932 lines
29 KiB
C++
932 lines
29 KiB
C++
/*
|
|
* Vulkan Example - Texture loading (and display) example (including mip maps)
|
|
*
|
|
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
|
|
*
|
|
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <vector>
|
|
|
|
#define GLM_FORCE_RADIANS
|
|
#include <glm/glm.hpp>
|
|
#include <glm/gtc/matrix_transform.hpp>
|
|
|
|
#include <vulkan/vulkan.h>
|
|
#include "vulkanexamplebase.h"
|
|
|
|
#define VERTEX_BUFFER_BIND_ID 0
|
|
//#define USE_GLSL
|
|
#define ENABLE_VALIDATION false
|
|
|
|
// Vertex layout for this example
|
|
struct Vertex {
|
|
float pos[3];
|
|
float uv[2];
|
|
};
|
|
|
|
class VulkanExample : public VulkanExampleBase
|
|
{
|
|
public:
|
|
// Contains all Vulkan objects that are required to store and use a texture
|
|
// Note that this repository contains a texture loader (vulkantextureloader.h)
|
|
// that encapsulates texture loading functionality in a class that is used
|
|
// in subsequent demos
|
|
struct Texture {
|
|
VkSampler sampler;
|
|
VkImage image;
|
|
VkImageLayout imageLayout;
|
|
VkDeviceMemory deviceMemory;
|
|
VkImageView view;
|
|
uint32_t width, height;
|
|
uint32_t mipLevels;
|
|
} texture;
|
|
|
|
struct {
|
|
VkBuffer buf;
|
|
VkDeviceMemory mem;
|
|
VkPipelineVertexInputStateCreateInfo inputState;
|
|
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
|
|
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
|
|
} vertices;
|
|
|
|
struct {
|
|
int count;
|
|
VkBuffer buf;
|
|
VkDeviceMemory mem;
|
|
} indices;
|
|
|
|
vkTools::UniformData uniformDataVS;
|
|
|
|
struct {
|
|
glm::mat4 projection;
|
|
glm::mat4 model;
|
|
float lodBias = 0.0f;
|
|
} uboVS;
|
|
|
|
struct {
|
|
VkPipeline solid;
|
|
} pipelines;
|
|
|
|
VkPipelineLayout pipelineLayout;
|
|
VkDescriptorSet descriptorSet;
|
|
VkDescriptorSetLayout descriptorSetLayout;
|
|
|
|
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
|
|
{
|
|
zoom = -2.5f;
|
|
rotation = { 45.0f, 0.0f, 0.0f };
|
|
title = "Vulkan Example - Texturing";
|
|
}
|
|
|
|
~VulkanExample()
|
|
{
|
|
// Clean up used Vulkan resources
|
|
// Note : Inherited destructor cleans up resources stored in base class
|
|
|
|
// Clean up texture resources
|
|
vkDestroyImageView(device, texture.view, nullptr);
|
|
vkDestroyImage(device, texture.image, nullptr);
|
|
vkDestroySampler(device, texture.sampler, nullptr);
|
|
vkFreeMemory(device, texture.deviceMemory, nullptr);
|
|
|
|
vkDestroyPipeline(device, pipelines.solid, nullptr);
|
|
|
|
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
|
|
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
|
|
|
|
vkDestroyBuffer(device, vertices.buf, nullptr);
|
|
vkFreeMemory(device, vertices.mem, nullptr);
|
|
|
|
vkDestroyBuffer(device, indices.buf, nullptr);
|
|
vkFreeMemory(device, indices.mem, nullptr);
|
|
|
|
vkDestroyBuffer(device, uniformDataVS.buffer, nullptr);
|
|
vkFreeMemory(device, uniformDataVS.memory, nullptr);
|
|
}
|
|
|
|
// Create an image memory barrier for changing the layout of
|
|
// an image and put it into an active command buffer
|
|
void setImageLayout(VkImage image, VkImageAspectFlags aspectMask, VkImageLayout oldImageLayout, VkImageLayout newImageLayout)
|
|
{
|
|
// Create an image barrier object
|
|
VkImageMemoryBarrier imageMemoryBarrier = vkTools::initializers::imageMemoryBarrier();;
|
|
imageMemoryBarrier.oldLayout = oldImageLayout;
|
|
imageMemoryBarrier.newLayout = newImageLayout;
|
|
imageMemoryBarrier.image = image;
|
|
imageMemoryBarrier.subresourceRange.aspectMask = aspectMask;
|
|
imageMemoryBarrier.subresourceRange.baseMipLevel = 0;
|
|
imageMemoryBarrier.subresourceRange.levelCount = 1;
|
|
imageMemoryBarrier.subresourceRange.layerCount = 1;
|
|
|
|
// Only sets masks for layouts used in this example
|
|
// For a more complete version that can be used with
|
|
// other layouts see vkTools::setImageLayout
|
|
|
|
// Target layouts (new)
|
|
|
|
// New layout is transfer destination (copy, blit)
|
|
// Make sure any reads from and writes to the image have been finished
