer;
|
|
vertexBuffer.push_back({ { 1.0f, 1.0f, 0.0f },{ 1.0f, 0.0f, 0.0f } });
|
|
vertexBuffer.push_back({ { -1.0f, 1.0f, 0.0f },{ 0.0f, 1.0f, 0.0f } });
|
|
vertexBuffer.push_back({ { 0.0f, -1.0f, 0.0f },{ 0.0f, 0.0f, 1.0f } });
|
|
int vertexBufferSize = vertexBuffer.size() * sizeof(Vertex);
|
|
|
|
// Setup indices
|
|
std::vector<uint32_t> indexBuffer;
|
|
indexBuffer.push_back(0);
|
|
indexBuffer.push_back(1);
|
|
indexBuffer.push_back(2);
|
|
int indexBufferSize = indexBuffer.size() * sizeof(uint32_t);
|
|
|
|
VkMemoryAllocateInfo memAlloc = {};
|
|
memAlloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
|
|
memAlloc.pNext = NULL;
|
|
memAlloc.allocationSize = 0;
|
|
memAlloc.memoryTypeIndex = 0;
|
|
VkMemoryRequirements memReqs;
|
|
|
|
VkResult err;
|
|
void *data;
|
|
|
|
// Generate vertex buffer
|
|
// Setup
|
|
VkBufferCreateInfo bufInfo = {};
|
|
bufInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
|
|
bufInfo.pNext = NULL;
|
|
bufInfo.size = vertexBufferSize;
|
|
bufInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
|
|
bufInfo.flags = 0;
|
|
// Copy vertex data to VRAM
|
|
memset(&vertices, 0, sizeof(vertices));
|
|
err = vkCreateBuffer(device, &bufInfo, nullptr, &vertices.buf);
|
|
assert(!err);
|
|
vkGetBufferMemoryRequirements(device, vertices.buf, &memReqs);
|
|
memAlloc.allocationSize = memReqs.size;
|
|
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex);
|
|
vkAllocateMemory(device, &memAlloc, nullptr, &vertices.mem);
|
|
assert(!err);
|
|
err = vkMapMemory(device, vertices.mem, 0, memAlloc.allocationSize, 0, &data);
|
|
assert(!err);
|
|
memcpy(data, vertexBuffer.data(), vertexBufferSize);
|
|
vkUnmapMemory(device, vertices.mem);
|
|
assert(!err);
|
|
err = vkBindBufferMemory(device, vertices.buf, vertices.mem, 0);
|
|
assert(!err);
|
|
|
|
// Generate index buffer
|
|
// Setup
|
|
VkBufferCreateInfo indexbufferInfo = {};
|
|
indexbufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
|
|
indexbufferInfo.pNext = NULL;
|
|
indexbufferInfo.size = indexBufferSize;
|
|
indexbufferInfo.usage = VK_BUFFER_USAGE_INDEX_BUFFER_BIT;
|
|
indexbufferInfo.flags = 0;
|
|
// Copy index data to VRAM
|
|
memset(&indices, 0, sizeof(indices));
|
|
err = vkCreateBuffer(device, &bufInfo, nullptr, &indices.buf);
|
|
assert(!err);
|
|
vkGetBufferMemoryRequirements(device, indices.buf, &memReqs);
|
|
memAlloc.allocationSize = memReqs.size;
|
|
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex);
|
|
err = vkAllocateMemory(device, &memAlloc, nullptr, &indices.mem);
|
|
assert(!err);
|
|
err = vkMapMemory(device, indices.mem, 0, indexBufferSize, 0, &data);
|
|
assert(!err);
|
|
memcpy(data, indexBuffer.data(), indexBufferSize);
|
|
vkUnmapMemory(device, indices.mem);
|
|
err = vkBindBufferMemory(device, indices.buf, indices.mem, 0);
|
|
assert(!err);
|
|
indices.count = indexBuffer.size();
|
|
|
|
// Binding description
|
|
vertices.bindingDescriptions.resize(1);
|
|
vertices.bindingDescriptions[0].binding = VERTEX_BUFFER_BIND_ID;
|
|
vertices.bindingDescriptions[0].stride = sizeof(Vertex);
|
|
vertices.bindingDescriptions[0].inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
|
|
|
|
// Attribute descriptions
|
|
// Describes memory layout and shader attribute locations
|
|
vertices.attributeDescriptions.resize(2);
|
|
// Location 0 : Position
|
|
vertices.attributeDescriptions[0].binding = VERTEX_BUFFER_BIND_ID;
|
|
vertices.attributeDescriptions[0].location = 0;
|
|
vertices.attributeDescriptions[0].format = VK_FORMAT_R32G32B32_SFLOAT;
|
|
vertices.attributeDescriptions[0].offset = 0;
|
|
vertices.attributeDescriptions[0].binding = 0;
|
|
// Location 1 : Color
|
|
vertices.attributeDescriptions[1].binding = VERTEX_BUFFER_BIND_ID;
|
|
