procedural-3d-engine/examples/raytracingbasic/raytracingbasic.cpp
2020-08-16 10:28:29 +02:00

903 lines
41 KiB
C++

/*
* Vulkan Example - Basic hardware accelerated ray tracing example using VK_KHR_ray_traying
*
* Copyright (C) 2019-2020 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#define VK_ENABLE_BETA_EXTENSIONS
#include "vulkanexamplebase.h"
// Holds data for a ray tracing scratch buffer that is used as a temporary storage
struct RayTracingScratchBuffer
{
uint64_t deviceAddress = 0;
VkBuffer buffer = VK_NULL_HANDLE;
VkDeviceMemory memory = VK_NULL_HANDLE;
};
// Holds data for a memory object bound to an acceleration structure
struct RayTracingObjectMemory
{
uint64_t deviceAddress = 0;
VkDeviceMemory memory = VK_NULL_HANDLE;
};
// Ray tracing acceleration structure
struct AccelerationStructure {
VkAccelerationStructureKHR accelerationStructure;
uint64_t handle;
RayTracingObjectMemory objectMemory;
};
// Indices for the different ray tracing shader types used in this example
#define INDEX_RAYGEN_GROUP 0
#define INDEX_MISS_GROUP 1
#define INDEX_CLOSEST_HIT_GROUP 2
class VulkanExample : public VulkanExampleBase
{
public:
PFN_vkGetBufferDeviceAddressKHR vkGetBufferDeviceAddressKHR;
PFN_vkBindAccelerationStructureMemoryKHR vkBindAccelerationStructureMemoryKHR;
PFN_vkCreateAccelerationStructureKHR vkCreateAccelerationStructureKHR;
PFN_vkDestroyAccelerationStructureKHR vkDestroyAccelerationStructureKHR;
PFN_vkGetAccelerationStructureMemoryRequirementsKHR vkGetAccelerationStructureMemoryRequirementsKHR;
PFN_vkCmdBuildAccelerationStructureKHR vkCmdBuildAccelerationStructureKHR;
PFN_vkBuildAccelerationStructureKHR vkBuildAccelerationStructureKHR;
PFN_vkGetAccelerationStructureDeviceAddressKHR vkGetAccelerationStructureDeviceAddressKHR;
PFN_vkCmdTraceRaysKHR vkCmdTraceRaysKHR;
PFN_vkGetRayTracingShaderGroupHandlesKHR vkGetRayTracingShaderGroupHandlesKHR;
PFN_vkCreateRayTracingPipelinesKHR vkCreateRayTracingPipelinesKHR;
VkPhysicalDeviceRayTracingPropertiesKHR rayTracingProperties{};
VkPhysicalDeviceRayTracingFeaturesKHR rayTracingFeatures{};
VkPhysicalDeviceBufferDeviceAddressFeatures enabledBufferDeviceAddresFeatures{};
VkPhysicalDeviceRayTracingFeaturesKHR enabledRayTracingFeatures{};
AccelerationStructure bottomLevelAS;
AccelerationStructure topLevelAS;
vks::Buffer vertexBuffer;
vks::Buffer indexBuffer;
uint32_t indexCount;
std::vector<VkRayTracingShaderGroupCreateInfoKHR> shaderGroups{};
vks::Buffer shaderBindingTable;
struct StorageImage {
VkDeviceMemory memory;
VkImage image;
VkImageView view;
VkFormat format;
} storageImage;
struct UniformData {
glm::mat4 viewInverse;
glm::mat4 projInverse;
} uniformData;
vks::Buffer ubo;
VkPipeline pipeline;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
VulkanExample() : VulkanExampleBase()
{
title = "Ray tracing basic";
settings.overlay = true;
camera.type = Camera::CameraType::lookat;
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
camera.setRotation(glm::vec3(0.0f, 0.0f, 0.0f));
camera.setTranslation(glm::vec3(0.0f, 0.0f, -2.5f));
// Enable instance and device extensions required to use VK_KHR_ray_tracing
enabledInstanceExtensions.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_KHR_MAINTENANCE3_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_KHR_RAY_TRACING_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_KHR_BUFFER_DEVICE_ADDRESS_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_KHR_DEFERRED_HOST_OPERATIONS_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_EXT_DESCRIPTOR_INDEXING_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_KHR_PIPELINE_LIBRARY_EXTENSION_NAME);
// We require Vulkan 1.2 for ray tracing
apiVersion = VK_API_VERSION_1_2;
}
~VulkanExample()
{
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vkDestroyImageView(device, storageImage.view, nullptr);
vkDestroyImage(device, storageImage.image, nullptr);
vkFreeMemory(device, storageImage.memory, nullptr);
vkDestroyAccelerationStructureKHR(device, bottomLevelAS.accelerationStructure, nullptr);
vkDestroyAccelerationStructureKHR(device, topLevelAS.accelerationStructure, nullptr);
vertexBuffer.destroy();
indexBuffer.destroy();
shaderBindingTable.destroy();
ubo.destroy();
deleteObjectMemory(bottomLevelAS.objectMemory);
deleteObjectMemory(topLevelAS.objectMemory);
}
/*
Create a scratch buffer to hold temporary data for a ray tracing acceleration structure
*/
RayTracingScratchBuffer createScratchBuffer(VkAccelerationStructureKHR accelerationStructure)
{
RayTracingScratchBuffer scratchBuffer{};
VkMemoryRequirements2 memoryRequirements2{};
memoryRequirements2.sType = VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2;
VkAccelerationStructureMemoryRequirementsInfoKHR accelerationStructureMemoryRequirements{};
accelerationStructureMemoryRequirements.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_MEMORY_REQUIREMENTS_INFO_KHR;