|
|
if (newImageLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL)
|
|
{
|
|
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT | VK_ACCESS_HOST_WRITE_BIT | VK_ACCESS_TRANSFER_WRITE_BIT;
|
|
}
|
|
|
|
// New layout is shader read (sampler, input attachment)
|
|
// Make sure any writes to the image have been finished
|
|
if (newImageLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)
|
|
{
|
|
imageMemoryBarrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT | VK_ACCESS_TRANSFER_WRITE_BIT;
|
|
imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
|
|
}
|
|
|
|
// New layout is transfer source (copy, blit)
|
|
// Make sure any reads from and writes to the image have been finished
|
|
if (newImageLayout == VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL)
|
|
{
|
|
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT | VK_ACCESS_HOST_WRITE_BIT | VK_ACCESS_TRANSFER_WRITE_BIT;
|
|
}
|
|
|
|
// Put barrier on top
|
|
VkPipelineStageFlags srcStageFlags = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
|
|
VkPipelineStageFlags destStageFlags = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
|
|
|
|
// Put barrier inside setup command buffer
|
|
vkCmdPipelineBarrier(
|
|
setupCmdBuffer,
|
|
srcStageFlags,
|
|
destStageFlags,
|
|
VK_FLAGS_NONE,
|
|
0, nullptr,
|
|
0, nullptr,
|
|
1, &imageMemoryBarrier);
|
|
}
|
|
|
|
void loadTexture(const char* fileName, VkFormat format, bool forceLinearTiling)
|
|
{
|
|
VkFormatProperties formatProperties;
|
|
VkResult err;
|
|
|
|
gli::texture2D tex2D(gli::load(fileName));
|
|
assert(!tex2D.empty());
|
|
|
|
texture.width = tex2D[0].dimensions().x;
|
|
texture.height = tex2D[0].dimensions().y;
|
|
texture.mipLevels = tex2D.levels();
|
|
|
|
// Get device properites for the requested texture format
|
|
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
|
|
|
|
// Only use linear tiling if requested (and supported by the device)
|
|
// Support for linear tiling is mostly limited, so prefer to use
|
|
// optimal tiling instead
|
|
// On most implementations linear tiling will only support a very
|
|
// limited amount of formats and features (mip maps, cubemaps, arrays, etc.)
|
|
VkBool32 useStaging = true;
|
|
|
|
// Only use linear tiling if forced
|
|
if (forceLinearTiling)
|
|
{
|
|
// Don't use linear if format is not supported for (linear) shader sampling
|
|
useStaging = !(formatProperties.linearTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT);
|
|
}
|
|
|
|
VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo();
|
|
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
|
|
imageCreateInfo.format = format;
|
|
imageCreateInfo.mipLevels = 1;
|
|
imageCreateInfo.arrayLayers = 1;
|
|
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
imageCreateInfo.tiling = VK_IMAGE_TILING_LINEAR;
|
|
imageCreateInfo.usage = (useStaging) ? VK_IMAGE_USAGE_TRANSFER_SRC_BIT : VK_IMAGE_USAGE_SAMPLED_BIT;
|
|
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
|
imageCreateInfo.flags = 0;
|
|
imageCreateInfo.extent = { texture.width, texture.height, 1 };
|
|
|
|
VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo();
|
|
VkMemoryRequirements memReqs;
|
|
|
|
if (useStaging)
|
|
{
|
|
// Load all available mip levels into linear textures
|
|
// and copy to optimal tiling target
|
|
struct MipLevel {
|
|
VkImage image;
|
|
VkDeviceMemory memory;
|
|
};
|
|
std::vector<MipLevel> mipLevels;
|
|
mipLevels.resize(texture.mipLevels);
|
|
|
|
// Copy mip levels
|
|
for (uint32_t level = 0; level < texture.mipLevels; ++level)
|
|
{
|
|
imageCreateInfo.extent.width = tex2D[level].dimensions().x;
|
|
imageCreateInfo.extent.height = tex2D[level].dimensions().y;
|
|
imageCreateInfo.extent.depth = 1;
|
|
|
|
err = vkCreateImage(device, &imageCreateInfo, nullptr, &mipLevels[level].image);
|
|
assert(!err);
|
|
|
|
vkGetImageMemoryRequirements(device, mipLevels[level].image, &memReqs);
|
|
memAllocInfo.allocationSize = memReqs.size;
|
|
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAllocInfo.memoryTypeIndex);