vertices.attributeDescriptions[1].location = 1;
|
|
vertices.attributeDescriptions[1].format = VK_FORMAT_R32G32B32_SFLOAT;
|
|
vertices.attributeDescriptions[1].offset = sizeof(float) * 3;
|
|
vertices.attributeDescriptions[1].binding = 0;
|
|
|
|
// Assign to vertex buffer
|
|
vertices.inputState.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
|
|
vertices.inputState.pNext = NULL;
|
|
vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
|
|
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
|
|
vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
|
|
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
|
|
}
|
|
|
|
void updateUniformBuffers()
|
|
{
|
|
// Update matrices
|
|
uboVS.projectionMatrix = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.1f, 256.0f);
|
|
|
|
uboVS.viewMatrix = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, state.zoom));
|
|
|
|
uboVS.modelMatrix = glm::mat4();
|
|
uboVS.modelMatrix = glm::rotate(uboVS.modelMatrix, glm::radians(state.rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
|
|
uboVS.modelMatrix = glm::rotate(uboVS.modelMatrix, glm::radians(state.rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
|
|
uboVS.modelMatrix = glm::rotate(uboVS.modelMatrix, glm::radians(state.rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
|
|
|
|
// Map uniform buffer and update it
|
|
uint8_t *pData;
|
|
VkResult err = vkMapMemory(device, uniformDataVS.memory, 0, sizeof(uboVS), 0, (void **)&pData);
|
|
assert(!err);
|
|
memcpy(pData, &uboVS, sizeof(uboVS));
|
|
vkUnmapMemory(device, uniformDataVS.memory);
|
|
assert(!err);
|
|
}
|
|
|
|
void prepareUniformBuffers()
|
|
{
|
|
// Prepare and initialize uniform buffer containing shader uniforms
|
|
VkMemoryRequirements memReqs;
|
|
|
|
// Vertex shader uniform buffer block
|
|
VkBufferCreateInfo bufferInfo = {};
|
|
VkMemoryAllocateInfo allocInfo = {};
|
|
allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
|
|
allocInfo.pNext = NULL;
|
|
allocInfo.allocationSize = 0;
|
|
allocInfo.memoryTypeIndex = 0;
|
|
VkResult err;
|
|
|
|
bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
|
|
bufferInfo.size = sizeof(uboVS);
|
|
bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
|
|
|
|
// Create a new buffer
|
|
err = vkCreateBuffer(device, &bufferInfo, nullptr, &uniformDataVS.buffer);
|
|
assert(!err);
|
|
// Get memory requirements including size, alignment and memory type
|
|
vkGetBufferMemoryRequirements(device, uniformDataVS.buffer, &memReqs);
|
|
allocInfo.allocationSize = memReqs.size;
|
|
// Gets the appropriate memory type for this type of buffer allocation
|
|
// Only memory types that are visible to the host
|
|
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &allocInfo.memoryTypeIndex);
|
|
// Allocate memory for the uniform buffer
|
|
err = vkAllocateMemory(device, &allocInfo, nullptr, &(uniformDataVS.memory));
|
|
assert(!err);
|
|
// Bind memory to buffer
|
|
err = vkBindBufferMemory(device, uniformDataVS.buffer, uniformDataVS.memory, 0);
|
|
assert(!err);
|
|
|
|
// Store information in the uniform's descriptor
|
|
uniformDataVS.descriptor.buffer = uniformDataVS.buffer;
|
|
uniformDataVS.descriptor.offset = 0;
|
|
uniformDataVS.descriptor.range = sizeof(uboVS);
|
|
|
|
updateUniformBuffers();
|
|
}
|
|
|
|
void preparePipelines()
|
|
{
|
|
VkGraphicsPipelineCreateInfo pipelineCreateInfo = {};
|
|
|
|
VkResult err;
|
|
|
|
pipelineCreateInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
|
|
// The layout used for this pipeline
|
|
pipelineCreateInfo.layout = pipelineLayout;
|
|
// Renderpass this pipeline is attached to
|
|
pipelineCreateInfo.renderPass = renderPass;
|
|
|
|
// Vertex input state
|
|
// Describes the topoloy used with this pipeline
|
|