accelerationStructureMemoryRequirements.type = VK_ACCELERATION_STRUCTURE_MEMORY_REQUIREMENTS_TYPE_BUILD_SCRATCH_KHR;
accelerationStructureMemoryRequirements.buildType = VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR;
accelerationStructureMemoryRequirements.accelerationStructure = accelerationStructure;
vkGetAccelerationStructureMemoryRequirementsKHR(device, &accelerationStructureMemoryRequirements, &memoryRequirements2);
VkBufferCreateInfo bufferCI{};
bufferCI.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferCI.size = memoryRequirements2.memoryRequirements.size;
bufferCI.usage = VK_BUFFER_USAGE_RAY_TRACING_BIT_KHR | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT;
bufferCI.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCI, nullptr, &scratchBuffer.buffer));
VkMemoryRequirements memoryRequirements{};
vkGetBufferMemoryRequirements(device, scratchBuffer.buffer, &memoryRequirements);
VkMemoryAllocateFlagsInfo memoryAllocateFI{};
memoryAllocateFI.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO;
memoryAllocateFI.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR;
VkMemoryAllocateInfo memoryAI{};
memoryAI.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
memoryAI.pNext = &memoryAllocateFI;
memoryAI.allocationSize = memoryRequirements.size;
memoryAI.memoryTypeIndex = vulkanDevice->getMemoryType(memoryRequirements.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memoryAI, nullptr, &scratchBuffer.memory));
VK_CHECK_RESULT(vkBindBufferMemory(device, scratchBuffer.buffer, scratchBuffer.memory, 0));
VkBufferDeviceAddressInfoKHR buffer_device_address_info{};
buffer_device_address_info.sType = VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_INFO;
buffer_device_address_info.buffer = scratchBuffer.buffer;
scratchBuffer.deviceAddress = vkGetBufferDeviceAddressKHR(device, &buffer_device_address_info);
return scratchBuffer;
}
void deleteScratchBuffer(RayTracingScratchBuffer& scratchBuffer)
{
if (scratchBuffer.memory != VK_NULL_HANDLE) {
vkFreeMemory(device, scratchBuffer.memory, nullptr);
}
if (scratchBuffer.buffer != VK_NULL_HANDLE) {
vkDestroyBuffer(device, scratchBuffer.buffer, nullptr);
}
}
/*
Allocate memory that will be attached to a ray tracing acceleration structure
*/
RayTracingObjectMemory createObjectMemory(VkAccelerationStructureKHR acceleration_structure)
{
RayTracingObjectMemory objectMemory{};
VkMemoryRequirements2 memoryRequirements2{};
memoryRequirements2.sType = VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2;
VkAccelerationStructureMemoryRequirementsInfoKHR accelerationStructureMemoryRequirements{};
accelerationStructureMemoryRequirements.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_MEMORY_REQUIREMENTS_INFO_KHR;
accelerationStructureMemoryRequirements.type = VK_ACCELERATION_STRUCTURE_MEMORY_REQUIREMENTS_TYPE_OBJECT_KHR;
accelerationStructureMemoryRequirements.buildType = VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR;
accelerationStructureMemoryRequirements.accelerationStructure = acceleration_structure;
vkGetAccelerationStructureMemoryRequirementsKHR(device, &accelerationStructureMemoryRequirements, &memoryRequirements2);
VkMemoryRequirements memoryRequirements = memoryRequirements2.memoryRequirements;
VkMemoryAllocateInfo memoryAI{};
memoryAI.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
memoryAI.allocationSize = memoryRequirements.size;
memoryAI.memoryTypeIndex = vulkanDevice->getMemoryType(memoryRequirements.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memoryAI, nullptr, &objectMemory.memory));
return objectMemory;
}
void deleteObjectMemory(RayTracingObjectMemory& objectMemory)
{
if (objectMemory.memory != VK_NULL_HANDLE) {
vkFreeMemory(device, objectMemory.memory, nullptr);
}
}
/*
Gets the device address from a buffer that's required for some of the buffers used for ray tracing
*/
uint64_t getBufferDeviceAddress(VkBuffer buffer)
{
VkBufferDeviceAddressInfoKHR bufferDeviceAI{};
bufferDeviceAI.sType = VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_INFO;
bufferDeviceAI.buffer = buffer;
return vkGetBufferDeviceAddressKHR(device, &bufferDeviceAI);
}
/*
Set up a storage image that the ray generation shader will be writing to
*/
void createStorageImage()
{
VkImageCreateInfo image = vks::initializers::imageCreateInfo();
image.imageType = VK_IMAGE_TYPE_2D;
image.format = swapChain.colorFormat;
image.extent.width = width;
image.extent.height = height;
image.extent.depth = 1;
image.mipLevels = 1;
image.arrayLayers = 1;
image.samples = VK_SAMPLE_COUNT_1_BIT;
image.tiling = VK_IMAGE_TILING_OPTIMAL;
image.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_STORAGE_BIT;
image.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &storageImage.image));
VkMemoryRequirements memReqs;
vkGetImageMemoryRequirements(device, storageImage.image, &memReqs);