|
|
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &mipLevels[level].memory);
|
|
assert(!err);
|
|
err = vkBindImageMemory(device, mipLevels[level].image, mipLevels[level].memory, 0);
|
|
assert(!err);
|
|
|
|
VkImageSubresource subRes = {};
|
|
subRes.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
|
|
VkSubresourceLayout subResLayout;
|
|
void *data;
|
|
|
|
vkGetImageSubresourceLayout(device, mipLevels[level].image, &subRes, &subResLayout);
|
|
assert(!err);
|
|
err = vkMapMemory(device, mipLevels[level].memory, 0, memReqs.size, 0, &data);
|
|
assert(!err);
|
|
memcpy(data, tex2D[level].data(), tex2D[level].size());
|
|
vkUnmapMemory(device, mipLevels[level].memory);
|
|
|
|
// Image barrier for linear image (base)
|
|
// Linear image will be used as a source for the copy
|
|
setImageLayout(
|
|
mipLevels[level].image,
|
|
VK_IMAGE_ASPECT_COLOR_BIT,
|
|
VK_IMAGE_LAYOUT_UNDEFINED,
|
|
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
|
|
}
|
|
|
|
// Setup texture as blit target with optimal tiling
|
|
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
|
|
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
|
|
imageCreateInfo.mipLevels = texture.mipLevels;
|
|
imageCreateInfo.extent = { texture.width, texture.height, 1 };
|
|
|
|
err = vkCreateImage(device, &imageCreateInfo, nullptr, &texture.image);
|
|
assert(!err);
|
|
|
|
vkGetImageMemoryRequirements(device, texture.image, &memReqs);
|
|
|
|
memAllocInfo.allocationSize = memReqs.size;
|
|
|
|
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAllocInfo.memoryTypeIndex);
|
|
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &texture.deviceMemory);
|
|
assert(!err);
|
|
err = vkBindImageMemory(device, texture.image, texture.deviceMemory, 0);
|
|
assert(!err);
|
|
|
|
// Image barrier for optimal image (target)
|
|
// Optimal image will be used as destination for the copy
|
|
setImageLayout(
|
|
texture.image,
|
|
VK_IMAGE_ASPECT_COLOR_BIT,
|
|
VK_IMAGE_LAYOUT_UNDEFINED,
|
|
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
|
|
|
|
// Copy mip levels one by one
|
|
for (uint32_t level = 0; level < texture.mipLevels; ++level)
|
|
{
|
|
// Copy region for image blit
|
|
VkImageCopy copyRegion = {};
|
|
|
|
copyRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
copyRegion.srcSubresource.baseArrayLayer = 0;
|
|
copyRegion.srcSubresource.mipLevel = 0;
|
|
copyRegion.srcSubresource.layerCount = 1;
|
|
copyRegion.srcOffset = { 0, 0, 0 };
|
|
|
|
copyRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
copyRegion.dstSubresource.baseArrayLayer = 0;
|
|
// Set mip level to copy the linear image to
|
|
copyRegion.dstSubresource.mipLevel = level;
|
|
copyRegion.dstSubresource.layerCount = 1;
|
|
copyRegion.dstOffset = { 0, 0, 0 };
|
|
|
|
copyRegion.extent.width = tex2D[level].dimensions().x;
|
|
copyRegion.extent.height = tex2D[level].dimensions().y;
|
|
copyRegion.extent.depth = 1;
|
|
|
|
// Put image copy into command buffer
|
|
vkCmdCopyImage(
|
|
setupCmdBuffer,
|
|
mipLevels[level].image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
|
|
texture.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
|
1, ©Region);
|
|
|
|
// Change texture image layout to shader read after the copy
|
|
texture.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
|
setImageLayout(
|
|
texture.image,
|
|
VK_IMAGE_ASPECT_COLOR_BIT,
|
|
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
|
texture.imageLayout);
|
|
}
|
|
|
|
flushSetupCommandBuffer();
|
|
createSetupCommandBuffer();
|
|
|
|
// Clean up linear images
|
|
// No longer required after mip levels
|
|
// have been transformed over to optimal tiling
|
|
for (auto& level : mipLevels)
|
|
{
|
|
vkDestroyImage(device, level.image, nullptr);
|
|
vkFreeMemory(device, level.memory, nullptr);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Prefer using optimal tiling, as linear tiling
|
|
// may support only a small set of features
|
|
// depending on implementation (e.g. no mip maps, only one layer, etc.)