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = {};
|
|
inputAssemblyState.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
|
|
// This pipeline renders vertex data as triangle lists
|
|
inputAssemblyState.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
|
|
|
|
// Rasterization state
|
|
VkPipelineRasterizationStateCreateInfo rasterizationState = {};
|
|
rasterizationState.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
|
|
// Solid polygon mode
|
|
rasterizationState.polygonMode = VK_POLYGON_MODE_FILL;
|
|
// No culling
|
|
rasterizationState.cullMode = VK_CULL_MODE_NONE;
|
|
rasterizationState.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
|
|
rasterizationState.depthClampEnable = VK_FALSE;
|
|
rasterizationState.rasterizerDiscardEnable = VK_FALSE;
|
|
rasterizationState.depthBiasEnable = VK_FALSE;
|
|
|
|
// Color blend state
|
|
// Describes blend modes and color masks
|
|
VkPipelineColorBlendStateCreateInfo colorBlendState = {};
|
|
colorBlendState.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
|
|
// One blend attachment state
|
|
// Blending is not used in this example
|
|
VkPipelineColorBlendAttachmentState blendAttachmentState[1] = {};
|
|
blendAttachmentState[0].colorWriteMask = 0xf;
|
|
blendAttachmentState[0].blendEnable = VK_FALSE;
|
|
colorBlendState.attachmentCount = 1;
|
|
colorBlendState.pAttachments = blendAttachmentState;
|
|
|
|
// Viewport state
|
|
VkPipelineViewportStateCreateInfo viewportState = {};
|
|
viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
|
|
// One viewport
|
|
viewportState.viewportCount = 1;
|
|
// One scissor rectangle
|
|
viewportState.scissorCount = 1;
|
|
|
|
// Enable dynamic states
|
|
// Describes the dynamic states to be used with this pipeline
|
|
// Dynamic states can be set even after the pipeline has been created
|
|
// So there is no need to create new pipelines just for changing
|
|
// a viewport's dimensions or a scissor box
|
|
VkPipelineDynamicStateCreateInfo dynamicState = {};
|
|
// The dynamic state properties themselves are stored in the command buffer
|
|
std::vector<VkDynamicState> dynamicStateEnables;
|
|
dynamicStateEnables.push_back(VK_DYNAMIC_STATE_VIEWPORT);
|
|
dynamicStateEnables.push_back(VK_DYNAMIC_STATE_SCISSOR);
|
|
dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
|
|
dynamicState.pDynamicStates = dynamicStateEnables.data();
|
|
dynamicState.dynamicStateCount = dynamicStateEnables.size();
|
|
|
|
// Depth and stencil state
|
|
// Describes depth and stenctil test and compare ops
|
|
VkPipelineDepthStencilStateCreateInfo depthStencilState = {};
|
|
// Basic depth compare setup with depth writes and depth test enabled
|
|
// No stencil used
|
|
depthStencilState.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
|
|
depthStencilState.depthTestEnable = VK_TRUE;
|
|
depthStencilState.depthWriteEnable = VK_TRUE;
|
|
depthStencilState.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL;
|
|
depthStencilState.depthBoundsTestEnable = VK_FALSE;
|
|
depthStencilState.back.failOp = VK_STENCIL_OP_KEEP;
|
|
depthStencilState.back.passOp = VK_STENCIL_OP_KEEP;
|
|
depthStencilState.back.compareOp = VK_COMPARE_OP_ALWAYS;
|
|
depthStencilState.stencilTestEnable = VK_FALSE;
|
|
depthStencilState.front = depthStencilState.back;
|
|
|
|
// Multi sampling state
|
|
VkPipelineMultisampleStateCreateInfo multisampleState = {};
|
|
multisampleState.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
|
|
multisampleState.pSampleMask = NULL;
|
|
// No multi sampling used in this example
|
|
multisampleState.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
|
|
|
|
// Load shaders
|
|
VkPipelineShaderStageCreateInfo shaderStages[2] = { {},{} };
|
|
|
|