VkMemoryAllocateInfo memoryAllocateInfo = vks::initializers::memoryAllocateInfo();
memoryAllocateInfo.allocationSize = memReqs.size;
memoryAllocateInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memoryAllocateInfo, nullptr, &storageImage.memory));
VK_CHECK_RESULT(vkBindImageMemory(device, storageImage.image, storageImage.memory, 0));
VkImageViewCreateInfo colorImageView = vks::initializers::imageViewCreateInfo();
colorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D;
colorImageView.format = swapChain.colorFormat;
colorImageView.subresourceRange = {};
colorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
colorImageView.subresourceRange.baseMipLevel = 0;
colorImageView.subresourceRange.levelCount = 1;
colorImageView.subresourceRange.baseArrayLayer = 0;
colorImageView.subresourceRange.layerCount = 1;
colorImageView.image = storageImage.image;
VK_CHECK_RESULT(vkCreateImageView(device, &colorImageView, nullptr, &storageImage.view));
VkCommandBuffer cmdBuffer = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
vks::tools::setImageLayout(cmdBuffer, storageImage.image,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_GENERAL,
{ VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 });
vulkanDevice->flushCommandBuffer(cmdBuffer, queue);
}
/*
Create the bottom level acceleration structure contains the scene's actual geometry (vertices, triangles)
*/
void createBottomLevelAccelerationStructure()
{
// Setup vertices for a single triangle
struct Vertex {
float pos[3];
};
std::vector<Vertex> vertices = {
{ { 1.0f, 1.0f, 0.0f } },
{ { -1.0f, 1.0f, 0.0f } },
{ { 0.0f, -1.0f, 0.0f } }
};
// Setup indices
std::vector<uint32_t> indices = { 0, 1, 2 };
indexCount = static_cast<uint32_t>(indices.size());
// Create buffers
// For the sake of simplicity we won't stage the vertex data to the GPU memory
// Vertex buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&vertexBuffer,
vertices.size() * sizeof(Vertex),
vertices.data()));
// Index buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&indexBuffer,
indices.size() * sizeof(uint32_t),
indices.data()));
VkDeviceOrHostAddressConstKHR vertexBufferDeviceAddress{};
VkDeviceOrHostAddressConstKHR indexBufferDeviceAddress{};
vertexBufferDeviceAddress.deviceAddress = getBufferDeviceAddress(vertexBuffer.buffer);
indexBufferDeviceAddress.deviceAddress = getBufferDeviceAddress(indexBuffer.buffer);
VkAccelerationStructureCreateGeometryTypeInfoKHR accelerationCreateGeometryInfo{};
accelerationCreateGeometryInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CREATE_GEOMETRY_TYPE_INFO_KHR;
accelerationCreateGeometryInfo.geometryType = VK_GEOMETRY_TYPE_TRIANGLES_KHR;
accelerationCreateGeometryInfo.maxPrimitiveCount = 1;
accelerationCreateGeometryInfo.indexType = VK_INDEX_TYPE_UINT32;
accelerationCreateGeometryInfo.maxVertexCount = static_cast<uint32_t>(vertices.size());
accelerationCreateGeometryInfo.vertexFormat = VK_FORMAT_R32G32B32_SFLOAT;
accelerationCreateGeometryInfo.allowsTransforms = VK_FALSE;
VkAccelerationStructureCreateInfoKHR accelerationCI{};
accelerationCI.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CREATE_INFO_KHR;
accelerationCI.type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR;
accelerationCI.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
accelerationCI.maxGeometryCount = 1;
accelerationCI.pGeometryInfos = &accelerationCreateGeometryInfo;
VK_CHECK_RESULT(vkCreateAccelerationStructureKHR(device, &accelerationCI, nullptr, &bottomLevelAS.accelerationStructure));
// Bind object memory to the top level acceleration structure
bottomLevelAS.objectMemory = createObjectMemory(bottomLevelAS.accelerationStructure);
VkBindAccelerationStructureMemoryInfoKHR bindAccelerationMemoryInfo{};
bindAccelerationMemoryInfo.sType = VK_STRUCTURE_TYPE_BIND_ACCELERATION_STRUCTURE_MEMORY_INFO_KHR;
bindAccelerationMemoryInfo.accelerationStructure = bottomLevelAS.accelerationStructure;
bindAccelerationMemoryInfo.memory = bottomLevelAS.objectMemory.memory;
VK_CHECK_RESULT(vkBindAccelerationStructureMemoryKHR(device, 1, &bindAccelerationMemoryInfo));
VkAccelerationStructureGeometryKHR accelerationStructureGeometry{};
accelerationStructureGeometry.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_KHR;
accelerationStructureGeometry.flags = VK_GEOMETRY_OPAQUE_BIT_KHR;
accelerationStructureGeometry.geometryType = VK_GEOMETRY_TYPE_TRIANGLES_KHR;
accelerationStructureGeometry.geometry.triangles.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_TRIANGLES_DATA_KHR;
accelerationStructureGeometry.geometry.triangles.vertexFormat = VK_FORMAT_R32G32B32_SFLOAT;
accelerationStructureGeometry.geometry.triangles.vertexData.deviceAddress = vertexBufferDeviceAddress.deviceAddress;
accelerationStructureGeometry.geometry.triangles.vertexStride = sizeof(Vertex);