|
|
|
|
VkImage mappableImage;
|
|
VkDeviceMemory mappableMemory;
|
|
|
|
// Load mip map level 0 to linear tiling image
|
|
err = vkCreateImage(device, &imageCreateInfo, nullptr, &mappableImage);
|
|
assert(!err);
|
|
|
|
// Get memory requirements for this image
|
|
// like size and alignment
|
|
vkGetImageMemoryRequirements(device, mappableImage, &memReqs);
|
|
// Set memory allocation size to required memory size
|
|
memAllocInfo.allocationSize = memReqs.size;
|
|
|
|
// Get memory type that can be mapped to host memory
|
|
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAllocInfo.memoryTypeIndex);
|
|
|
|
// Allocate host memory
|
|
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &mappableMemory);
|
|
assert(!err);
|
|
|
|
// Bind allocated image for use
|
|
err = vkBindImageMemory(device, mappableImage, mappableMemory, 0);
|
|
assert(!err);
|
|
|
|
// Get sub resource layout
|
|
// Mip map count, array layer, etc.
|
|
VkImageSubresource subRes = {};
|
|
subRes.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
|
|
VkSubresourceLayout subResLayout;
|
|
void *data;
|
|
|
|
// Get sub resources layout
|
|
// Includes row pitch, size offsets, etc.
|
|
vkGetImageSubresourceLayout(device, mappableImage, &subRes, &subResLayout);
|
|
assert(!err);
|
|
|
|
// Map image memory
|
|
err = vkMapMemory(device, mappableMemory, 0, memReqs.size, 0, &data);
|
|
assert(!err);
|
|
|
|
// Copy image data into memory
|
|
memcpy(data, tex2D[subRes.mipLevel].data(), tex2D[subRes.mipLevel].size());
|
|
|
|
vkUnmapMemory(device, mappableMemory);
|
|
|
|
// Linear tiled images don't need to be staged
|
|
// and can be directly used as textures
|
|
texture.image = mappableImage;
|
|
texture.deviceMemory = mappableMemory;
|
|
texture.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
|
|
|
// Setup image memory barrier
|
|
setImageLayout(texture.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, texture.imageLayout);
|
|
}
|
|
|
|
// Create sampler
|
|
// In Vulkan textures are accessed by samplers
|
|
// This separates all the sampling information from the
|
|
// texture data
|
|
// This means you could have multiple sampler objects
|
|
// for the same texture with different settings
|
|
// Similar to the samplers available with OpenGL 3.3
|
|
VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo();
|
|
sampler.magFilter = VK_FILTER_LINEAR;
|
|
sampler.minFilter = VK_FILTER_LINEAR;
|
|
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
|
|
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
|
|
sampler.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
|
|
sampler.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
|
|
sampler.mipLodBias = 0.0f;
|
|
sampler.compareOp = VK_COMPARE_OP_NEVER;
|
|
sampler.minLod = 0.0f;
|
|
// Max level-of-detail should match mip level count
|
|
sampler.maxLod = (useStaging) ? (float)texture.mipLevels : 0.0f;
|
|
// Enable anisotropic filtering
|
|
sampler.maxAnisotropy = 8;
|
|
sampler.anisotropyEnable = VK_TRUE;
|
|
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
|
|
err = vkCreateSampler(device, &sampler, nullptr, &texture.sampler);
|
|
assert(!err);
|
|
|
|
// Create image view
|
|
// Textures are not directly accessed by the shaders and
|
|
// are abstracted by image views containing additional
|
|
// information and sub resource ranges
|
|
VkImageViewCreateInfo view = vkTools::initializers::imageViewCreateInfo();
|
|
view.image = VK_NULL_HANDLE;
|
|
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
|
|
view.format = format;
|
|
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
|
|
view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
view.subresourceRange.baseMipLevel = 0;
|
|