shaderStages[0] = loadShader("shaders/triangle.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
|
shaderStages[1] = loadShader("shaders/triangle.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
|
|
|
// Assign states
|
|
// Two shader stages
|
|
pipelineCreateInfo.stageCount = 2;
|
|
// Assign pipeline state create information
|
|
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
|
|
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
|
|
pipelineCreateInfo.pRasterizationState = &rasterizationState;
|
|
pipelineCreateInfo.pColorBlendState = &colorBlendState;
|
|
pipelineCreateInfo.pMultisampleState = &multisampleState;
|
|
pipelineCreateInfo.pViewportState = &viewportState;
|
|
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
|
|
pipelineCreateInfo.pStages = shaderStages;
|
|
pipelineCreateInfo.renderPass = renderPass;
|
|
pipelineCreateInfo.pDynamicState = &dynamicState;
|
|
|
|
// Create rendering pipeline
|
|
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid);
|
|
assert(!err);
|
|
}
|
|
|
|
void setupDescriptorPool()
|
|
{
|
|
VkDescriptorPoolSize typeCounts[1];
|
|
typeCounts[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
|
|
typeCounts[0].descriptorCount = 1;
|
|
|
|
VkDescriptorPoolCreateInfo descriptorPoolInfo = {};
|
|
descriptorPoolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
|
|
descriptorPoolInfo.pNext = NULL;
|
|
descriptorPoolInfo.poolSizeCount = 1;
|
|
descriptorPoolInfo.pPoolSizes = typeCounts;
|
|
descriptorPoolInfo.maxSets = 1;
|
|
|
|
VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool);
|
|
assert(!vkRes);
|
|
}
|
|
|
|
void setupDescriptorSetLayout()
|
|
{
|
|
// Binding 0 : Uniform buffer (Vertex shader)
|
|
VkDescriptorSetLayoutBinding layoutBinding = {};
|
|
layoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
|
|
layoutBinding.descriptorCount = 1;
|
|
layoutBinding.stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
|
|
layoutBinding.pImmutableSamplers = NULL;
|
|
|
|
VkDescriptorSetLayoutCreateInfo descriptorLayout = {};
|
|
descriptorLayout.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
|
|
descriptorLayout.pNext = NULL;
|
|
descriptorLayout.bindingCount = 1;
|
|
descriptorLayout.pBindings = &layoutBinding;
|
|
|
|
VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, NULL, &descriptorSetLayout);
|
|
assert(!err);
|
|
|
|
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = {};
|
|
pPipelineLayoutCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
|
|
pPipelineLayoutCreateInfo.pNext = NULL;
|
|
pPipelineLayoutCreateInfo.setLayoutCount = 1;
|
|
pPipelineLayoutCreateInfo.pSetLayouts = &descriptorSetLayout;
|
|
|
|
err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout);
|
|
assert(!err);
|
|
}
|
|
|
|
void setupDescriptorSet()
|
|
{
|
|
// Update descriptor sets determining the shader binding points
|
|
// For every binding point used in a shader there needs to be one
|
|
// descriptor set matching that binding point
|
|
VkWriteDescriptorSet writeDescriptorSet = {};
|
|
|
|
VkDescriptorSetAllocateInfo allocInfo = {};
|
|
allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
|
|
allocInfo.descriptorPool = descriptorPool;
|
|
allocInfo.descriptorSetCount = 1;
|
|
allocInfo.pSetLayouts = &descriptorSetLayout;
|
|
|
|
VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet);
|
|
assert(!vkRes);
|
|
|
|
// Binding 0 : Uniform buffer
|
|
writeDescriptorSet.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
|
|
writeDescriptorSet.dstSet = descriptorSet;
|
|
writeDescriptorSet.descriptorCount = 1;
|
|
writeDescriptorSet.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
|
|
writeDescriptorSet.pBufferInfo = &uniformDataVS.descriptor;
|
|
// Binds this uniform buffer to binding point 0
|
|