accelerationStructureGeometry.geometry.triangles.indexType = VK_INDEX_TYPE_UINT32;
accelerationStructureGeometry.geometry.triangles.indexData.deviceAddress = indexBufferDeviceAddress.deviceAddress;
std::vector<VkAccelerationStructureGeometryKHR> acceleration_geometries = { accelerationStructureGeometry };
VkAccelerationStructureGeometryKHR* acceleration_structure_geometries = acceleration_geometries.data();
// Create a small scratch buffer used during build of the bottom level acceleration structure
RayTracingScratchBuffer scratchBuffer = createScratchBuffer(bottomLevelAS.accelerationStructure);
VkAccelerationStructureBuildGeometryInfoKHR accelerationBuildGeometryInfo{};
accelerationBuildGeometryInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_GEOMETRY_INFO_KHR;
accelerationBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR;
accelerationBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
accelerationBuildGeometryInfo.update = VK_FALSE;
accelerationBuildGeometryInfo.dstAccelerationStructure = bottomLevelAS.accelerationStructure;
accelerationBuildGeometryInfo.geometryArrayOfPointers = VK_FALSE;
accelerationBuildGeometryInfo.geometryCount = 1;
accelerationBuildGeometryInfo.ppGeometries = &acceleration_structure_geometries;
accelerationBuildGeometryInfo.scratchData.deviceAddress = scratchBuffer.deviceAddress;
VkAccelerationStructureBuildOffsetInfoKHR accelerationBuildOffsetInfo{};
accelerationBuildOffsetInfo.primitiveCount = 1;
accelerationBuildOffsetInfo.primitiveOffset = 0x0;
accelerationBuildOffsetInfo.firstVertex = 0;
accelerationBuildOffsetInfo.transformOffset = 0x0;
std::vector<VkAccelerationStructureBuildOffsetInfoKHR*> accelerationBuildOffsets = { &accelerationBuildOffsetInfo };
if (rayTracingFeatures.rayTracingHostAccelerationStructureCommands)
{
// Implementation supports building acceleration structure building on host
VK_CHECK_RESULT(vkBuildAccelerationStructureKHR(device, 1, &accelerationBuildGeometryInfo, accelerationBuildOffsets.data()));
}
else
{
// Acceleration structure needs to be build on the device
VkCommandBuffer commandBuffer = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
vkCmdBuildAccelerationStructureKHR(commandBuffer, 1, &accelerationBuildGeometryInfo, accelerationBuildOffsets.data());
vulkanDevice->flushCommandBuffer(commandBuffer, queue);
}
VkAccelerationStructureDeviceAddressInfoKHR accelerationDeviceAddressInfo{};
accelerationDeviceAddressInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_DEVICE_ADDRESS_INFO_KHR;
accelerationDeviceAddressInfo.accelerationStructure = bottomLevelAS.accelerationStructure;
bottomLevelAS.handle = vkGetAccelerationStructureDeviceAddressKHR(device, &accelerationDeviceAddressInfo);
deleteScratchBuffer(scratchBuffer);
}
/*
The top level acceleration structure contains the scene's object instances
*/
void createTopLevelAccelerationStructure()
{
VkAccelerationStructureCreateGeometryTypeInfoKHR accelerationCreateGeometryInfo{};
accelerationCreateGeometryInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CREATE_GEOMETRY_TYPE_INFO_KHR;
accelerationCreateGeometryInfo.geometryType = VK_GEOMETRY_TYPE_INSTANCES_KHR;
accelerationCreateGeometryInfo.maxPrimitiveCount = 1;
accelerationCreateGeometryInfo.allowsTransforms = VK_FALSE;
VkAccelerationStructureCreateInfoKHR accelerationCI{};
accelerationCI.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CREATE_INFO_KHR;
accelerationCI.type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR;
accelerationCI.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
accelerationCI.maxGeometryCount = 1;
accelerationCI.pGeometryInfos = &accelerationCreateGeometryInfo;
VK_CHECK_RESULT(vkCreateAccelerationStructureKHR(device, &accelerationCI, nullptr, &topLevelAS.accelerationStructure));
// Bind object memory to the top level acceleration structure
topLevelAS.objectMemory = createObjectMemory(topLevelAS.accelerationStructure);
VkBindAccelerationStructureMemoryInfoKHR bindAccelerationMemoryInfo{};
bindAccelerationMemoryInfo.sType = VK_STRUCTURE_TYPE_BIND_ACCELERATION_STRUCTURE_MEMORY_INFO_KHR;
bindAccelerationMemoryInfo.accelerationStructure = topLevelAS.accelerationStructure;
bindAccelerationMemoryInfo.memory = topLevelAS.objectMemory.memory;
VK_CHECK_RESULT(vkBindAccelerationStructureMemoryKHR(device, 1, &bindAccelerationMemoryInfo));
VkTransformMatrixKHR transform_matrix = {
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f };
VkAccelerationStructureInstanceKHR instance{};
instance.transform = transform_matrix;
instance.instanceCustomIndex = 0;
instance.mask = 0xFF;
instance.instanceShaderBindingTableRecordOffset = 0;
instance.flags = VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR;
instance.accelerationStructureReference = bottomLevelAS.handle;
// Buffer for instance data
vks::Buffer instancesBuffer;
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&instancesBuffer,