view.subresourceRange.baseArrayLayer = 0;
|
|
view.subresourceRange.layerCount = 1;
|
|
// Linear tiling usually won't support mip maps
|
|
// Only set mip map count if optimal tiling is used
|
|
view.subresourceRange.levelCount = (useStaging) ? texture.mipLevels : 1;
|
|
view.image = texture.image;
|
|
err = vkCreateImageView(device, &view, nullptr, &texture.view);
|
|
assert(!err);
|
|
}
|
|
|
|
// Free staging resources used while creating a texture
|
|
void destroyTextureImage(Texture texture)
|
|
{
|
|
vkDestroyImage(device, texture.image, nullptr);
|
|
vkFreeMemory(device, texture.deviceMemory, nullptr);
|
|
}
|
|
|
|
void buildCommandBuffers()
|
|
{
|
|
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
|
|
|
|
VkClearValue clearValues[2];
|
|
clearValues[0].color = defaultClearColor;
|
|
clearValues[1].depthStencil = { 1.0f, 0 };
|
|
|
|
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
|
|
renderPassBeginInfo.renderPass = renderPass;
|
|
renderPassBeginInfo.renderArea.offset.x = 0;
|
|
renderPassBeginInfo.renderArea.offset.y = 0;
|
|
renderPassBeginInfo.renderArea.extent.width = width;
|
|
renderPassBeginInfo.renderArea.extent.height = height;
|
|
renderPassBeginInfo.clearValueCount = 2;
|
|
renderPassBeginInfo.pClearValues = clearValues;
|
|
|
|
VkResult err;
|
|
|
|
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
|
|
{
|
|
// Set target frame buffer
|
|
renderPassBeginInfo.framebuffer = frameBuffers[i];
|
|
|
|
err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo);
|
|
assert(!err);
|
|
|
|
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
|
|
|
VkViewport viewport = vkTools::initializers::viewport(
|
|
(float)width,
|
|
(float)height,
|
|
0.0f,
|
|
1.0f);
|
|
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
|
|
|
VkRect2D scissor = vkTools::initializers::rect2D(
|
|
width,
|
|
height,
|
|
0,
|
|
0);
|
|
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
|
|
|
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
|
|
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.solid);
|
|
|
|
VkDeviceSize offsets[1] = { 0 };
|
|
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &vertices.buf, offsets);
|
|
vkCmdBindIndexBuffer(drawCmdBuffers[i], indices.buf, 0, VK_INDEX_TYPE_UINT32);
|
|
|
|
vkCmdDrawIndexed(drawCmdBuffers[i], indices.count, 1, 0, 0, 0);
|
|
|
|
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
|
|
|
VkImageMemoryBarrier prePresentBarrier = vkTools::prePresentBarrier(swapChain.buffers[i].image);
|
|
vkCmdPipelineBarrier(
|
|
drawCmdBuffers[i],
|
|
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
|
|
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
|
|
VK_FLAGS_NONE,
|
|
0, nullptr,
|
|
0, nullptr,
|
|
1, &prePresentBarrier);
|
|
|
|
err = vkEndCommandBuffer(drawCmdBuffers[i]);
|
|
assert(!err);
|
|
}
|
|
}
|
|
|
|
void draw()
|
|
{
|
|
VkResult err;
|
|
VkSemaphore presentCompleteSemaphore;
|
|
VkSemaphoreCreateInfo presentCompleteSemaphoreCreateInfo = vkTools::initializers::semaphoreCreateInfo();
|
|
|
|
err = vkCreateSemaphore(device, &presentCompleteSemaphoreCreateInfo, nullptr, &presentCompleteSemaphore);
|
|
assert(!err);
|
|
|
|
// Get next image in the swap chain (back/front buffer)
|
|
err = swapChain.acquireNextImage(presentCompleteSemaphore, ¤tBuffer);
|
|
assert(!err);
|
|
|
|
VkSubmitInfo submitInfo = vkTools::initializers::submitInfo();
|
|
submitInfo.waitSemaphoreCount = 1;
|
|
submitInfo.pWaitSemaphores = &presentCompleteSemaphore;
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
|
|
|
|
// Submit draw command buffer
|
|
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
|
|
assert(!err);
|
|
|
|
err = swapChain.queuePresent(queue, currentBuffer);
|
|
assert(!err);
|
|
|
|