writeDescriptorSet.dstBinding = 0;
|
|
|
|
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, NULL);
|
|
}
|
|
|
|
void setupDepthStencil()
|
|
{
|
|
VkImageCreateInfo image = {};
|
|
image.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
|
|
image.pNext = NULL;
|
|
image.imageType = VK_IMAGE_TYPE_2D;
|
|
image.format = VK_FORMAT_D24_UNORM_S8_UINT;
|
|
image.extent = { width, height, 1 };
|
|
image.mipLevels = 1;
|
|
image.arrayLayers = 1;
|
|
image.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
image.tiling = VK_IMAGE_TILING_OPTIMAL;
|
|
image.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
|
|
image.flags = 0;
|
|
|
|
VkMemoryAllocateInfo mem_alloc = {};
|
|
mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
|
|
mem_alloc.pNext = NULL;
|
|
mem_alloc.allocationSize = 0;
|
|
mem_alloc.memoryTypeIndex = 0;
|
|
|
|
VkImageViewCreateInfo depthStencilView = {};
|
|
depthStencilView.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
|
|
depthStencilView.pNext = NULL;
|
|
depthStencilView.viewType = VK_IMAGE_VIEW_TYPE_2D;
|
|
depthStencilView.format = VK_FORMAT_D24_UNORM_S8_UINT;
|
|
depthStencilView.flags = 0;
|
|
depthStencilView.subresourceRange = {};
|
|
depthStencilView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
|
|
depthStencilView.subresourceRange.baseMipLevel = 0;
|
|
depthStencilView.subresourceRange.levelCount = 1;
|
|
depthStencilView.subresourceRange.baseArrayLayer = 0;
|
|
depthStencilView.subresourceRange.layerCount = 1;
|
|
|
|
VkMemoryRequirements memReqs;
|
|
VkResult err;
|
|
|
|
err = vkCreateImage(device, &image, nullptr, &depthStencil.image);
|
|
assert(!err);
|
|
vkGetImageMemoryRequirements(device, depthStencil.image, &memReqs);
|
|
mem_alloc.allocationSize = memReqs.size;
|
|
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &mem_alloc.memoryTypeIndex);
|
|
err = vkAllocateMemory(device, &mem_alloc, nullptr, &depthStencil.mem);
|
|
assert(!err);
|
|
|
|
err = vkBindImageMemory(device, depthStencil.image, depthStencil.mem, 0);
|
|
assert(!err);
|
|
vkTools::setImageLayout(setupCmdBuffer, depthStencil.image, VK_IMAGE_ASPECT_DEPTH_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
|
|
|
|
depthStencilView.image = depthStencil.image;
|
|
err = vkCreateImageView(device, &depthStencilView, nullptr, &depthStencil.view);
|
|
assert(!err);
|
|
}
|
|
|
|
void setupFrameBuffer()
|
|
{
|
|
VkImageView attachments[2];
|
|
|
|
// Depth/Stencil attachment is the same for all frame buffers
|
|
attachments[1] = depthStencil.view;
|
|
|
|
VkFramebufferCreateInfo frameBufferCreateInfo = {};
|
|
frameBufferCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
|
|
frameBufferCreateInfo.pNext = NULL;
|
|
frameBufferCreateInfo.renderPass = renderPass;
|
|
frameBufferCreateInfo.attachmentCount = 2;
|
|
frameBufferCreateInfo.pAttachments = attachments;
|
|
frameBufferCreateInfo.width = width;
|
|
frameBufferCreateInfo.height = height;
|
|
frameBufferCreateInfo.layers = 1;
|
|
|
|
// Create frame buffers for every swap chain image
|
|
frameBuffers.resize(swapChain.imageCount);
|
|
for (uint32_t i = 0; i < frameBuffers.size(); i++)
|
|
{
|
|
attachments[0] = swapChain.buffers[i].view;
|
|
VkResult err = vkCreateFramebuffer(device, &frameBufferCreateInfo, nullptr, &frameBuffers[i]);
|
|
assert(!err);
|
|
}
|
|
}
|
|
|
|
void setupRenderPass()
|
|
{
|
|
VkAttachmentDescription attachments[2];
|
|
attachments[0].format = VK_FORMAT_R8G8B8A8_UNORM;
|
|
attachments[0].samples = VK_SAMPLE_COUNT_1_BIT;
|
|
attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
|
|
attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
|
|
attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
|
|
attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
|
|