sizeof(instance),
&instance));
VkDeviceOrHostAddressConstKHR instance_data_device_address{};
instance_data_device_address.deviceAddress = getBufferDeviceAddress(instancesBuffer.buffer);
VkAccelerationStructureGeometryKHR accelerationStructureGeometry{};
accelerationStructureGeometry.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_KHR;
accelerationStructureGeometry.flags = VK_GEOMETRY_OPAQUE_BIT_KHR;
accelerationStructureGeometry.geometryType = VK_GEOMETRY_TYPE_INSTANCES_KHR;
accelerationStructureGeometry.geometry.instances.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_INSTANCES_DATA_KHR;
accelerationStructureGeometry.geometry.instances.arrayOfPointers = VK_FALSE;
accelerationStructureGeometry.geometry.instances.data.deviceAddress = instance_data_device_address.deviceAddress;
std::vector<VkAccelerationStructureGeometryKHR> acceleration_geometries = { accelerationStructureGeometry };
VkAccelerationStructureGeometryKHR* acceleration_structure_geometries = acceleration_geometries.data();
// Create a small scratch buffer used during build of the top level acceleration structure
RayTracingScratchBuffer scratchBuffer = createScratchBuffer(topLevelAS.accelerationStructure);
VkAccelerationStructureBuildGeometryInfoKHR accelerationBuildGeometryInfo{};
accelerationBuildGeometryInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_GEOMETRY_INFO_KHR;
accelerationBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR;
accelerationBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
accelerationBuildGeometryInfo.update = VK_FALSE;
accelerationBuildGeometryInfo.srcAccelerationStructure = VK_NULL_HANDLE;
accelerationBuildGeometryInfo.dstAccelerationStructure = topLevelAS.accelerationStructure;
accelerationBuildGeometryInfo.geometryArrayOfPointers = VK_FALSE;
accelerationBuildGeometryInfo.geometryCount = 1;
accelerationBuildGeometryInfo.ppGeometries = &acceleration_structure_geometries;
accelerationBuildGeometryInfo.scratchData.deviceAddress = scratchBuffer.deviceAddress;
VkAccelerationStructureBuildOffsetInfoKHR accelerationBuildOffsetInfo{};
accelerationBuildOffsetInfo.primitiveCount = 1;
accelerationBuildOffsetInfo.primitiveOffset = 0x0;
accelerationBuildOffsetInfo.firstVertex = 0;
accelerationBuildOffsetInfo.transformOffset = 0x0;
std::vector<VkAccelerationStructureBuildOffsetInfoKHR*> accelerationBuildOffsets = { &accelerationBuildOffsetInfo };
if (rayTracingFeatures.rayTracingHostAccelerationStructureCommands)
{
// Implementation supports building acceleration structure building on host
VK_CHECK_RESULT(vkBuildAccelerationStructureKHR(device, 1, &accelerationBuildGeometryInfo, accelerationBuildOffsets.data()));
}
else
{
// Acceleration structure needs to be build on the device
VkCommandBuffer commandBuffer = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
vkCmdBuildAccelerationStructureKHR(commandBuffer, 1, &accelerationBuildGeometryInfo, accelerationBuildOffsets.data());
vulkanDevice->flushCommandBuffer(commandBuffer, queue);
}
VkAccelerationStructureDeviceAddressInfoKHR accelerationDeviceAddressInfo{};
accelerationDeviceAddressInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_DEVICE_ADDRESS_INFO_KHR;
accelerationDeviceAddressInfo.accelerationStructure = topLevelAS.accelerationStructure;
topLevelAS.handle = vkGetAccelerationStructureDeviceAddressKHR(device, &accelerationDeviceAddressInfo);
deleteScratchBuffer(scratchBuffer);
instancesBuffer.destroy();
}
/*
Create the Shader Binding Table that binds the programs and top-level acceleration structure
*/
void createShaderBindingTable() {
const uint32_t groupCount = static_cast<uint32_t>(shaderGroups.size());
const uint32_t sbtSize = rayTracingProperties.shaderGroupBaseAlignment * groupCount;
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_RAY_TRACING_BIT_KHR, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &shaderBindingTable, sbtSize));
shaderBindingTable.map();
// Write the shader handles to the shader binding table
std::vector<uint8_t> shaderHandleStorage(sbtSize);
VK_CHECK_RESULT(vkGetRayTracingShaderGroupHandlesKHR(device, pipeline, 0, groupCount, sbtSize, shaderHandleStorage.data()));
auto* data = static_cast<uint8_t*>(shaderBindingTable.mapped);
// This part is required, as the alignment and handle size may differ
for (uint32_t i = 0; i < groupCount; i++)
{
memcpy(data, shaderHandleStorage.data() + i * rayTracingProperties.shaderGroupHandleSize, rayTracingProperties.shaderGroupHandleSize);
data += rayTracingProperties.shaderGroupBaseAlignment;
}
shaderBindingTable.unmap();
}
/*
Create the descriptor sets used for the ray tracing dispatch
*/
void createDescriptorSets()
{
std::vector<VkDescriptorPoolSize> poolSizes = {
{ VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, 1 },
{ VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1 },
{ VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1 }
};
VkDescriptorPoolCreateInfo descriptorPoolCreateInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 1);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCreateInfo, nullptr, &descriptorPool));
VkDescriptorSetAllocateInfo descriptorSetAllocateInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &descriptorSetAllocateInfo, &descriptorSet));
VkWriteDescriptorSetAccelerationStructureKHR descriptorAccelerationStructureInfo{};
descriptorAccelerationStructureInfo.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_KHR;
descriptorAccelerationStructureInfo.accelerationStructureCount = 1;
descriptorAccelerationStructureInfo.pAccelerationStructures = &topLevelAS.accelerationStructure;
VkWriteDescriptorSet accelerationStructureWrite{};
accelerationStructureWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
// The specialized acceleration structure descriptor has to be chained
accelerationStructureWrite.pNext = &descriptorAccelerationStructureInfo;
accelerationStructureWrite.dstSet = descriptorSet;
accelerationStructureWrite.dstBinding = 0;
accelerationStructureWrite.descriptorCount = 1;
accelerationStructureWrite.descriptorType = VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR;
VkDescriptorImageInfo storageImageDescriptor{};
storageImageDescriptor.imageView = storageImage.view;
storageImageDescriptor.imageLayout = VK_IMAGE_LAYOUT_GENERAL;
VkWriteDescriptorSet resultImageWrite = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1, &storageImageDescriptor);
VkWriteDescriptorSet uniformBufferWrite = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2, &ubo.descriptor);
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
accelerationStructureWrite,
resultImageWrite,
uniformBufferWrite
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, VK_NULL_HANDLE);
}
/*
Create our ray tracing pipeline
*/
void createRayTracingPipeline()
{
VkDescriptorSetLayoutBinding accelerationStructureLayoutBinding{};
accelerationStructureLayoutBinding.binding = 0;
accelerationStructureLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR;
accelerationStructureLayoutBinding.descriptorCount = 1;
accelerationStructureLayoutBinding.stageFlags = VK_SHADER_STAGE_RAYGEN_BIT_KHR;
VkDescriptorSetLayoutBinding resultImageLayoutBinding{};
resultImageLayoutBinding.binding = 1;
resultImageLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE;
resultImageLayoutBinding.descriptorCount = 1;
resultImageLayoutBinding.stageFlags = VK_SHADER_STAGE_RAYGEN_BIT_KHR;
VkDescriptorSetLayoutBinding uniformBufferBinding{};
uniformBufferBinding.binding = 2;
uniformBufferBinding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
uniformBufferBinding.descriptorCount = 1;
uniformBufferBinding.stageFlags = VK_SHADER_STAGE_RAYGEN_BIT_KHR;
std::vector<VkDescriptorSetLayoutBinding> bindings({
accelerationStructureLayoutBinding,
resultImageLayoutBinding,
uniformBufferBinding
});
VkDescriptorSetLayoutCreateInfo descriptorSetlayoutCI{};
descriptorSetlayoutCI.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
descriptorSetlayoutCI.bindingCount = static_cast<uint32_t>(bindings.size());
descriptorSetlayoutCI.pBindings = bindings.data();
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetlayoutCI, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pipelineLayoutCI{};
pipelineLayoutCI.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pipelineLayoutCI.setLayoutCount = 1;
pipelineLayoutCI.pSetLayouts = &descriptorSetLayout;
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout));
const uint32_t shaderIndexRaygen = 0;
const uint32_t shaderIndexMiss = 1;
const uint32_t shaderIndexClosestHit = 2;
std::array<VkPipelineShaderStageCreateInfo, 3> shaderStages;
shaderStages[shaderIndexRaygen] = loadShader(getShadersPath() + "raytracingbasic/raygen.rgen.spv", VK_SHADER_STAGE_RAYGEN_BIT_KHR);
shaderStages[shaderIndexMiss] = loadShader(getShadersPath() + "raytracingbasic/miss.rmiss.spv", VK_SHADER_STAGE_MISS_BIT_KHR);
shaderStages[shaderIndexClosestHit] = loadShader(getShadersPath() + "raytracingbasic/closesthit.rchit.spv", VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR);
/*
Setup ray tracing shader groups
*/
VkRayTracingShaderGroupCreateInfoKHR raygenGroupCI{};
raygenGroupCI.sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR;
raygenGroupCI.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR;
raygenGroupCI.generalShader = shaderIndexRaygen;
raygenGroupCI.closestHitShader = VK_SHADER_UNUSED_KHR;
raygenGroupCI.anyHitShader = VK_SHADER_UNUSED_KHR;
raygenGroupCI.intersectionShader = VK_SHADER_UNUSED_KHR;
shaderGroups.push_back(raygenGroupCI);
VkRayTracingShaderGroupCreateInfoKHR missGroupCI{};
missGroupCI.sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR;
missGroupCI.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR;