vkDestroySemaphore(device, presentCompleteSemaphore, nullptr);
|
|
|
|
submitPostPresentBarrier(swapChain.buffers[currentBuffer].image);
|
|
|
|
err = vkQueueWaitIdle(queue);
|
|
assert(!err);
|
|
}
|
|
|
|
void generateQuad()
|
|
{
|
|
// Setup vertices for a single uv-mapped quad
|
|
#define dim 1.0f
|
|
std::vector<Vertex> vertexBuffer =
|
|
{
|
|
{ { dim, dim, 0.0f },{ 1.0f, 1.0f } },
|
|
{ { -dim, dim, 0.0f },{ 0.0f, 1.0f } },
|
|
{ { -dim, -dim, 0.0f },{ 0.0f, 0.0f } },
|
|
{ { dim, -dim, 0.0f },{ 1.0f, 0.0f } }
|
|
};
|
|
#undef dim
|
|
createBuffer(
|
|
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
|
|
vertexBuffer.size() * sizeof(Vertex),
|
|
vertexBuffer.data(),
|
|
&vertices.buf,
|
|
&vertices.mem);
|
|
|
|
// Setup indices
|
|
std::vector<uint32_t> indexBuffer = { 0,1,2, 2,3,0 };
|
|
indices.count = indexBuffer.size();
|
|
|
|
createBuffer(
|
|
VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
|
|
indexBuffer.size() * sizeof(uint32_t),
|
|
indexBuffer.data(),
|
|
&indices.buf,
|
|
&indices.mem);
|
|
}
|
|
|
|
void setupVertexDescriptions()
|
|
{
|
|
// Binding description
|
|
vertices.bindingDescriptions.resize(1);
|
|
vertices.bindingDescriptions[0] =
|
|
vkTools::initializers::vertexInputBindingDescription(
|
|
VERTEX_BUFFER_BIND_ID,
|
|
sizeof(Vertex),
|
|
VK_VERTEX_INPUT_RATE_VERTEX);
|
|
|
|
// Attribute descriptions
|
|
// Describes memory layout and shader positions
|
|
vertices.attributeDescriptions.resize(2);
|
|
// Location 0 : Position
|
|
vertices.attributeDescriptions[0] =
|
|
vkTools::initializers::vertexInputAttributeDescription(
|
|
VERTEX_BUFFER_BIND_ID,
|
|
0,
|
|
VK_FORMAT_R32G32B32_SFLOAT,
|
|
0);
|
|
// Location 1 : Texture coordinates
|
|
vertices.attributeDescriptions[1] =
|
|
vkTools::initializers::vertexInputAttributeDescription(
|
|
VERTEX_BUFFER_BIND_ID,
|
|
1,
|
|
VK_FORMAT_R32G32_SFLOAT,
|
|
sizeof(float) * 3);
|
|
|
|
vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
|
|
vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
|
|
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
|
|
vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
|
|
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
|
|
}
|
|
|
|
void setupDescriptorPool()
|
|
{
|
|
// Example uses one ubo and one image sampler
|
|
std::vector<VkDescriptorPoolSize> poolSizes =
|
|
{
|
|
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
|
|
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1)
|
|
};
|
|
|
|
VkDescriptorPoolCreateInfo descriptorPoolInfo =
|
|
vkTools::initializers::descriptorPoolCreateInfo(
|
|
poolSizes.size(),
|
|
poolSizes.data(),
|
|
2);
|
|
|
|
VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool);
|
|
assert(!vkRes);
|
|
}
|
|
|
|
void setupDescriptorSetLayout()
|
|
{
|
|
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
|
|
{
|
|
// Binding 0 : Vertex shader uniform buffer
|
|
vkTools::initializers::descriptorSetLayoutBinding(
|
|
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
|
|
VK_SHADER_STAGE_VERTEX_BIT,
|
|
0),
|
|
// Binding 1 : Fragment shader image sampler
|
|
vkTools::initializers::descriptorSetLayoutBinding(
|
|
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
|
|
VK_SHADER_STAGE_FRAGMENT_BIT,
|
|
1)
|
|
};
|
|
|
|
VkDescriptorSetLayoutCreateInfo descriptorLayout =
|
|
vkTools::initializers::descriptorSetLayoutCreateInfo(
|
|
setLayoutBindings.data(),
|
|
setLayoutBindings.size());
|
|
|
|
VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout);
|
|
assert(!err);
|
|
|
|
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
|
|
vkTools::initializers::pipelineLayoutCreateInfo(
|
|
&descriptorSetLayout,
|
|
1);
|
|
|
|
err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout);