attachments[0].initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
|
|
attachments[0].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
|
|
|
|
attachments[1].format = VK_FORMAT_D24_UNORM_S8_UINT;
|
|
attachments[1].samples = VK_SAMPLE_COUNT_1_BIT;
|
|
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
|
|
attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
|
|
attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
|
|
attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
|
|
attachments[1].initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
|
|
attachments[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
|
|
|
|
VkAttachmentReference colorReference = {};
|
|
colorReference.attachment = 0;
|
|
colorReference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
|
|
|
|
VkAttachmentReference depthReference = {};
|
|
depthReference.attachment = 1;
|
|
depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
|
|
|
|
VkSubpassDescription subpass = {};
|
|
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
|
|
subpass.flags = 0;
|
|
subpass.inputAttachmentCount = 0;
|
|
subpass.pInputAttachments = NULL;
|
|
subpass.colorAttachmentCount = 1;
|
|
subpass.pColorAttachments = &colorReference;
|
|
subpass.pResolveAttachments = NULL;
|
|
subpass.pDepthStencilAttachment = &depthReference;
|
|
subpass.preserveAttachmentCount = 0;
|
|
subpass.pPreserveAttachments = NULL;
|
|
|
|
VkRenderPassCreateInfo renderPassInfo = {};
|
|
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
|
|
renderPassInfo.pNext = NULL;
|
|
renderPassInfo.attachmentCount = 2;
|
|
renderPassInfo.pAttachments = attachments;
|
|
renderPassInfo.subpassCount = 1;
|
|
renderPassInfo.pSubpasses = &subpass;
|
|
renderPassInfo.dependencyCount = 0;
|
|
renderPassInfo.pDependencies = NULL;
|
|
|
|
VkResult err;
|
|
|
|
err = vkCreateRenderPass(device, &renderPassInfo, nullptr, &renderPass);
|
|
assert(!err);
|
|
}
|
|
|
|
void buildCommandBuffers()
|
|
{
|
|
VkCommandBufferBeginInfo cmdBufInfo = {};
|
|
cmdBufInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
|
|
cmdBufInfo.pNext = NULL;
|
|
|
|
VkClearValue clearValues[2];
|
|
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 1.0f } };
|
|
clearValues[1].depthStencil = { 1.0f, 0 };
|
|
|
|
VkRenderPassBeginInfo renderPassBeginInfo = {};
|
|
renderPassBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
|
|
renderPassBeginInfo.pNext = NULL;
|
|
renderPassBeginInfo.renderPass = renderPass;
|
|
renderPassBeginInfo.renderArea.offset.x = 0;
|
|
renderPassBeginInfo.renderArea.offset.y = 0;
|
|
renderPassBeginInfo.renderArea.extent.width = width;
|
|
renderPassBeginInfo.renderArea.extent.height = height;
|
|
renderPassBeginInfo.clearValueCount = 2;
|
|
renderPassBeginInfo.pClearValues = clearValues;
|
|
|
|
VkResult err;
|
|
|
|
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
|
|
{
|
|
// Set target frame buffer
|
|
renderPassBeginInfo.framebuffer = frameBuffers[i];
|
|
|
|
err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo);
|
|
assert(!err);
|
|
|
|
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
|
|
|
// Update dynamic viewport state
|
|
VkViewport viewport = {};
|
|
viewport.height = (float)height;
|
|
viewport.width = (float)width;
|
|
viewport.minDepth = (float) 0.0f;
|
|
viewport.maxDepth = (float) 1.0f;
|
|
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
|
|
|
// Update dynamic scissor state
|
|
VkRect2D scissor = {};
|
|
scissor.extent.width = width;
|
|
scissor.extent.height = height;
|
|
scissor.offset.x = 0;
|
|
scissor.offset.y = 0;
|
|
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
|
|
|
// Bind descriptor sets describing shader binding points
|
|
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