missGroupCI.generalShader = shaderIndexMiss;
missGroupCI.closestHitShader = VK_SHADER_UNUSED_KHR;
missGroupCI.anyHitShader = VK_SHADER_UNUSED_KHR;
missGroupCI.intersectionShader = VK_SHADER_UNUSED_KHR;
shaderGroups.push_back(missGroupCI);
VkRayTracingShaderGroupCreateInfoKHR closesHitGroupCI{};
closesHitGroupCI.sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR;
closesHitGroupCI.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR;
closesHitGroupCI.generalShader = VK_SHADER_UNUSED_KHR;
closesHitGroupCI.closestHitShader = shaderIndexClosestHit;
closesHitGroupCI.anyHitShader = VK_SHADER_UNUSED_KHR;
closesHitGroupCI.intersectionShader = VK_SHADER_UNUSED_KHR;
shaderGroups.push_back(closesHitGroupCI);
VkRayTracingPipelineCreateInfoKHR rayTracingPipelineCI{};
rayTracingPipelineCI.sType = VK_STRUCTURE_TYPE_RAY_TRACING_PIPELINE_CREATE_INFO_KHR;
rayTracingPipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
rayTracingPipelineCI.pStages = shaderStages.data();
rayTracingPipelineCI.groupCount = static_cast<uint32_t>(shaderGroups.size());
rayTracingPipelineCI.pGroups = shaderGroups.data();
rayTracingPipelineCI.maxRecursionDepth = 1;
rayTracingPipelineCI.layout = pipelineLayout;
rayTracingPipelineCI.libraries.sType = VK_STRUCTURE_TYPE_PIPELINE_LIBRARY_CREATE_INFO_KHR;
VK_CHECK_RESULT(vkCreateRayTracingPipelinesKHR(device, VK_NULL_HANDLE, 1, &rayTracingPipelineCI, nullptr, &pipeline));
}
/*
Create the uniform buffer used to pass matrices to the ray tracing ray generation shader
*/
void createUniformBuffer()
{
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&ubo,
sizeof(uniformData),
&uniformData));
VK_CHECK_RESULT(ubo.map());
updateUniformBuffers();
}
/*
If the window has been resized, we need to recreate the storage image and it's descriptor
*/
void handleResize()
{
// Delete allocated resources
vkDestroyImageView(device, storageImage.view, nullptr);
vkDestroyImage(device, storageImage.image, nullptr);
vkFreeMemory(device, storageImage.memory, nullptr);
// Recreate image
createStorageImage();
// Update descriptor
VkDescriptorImageInfo storageImageDescriptor{ VK_NULL_HANDLE, storageImage.view, VK_IMAGE_LAYOUT_GENERAL };
VkWriteDescriptorSet resultImageWrite = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1, &storageImageDescriptor);
vkUpdateDescriptorSets(device, 1, &resultImageWrite, 0, VK_NULL_HANDLE);
}
/*
Command buffer generation
*/
void buildCommandBuffers()
{
if (resized)
{
handleResize();
}
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkImageSubresourceRange subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
/*
Dispatch the ray tracing commands
*/
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipeline);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipelineLayout, 0, 1, &descriptorSet, 0, 0);
/*
Setup the buffer regions pointing to the shaders in our shader binding table
*/
const VkDeviceSize sbtSize = rayTracingProperties.shaderGroupBaseAlignment * (VkDeviceSize)shaderGroups.size();
VkStridedBufferRegionKHR raygenShaderSBTEntry{};
raygenShaderSBTEntry.buffer = shaderBindingTable.buffer;
raygenShaderSBTEntry.offset = static_cast<VkDeviceSize>(rayTracingProperties.shaderGroupBaseAlignment * INDEX_RAYGEN_GROUP);
raygenShaderSBTEntry.stride = rayTracingProperties.shaderGroupBaseAlignment;
raygenShaderSBTEntry.size = sbtSize;
VkStridedBufferRegionKHR missShaderSBTEntry{};
missShaderSBTEntry.buffer = shaderBindingTable.buffer;
missShaderSBTEntry.offset = static_cast<VkDeviceSize>(rayTracingProperties.shaderGroupBaseAlignment * INDEX_MISS_GROUP);
missShaderSBTEntry.stride = rayTracingProperties.shaderGroupBaseAlignment;
missShaderSBTEntry.size = sbtSize;
VkStridedBufferRegionKHR hitShaderSBTEntry{};
hitShaderSBTEntry.buffer = shaderBindingTable.buffer;
hitShaderSBTEntry.offset = static_cast<VkDeviceSize>(rayTracingProperties.shaderGroupBaseAlignment * INDEX_CLOSEST_HIT_GROUP);
hitShaderSBTEntry.stride = rayTracingProperties.shaderGroupBaseAlignment;
hitShaderSBTEntry.size = sbtSize;
VkStridedBufferRegionKHR callableShaderSBTEntry{};
/*
Dispatch the ray tracing commands
*/
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipeline);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipelineLayout, 0, 1, &descriptorSet, 0, 0);
vkCmdTraceRaysKHR(
drawCmdBuffers[i],
&raygenShaderSBTEntry,
&missShaderSBTEntry,
&hitShaderSBTEntry,
&callableShaderSBTEntry,
width,
height,
1);
/*
Copy ray tracing output to swap chain image
*/
// Prepare current swap chain image as transfer destination
vks::tools::setImageLayout(
drawCmdBuffers[i],
swapChain.images[i],
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
subresourceRange);
// Prepare ray tracing output image as transfer source
vks::tools::setImageLayout(
drawCmdBuffers[i],
storageImage.image,
VK_IMAGE_LAYOUT_GENERAL,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