|
|
assert(!err);
|
|
}
|
|
|
|
void setupDescriptorSet()
|
|
{
|
|
VkDescriptorSetAllocateInfo allocInfo =
|
|
vkTools::initializers::descriptorSetAllocateInfo(
|
|
descriptorPool,
|
|
&descriptorSetLayout,
|
|
1);
|
|
|
|
VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet);
|
|
assert(!vkRes);
|
|
|
|
// Image descriptor for the color map texture
|
|
VkDescriptorImageInfo texDescriptor =
|
|
vkTools::initializers::descriptorImageInfo(
|
|
texture.sampler,
|
|
texture.view,
|
|
VK_IMAGE_LAYOUT_GENERAL);
|
|
|
|
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
|
|
{
|
|
// Binding 0 : Vertex shader uniform buffer
|
|
vkTools::initializers::writeDescriptorSet(
|
|
descriptorSet,
|
|
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
|
|
0,
|
|
&uniformDataVS.descriptor),
|
|
// Binding 1 : Fragment shader texture sampler
|
|
vkTools::initializers::writeDescriptorSet(
|
|
descriptorSet,
|
|
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
|
|
1,
|
|
&texDescriptor)
|
|
};
|
|
|
|
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
|
|
}
|
|
|
|
void preparePipelines()
|
|
{
|
|
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
|
|
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
|
|
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
|
|
0,
|
|
VK_FALSE);
|
|
|
|
VkPipelineRasterizationStateCreateInfo rasterizationState =
|
|
vkTools::initializers::pipelineRasterizationStateCreateInfo(
|
|
VK_POLYGON_MODE_FILL,
|
|
VK_CULL_MODE_NONE,
|
|
VK_FRONT_FACE_COUNTER_CLOCKWISE,
|
|
0);
|
|
|
|
VkPipelineColorBlendAttachmentState blendAttachmentState =
|
|
vkTools::initializers::pipelineColorBlendAttachmentState(
|
|
0xf,
|
|
VK_FALSE);
|
|
|
|
VkPipelineColorBlendStateCreateInfo colorBlendState =
|
|
vkTools::initializers::pipelineColorBlendStateCreateInfo(
|
|
1,
|
|
&blendAttachmentState);
|
|
|
|
VkPipelineDepthStencilStateCreateInfo depthStencilState =
|
|
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
|
|
VK_TRUE,
|
|
VK_TRUE,
|
|
VK_COMPARE_OP_LESS_OR_EQUAL);
|
|
|
|
VkPipelineViewportStateCreateInfo viewportState =
|
|
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
|
|
|
VkPipelineMultisampleStateCreateInfo multisampleState =
|
|
vkTools::initializers::pipelineMultisampleStateCreateInfo(
|
|
VK_SAMPLE_COUNT_1_BIT,
|
|
0);
|
|
|
|
std::vector<VkDynamicState> dynamicStateEnables = {
|
|
VK_DYNAMIC_STATE_VIEWPORT,
|
|
VK_DYNAMIC_STATE_SCISSOR
|
|
};
|
|
VkPipelineDynamicStateCreateInfo dynamicState =
|
|
vkTools::initializers::pipelineDynamicStateCreateInfo(
|
|
dynamicStateEnables.data(),
|
|
dynamicStateEnables.size(),
|
|
0);
|
|
|
|
// Load shaders
|
|
std::array<VkPipelineShaderStageCreateInfo,2> shaderStages;
|
|
|
|
#ifdef USE_GLSL
|
|
shaderStages[0] = loadShaderGLSL("./../data/shaders/texture.vert", VK_SHADER_STAGE_VERTEX_BIT);
|
|
shaderStages[1] = loadShaderGLSL("./../data/shaders/texture.frag", VK_SHADER_STAGE_FRAGMENT_BIT);
|
|
#else
|
|
shaderStages[0] = loadShader("./../data/shaders/texture.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
|
shaderStages[1] = loadShader("./../data/shaders/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
|
#endif
|
|
|
|
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
|
|
vkTools::initializers::pipelineCreateInfo(
|
|
pipelineLayout,
|
|
renderPass,
|
|
0);
|
|
|
|
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
|
|
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
|
|
pipelineCreateInfo.pRasterizationState = &rasterizationState;
|
|
pipelineCreateInfo.pColorBlendState = &colorBlendState;
|
|
pipelineCreateInfo.pMultisampleState = &multisampleState;
|
|
pipelineCreateInfo.pViewportState = &viewportState;
|
|
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