|
|
|
|
// Bind the rendering pipeline (including the shaders)
|
|
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.solid);
|
|
|
|
// Bind triangle vertices
|
|
VkDeviceSize offsets[1] = { 0 };
|
|
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &vertices.buf, offsets);
|
|
|
|
// Bind triangle indices
|
|
vkCmdBindIndexBuffer(drawCmdBuffers[i], indices.buf, 0, VK_INDEX_TYPE_UINT32);
|
|
|
|
// Draw indexed triangle
|
|
vkCmdDrawIndexed(drawCmdBuffers[i], indices.count, 1, 0, 0, 1);
|
|
|
|
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
|
|
|
// Add a present memory barrier to the end of the command buffer
|
|
// This will transform the frame buffer color attachment to a
|
|
// new layout for presenting it to the windowing system integration
|
|
VkImageMemoryBarrier prePresentBarrier = {};
|
|
prePresentBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
|
|
prePresentBarrier.pNext = NULL;
|
|
prePresentBarrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
|
|
prePresentBarrier.dstAccessMask = 0;
|
|
prePresentBarrier.oldLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
|
|
prePresentBarrier.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
|
|
prePresentBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
|
prePresentBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
|
prePresentBarrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
|
|
prePresentBarrier.image = swapChain.buffers[i].image;
|
|
|
|
vkCmdPipelineBarrier(
|
|
drawCmdBuffers[i],
|
|
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
|
|
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
|
|
VK_FLAGS_NONE,
|
|
0, nullptr,
|
|
0, nullptr,
|
|
1, &prePresentBarrier);
|
|
|
|
err = vkEndCommandBuffer(drawCmdBuffers[i]);
|
|
assert(!err);
|
|
}
|
|
}
|
|
|
|
void draw()
|
|
{
|
|
VkResult err;
|
|
VkSemaphore presentCompleteSemaphore;
|
|
VkSemaphoreCreateInfo presentCompleteSemaphoreCreateInfo = {};
|
|
presentCompleteSemaphoreCreateInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
|
|
presentCompleteSemaphoreCreateInfo.pNext = NULL;
|
|
|
|
err = vkCreateSemaphore(device, &presentCompleteSemaphoreCreateInfo, nullptr, &presentCompleteSemaphore);
|
|
assert(!err);
|
|
|
|
// Get next image in the swap chain (back/front buffer)
|
|
err = swapChain.acquireNextImage(presentCompleteSemaphore, ¤tBuffer);
|
|
assert(!err);
|
|
|
|
// The submit infor strcuture contains a list of
|
|
// command buffers and semaphores to be submitted to a queue
|
|
// If you want to submit multiple command buffers, pass an array
|
|
VkSubmitInfo submitInfo = {};
|
|
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
|
|
submitInfo.waitSemaphoreCount = 1;
|
|
submitInfo.pWaitSemaphores = &presentCompleteSemaphore;
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
|
|
|
|
// Submit to the graphics queue
|
|
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
|
|
assert(!err);
|
|
|
|
// Present the current buffer to the swap chain
|
|
// This will display the image
|
|
err = swapChain.queuePresent(queue, currentBuffer);
|
|
assert(!err);
|
|
|
|
vkDestroySemaphore(device, presentCompleteSemaphore, nullptr);
|
|
|
|
// Add a post present image memory barrier
|
|
// This will transform the frame buffer color attachment back
|
|
// to it's initial layout after it has been presented to the
|
|
// windowing system
|
|
// See buildCommandBuffers for the pre present barrier that
|
|
// does the opposite transformation
|
|
VkImageMemoryBarrier postPresentBarrier = {};
|
|
postPresentBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
|
|
postPresentBarrier.pNext = NULL;
|
|
postPresentBarrier.srcAccessMask = 0;
|
|
postPresentBarrier.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