subresourceRange);
VkImageCopy copyRegion{};
copyRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
copyRegion.srcOffset = { 0, 0, 0 };
copyRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
copyRegion.dstOffset = { 0, 0, 0 };
copyRegion.extent = { width, height, 1 };
vkCmdCopyImage(drawCmdBuffers[i], storageImage.image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, swapChain.images[i], VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &copyRegion);
// Transition swap chain image back for presentation
vks::tools::setImageLayout(
drawCmdBuffers[i],
swapChain.images[i],
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
subresourceRange);
// Transition ray tracing output image back to general layout
vks::tools::setImageLayout(
drawCmdBuffers[i],
storageImage.image,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_IMAGE_LAYOUT_GENERAL,
subresourceRange);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void updateUniformBuffers()
{
uniformData.projInverse = glm::inverse(camera.matrices.perspective);
uniformData.viewInverse = glm::inverse(camera.matrices.view);
memcpy(ubo.mapped, &uniformData, sizeof(uniformData));
}
void getEnabledFeatures()
{
// Enable features required for ray tracing using feature chaining via pNext
enabledBufferDeviceAddresFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES;
enabledBufferDeviceAddresFeatures.bufferDeviceAddress = VK_TRUE;
enabledRayTracingFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_FEATURES_KHR;
enabledRayTracingFeatures.rayTracing = VK_TRUE;
enabledRayTracingFeatures.pNext = &enabledBufferDeviceAddresFeatures;
deviceCreatepNextChain = &enabledRayTracingFeatures;
}
void prepare()
{
VulkanExampleBase::prepare();
// Query the ray tracing properties of the current implementation, we will need them later on
rayTracingProperties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PROPERTIES_KHR;
VkPhysicalDeviceProperties2 deviceProps2{};
deviceProps2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
deviceProps2.pNext = &rayTracingProperties;
vkGetPhysicalDeviceProperties2(physicalDevice, &deviceProps2);
// Query the ray tracing properties of the current implementation, we will need them later on
rayTracingFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_FEATURES_KHR;
VkPhysicalDeviceFeatures2 deviceFeatures2{};
deviceFeatures2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
deviceFeatures2.pNext = &rayTracingFeatures;
vkGetPhysicalDeviceFeatures2(physicalDevice, &deviceFeatures2);
// Get the function pointers required for ray tracing
vkGetBufferDeviceAddressKHR = reinterpret_cast<PFN_vkGetBufferDeviceAddressKHR>(vkGetDeviceProcAddr(device, "vkGetBufferDeviceAddressKHR"));
vkBindAccelerationStructureMemoryKHR = reinterpret_cast<PFN_vkBindAccelerationStructureMemoryKHR>(vkGetDeviceProcAddr(device, "vkBindAccelerationStructureMemoryKHR"));
vkCreateAccelerationStructureKHR = reinterpret_cast<PFN_vkCreateAccelerationStructureKHR>(vkGetDeviceProcAddr(device, "vkCreateAccelerationStructureKHR"));
vkDestroyAccelerationStructureKHR = reinterpret_cast<PFN_vkDestroyAccelerationStructureKHR>(vkGetDeviceProcAddr(device, "vkDestroyAccelerationStructureKHR"));
vkGetAccelerationStructureMemoryRequirementsKHR = reinterpret_cast<PFN_vkGetAccelerationStructureMemoryRequirementsKHR>(vkGetDeviceProcAddr(device, "vkGetAccelerationStructureMemoryRequirementsKHR"));
vkCmdBuildAccelerationStructureKHR = reinterpret_cast<PFN_vkCmdBuildAccelerationStructureKHR>(vkGetDeviceProcAddr(device, "vkCmdBuildAccelerationStructureKHR"));
vkBuildAccelerationStructureKHR = reinterpret_cast<PFN_vkBuildAccelerationStructureKHR>(vkGetDeviceProcAddr(device, "vkBuildAccelerationStructureKHR"));
vkGetAccelerationStructureDeviceAddressKHR = reinterpret_cast<PFN_vkGetAccelerationStructureDeviceAddressKHR>(vkGetDeviceProcAddr(device, "vkGetAccelerationStructureDeviceAddressKHR"));
vkCmdTraceRaysKHR = reinterpret_cast<PFN_vkCmdTraceRaysKHR>(vkGetDeviceProcAddr(device, "vkCmdTraceRaysKHR"));
vkGetRayTracingShaderGroupHandlesKHR = reinterpret_cast<PFN_vkGetRayTracingShaderGroupHandlesKHR>(vkGetDeviceProcAddr(device, "vkGetRayTracingShaderGroupHandlesKHR"));
vkCreateRayTracingPipelinesKHR = reinterpret_cast<PFN_vkCreateRayTracingPipelinesKHR>(vkGetDeviceProcAddr(device, "vkCreateRayTracingPipelinesKHR"));
// Create the acceleration structures used to render the ray traced scene
createBottomLevelAccelerationStructure();
createTopLevelAccelerationStructure();
createStorageImage();
createUniformBuffer();
createRayTracingPipeline();
createShaderBindingTable();
createDescriptorSets();
buildCommandBuffers();
prepared = true;
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
virtual void render()
{
if (!prepared)
return;
draw();
if (camera.updated)
updateUniformBuffers();
}
};
VULKAN_EXAMPLE_MAIN()