|
|
pipelineCreateInfo.pDynamicState = &dynamicState;
|
|
pipelineCreateInfo.stageCount = shaderStages.size();
|
|
pipelineCreateInfo.pStages = shaderStages.data();
|
|
|
|
VkResult err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid);
|
|
assert(!err);
|
|
}
|
|
|
|
// Prepare and initialize uniform buffer containing shader uniforms
|
|
void prepareUniformBuffers()
|
|
{
|
|
// Vertex shader uniform buffer block
|
|
createBuffer(
|
|
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
|
|
sizeof(uboVS),
|
|
&uboVS,
|
|
&uniformDataVS.buffer,
|
|
&uniformDataVS.memory,
|
|
&uniformDataVS.descriptor);
|
|
|
|
updateUniformBuffers();
|
|
}
|
|
|
|
void updateUniformBuffers()
|
|
{
|
|
// Vertex shader
|
|
glm::mat4 viewMatrix = glm::mat4();
|
|
uboVS.projection = glm::perspective(deg_to_rad(60.0f), (float)width / (float)height, 0.001f, 256.0f);
|
|
viewMatrix = glm::translate(viewMatrix, glm::vec3(0.0f, 0.0f, zoom));
|
|
|
|
uboVS.model = glm::mat4();
|
|
uboVS.model = viewMatrix * glm::translate(uboVS.model, glm::vec3(0, 0, 0));
|
|
uboVS.model = glm::rotate(uboVS.model, deg_to_rad(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
|
|
uboVS.model = glm::rotate(uboVS.model, deg_to_rad(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
|
|
uboVS.model = glm::rotate(uboVS.model, deg_to_rad(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
|
|
|
|
uint8_t *pData;
|
|
VkResult err = vkMapMemory(device, uniformDataVS.memory, 0, sizeof(uboVS), 0, (void **)&pData);
|
|
assert(!err);
|
|
memcpy(pData, &uboVS, sizeof(uboVS));
|
|
vkUnmapMemory(device, uniformDataVS.memory);
|
|
}
|
|
|
|
void prepare()
|
|
{
|
|
VulkanExampleBase::prepare();
|
|
generateQuad();
|
|
setupVertexDescriptions();
|
|
prepareUniformBuffers();
|
|
loadTexture(
|
|
"./../data/textures/igor_and_pal_bc3.ktx",
|
|
VK_FORMAT_BC3_UNORM_BLOCK,
|
|
false);
|
|
setupDescriptorSetLayout();
|
|
preparePipelines();
|
|
setupDescriptorPool();
|
|
setupDescriptorSet();
|
|
buildCommandBuffers();
|
|
prepared = true;
|
|
}
|
|
|
|
virtual void render()
|
|
{
|
|
if (!prepared)
|
|
return;
|
|
vkDeviceWaitIdle(device);
|
|
draw();
|
|
vkDeviceWaitIdle(device);
|
|
}
|
|
|
|
virtual void viewChanged()
|
|
{
|
|
updateUniformBuffers();
|
|
}
|
|
|
|
void changeLodBias(float delta)
|
|
{
|
|
uboVS.lodBias += delta;
|
|
if (uboVS.lodBias < 0.0f)
|
|
{
|
|
uboVS.lodBias = 0.0f;
|
|
}
|
|
if (uboVS.lodBias > 8.0f)
|
|
{
|
|
uboVS.lodBias = 8.0f;
|
|
}
|
|
updateUniformBuffers();
|
|
}
|
|
};
|
|
|
|
VulkanExample *vulkanExample;
|
|
|
|
#ifdef _WIN32
|
|
|
|
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
|
|
{
|
|
if (vulkanExample != NULL)
|
|
{
|
|
vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam);
|
|
if (uMsg == WM_KEYDOWN)
|
|
{
|
|
switch (wParam)
|
|
{
|
|
case VK_ADD:
|
|
vulkanExample->changeLodBias(0.1f);
|
|
break;
|
|
case VK_SUBTRACT:
|
|
vulkanExample->changeLodBias(-0.1f);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return (DefWindowProc(hWnd, uMsg, wParam, lParam));
|
|
}
|
|
|
|
#else
|
|
|
|
static void handleEvent(const xcb_generic_event_t *event)
|
|
{
|
|
if (vulkanExample != NULL)
|
|
{
|
|
vulkanExample->handleEvent(event);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef _WIN32
|
|
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow)
|
|
#else
|
|
int main(const int argc, const char *argv[])
|
|
#endif
|
|
{
|
|
vulkanExample = new VulkanExample();
|
|
#ifdef _WIN32
|
|
vulkanExample->setupWindow(hInstance, WndProc);
|
|
#else
|
|
vulkanExample->setupWindow();
|
|
#endif
|
|
vulkanExample->initSwapchain();
|
|
vulkanExample->prepare();
|
|
vulkanExample->renderLoop();
|
|
delete(vulkanExample);
|
|
return 0;
|
|
}
|