|
|
postPresentBarrier.oldLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
|
|
postPresentBarrier.newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
|
|
postPresentBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
|
postPresentBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
|
postPresentBarrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
|
|
postPresentBarrier.image = swapChain.buffers[currentBuffer].image;
|
|
|
|
// Use dedicated command buffer from example base class for submitting the post present barrier
|
|
VkCommandBufferBeginInfo cmdBufInfo = {};
|
|
cmdBufInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
|
|
|
|
err = vkBeginCommandBuffer(postPresentCmdBuffer, &cmdBufInfo);
|
|
assert(!err);
|
|
|
|
// Put post present barrier into command buffer
|
|
vkCmdPipelineBarrier(
|
|
postPresentCmdBuffer,
|
|
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
|
|
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
|
|
VK_FLAGS_NONE,
|
|
0, nullptr,
|
|
0, nullptr,
|
|
1, &postPresentBarrier);
|
|
|
|
err = vkEndCommandBuffer(postPresentCmdBuffer);
|
|
assert(!err);
|
|
|
|
// Submit to the queue
|
|
submitInfo = {};
|
|
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = &postPresentCmdBuffer;
|
|
|
|
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
|
|
assert(!err);
|
|
|
|
err = vkQueueWaitIdle(queue);
|
|
assert(!err);
|
|
}
|
|
|
|
|
|
};
|
|
|
|
static int32_t handleInput(struct android_app* app, AInputEvent* event)
|
|
{
|
|
struct VulkanExample* vulkanExample = (struct VulkanExample*)app->userData;
|
|
if (AInputEvent_getType(event) == AINPUT_EVENT_TYPE_MOTION)
|
|
{
|
|
// todo
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void handleCommand(struct android_app* app, int32_t cmd)
|
|
{
|
|
VulkanExample* vulkanExample = (VulkanExample*)app->userData;
|
|
switch (cmd)
|
|
{
|
|
case APP_CMD_SAVE_STATE:
|
|
vulkanExample->app->savedState = malloc(sizeof(struct saved_state));
|
|
*((struct saved_state*)vulkanExample->app->savedState) = vulkanExample->state;
|
|
vulkanExample->app->savedStateSize = sizeof(struct saved_state);
|
|
break;
|
|
case APP_CMD_INIT_WINDOW:
|
|
if (vulkanExample->app->window != NULL)
|
|
{
|
|
vulkanExample->initVulkan();
|
|
assert(vulkanExample->prepared);
|
|
}
|
|
break;
|
|
case APP_CMD_LOST_FOCUS:
|
|
vulkanExample->animating = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This is the main entry point of a native application that is using
|
|
* android_native_app_glue. It runs in its own thread, with its own
|
|
* event loop for receiving input events and doing other things.
|
|
*/
|
|
void android_main(struct android_app* state)
|
|
{
|
|
VulkanExample *engine = new VulkanExample();
|
|
|
|
//memset(&engine, 0, sizeof(engine));
|
|
state->userData = engine;
|
|
state->onAppCmd = handleCommand;
|
|
state->onInputEvent = handleInput;
|
|
engine->app = state;
|
|
|
|
engine->animating = 1;
|
|
|
|
// loop waiting for stuff to do.
|
|
|
|
while (1)
|
|
{
|
|
// Read all pending events.
|
|
int ident;
|
|
int events;
|
|
struct android_poll_source* source;
|
|
|
|
while ((ident = ALooper_pollAll(engine->animating ? 0 : -1, NULL, &events, (void**)&source)) >= 0)
|
|
{
|
|
if (source != NULL)
|
|
{
|
|
source->process(state, source);
|
|
}
|
|
|
|
if (state->destroyRequested != 0)
|
|
{
|
|
engine->cleanupVulkan();
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Render frame
|
|
if (engine->prepared)
|
|
{
|
|
if (engine->animating)
|
|
{
|
|
// Update rotation
|
|
engine->state.rotation.y += 1.0f;
|
|
if (engine->state.rotation.y > 360.0f)
|
|
{
|
|
engine->state.rotation.y -= 360.0f;
|
|
|
|
}
|
|
engine->updateUniformBuffers();
|
|
}
|
|
engine->draw();
|
|
}
|
|
}
|
|
}
|