procedural-3d-engine/shaders/slang/raytracingshadows/raytracingshadows.slang
2025-05-09 19:45:49 +02:00

117 lines
No EOL
3 KiB
Text

/* Copyright (c) 2025, Sascha Willems
*
* SPDX-License-Identifier: MIT
*
*/
import payload;
struct Attributes
{
float2 bary;
};
RaytracingAccelerationStructure accelStruct;
RWTexture2D<float4> image;
struct UBO
{
float4x4 viewInverse;
float4x4 projInverse;
float4 lightPos;
int vertexSize;
};
ConstantBuffer<UBO> ubo;
StructuredBuffer<float4> vertices;
StructuredBuffer<uint> indices;
struct Vertex
{
float3 pos;
float3 normal;
float2 uv;
float4 color;
float4 _pad0;
float4 _pad1;
};
Vertex unpack(uint index)
{
// Unpack the vertices from the SSBO using the glTF vertex structure
// The multiplier is the size of the vertex divided by four float components (=16 bytes)
const int m = ubo.vertexSize / 16;
float4 d0 = vertices[m * index + 0];
float4 d1 = vertices[m * index + 1];
float4 d2 = vertices[m * index + 2];
Vertex v;
v.pos = d0.xyz;
v.normal = float3(d0.w, d1.x, d1.y);
v.color = float4(d2.x, d2.y, d2.z, 1.0);
return v;
}
[shader("raygeneration")]
void raygenerationMain()
{
uint3 LaunchID = DispatchRaysIndex();
uint3 LaunchSize = DispatchRaysDimensions();
const float2 pixelCenter = float2(LaunchID.xy) + float2(0.5, 0.5);
const float2 inUV = pixelCenter / float2(LaunchSize.xy);
float2 d = inUV * 2.0 - 1.0;
float4 target = mul(ubo.projInverse, float4(d.x, d.y, 1, 1));
RayDesc rayDesc;
rayDesc.Origin = mul(ubo.viewInverse, float4(0, 0, 0, 1)).xyz;
rayDesc.Direction = mul(ubo.viewInverse, float4(normalize(target.xyz), 0)).xyz;
rayDesc.TMin = 0.001;
rayDesc.TMax = 10000.0;
Payload payload;
TraceRay(accelStruct, RAY_FLAG_FORCE_OPAQUE, 0xff, 0, 0, 0, rayDesc, payload);
image[int2(LaunchID.xy)] = float4(payload.hitValue, 0.0);
}
[shader("closesthit")]
void closesthitMain(inout Payload payload, in Attributes attribs)
{
uint PrimitiveID = PrimitiveIndex();
int3 index = int3(indices[3 * PrimitiveID], indices[3 * PrimitiveID + 1], indices[3 * PrimitiveID + 2]);
Vertex v0 = unpack(index.x);
Vertex v1 = unpack(index.y);
Vertex v2 = unpack(index.z);
// Interpolate normal
const float3 barycentricCoords = float3(1.0f - attribs.bary.x - attribs.bary.y, attribs.bary.x, attribs.bary.y);
float3 normal = normalize(v0.normal * barycentricCoords.x + v1.normal * barycentricCoords.y + v2.normal * barycentricCoords.z);
// Basic lighting
float3 lightVector = normalize(ubo.lightPos.xyz);
float dot_product = max(dot(lightVector, normal), 0.2);
payload.hitValue = v0.color.rgb * dot_product;
RayDesc rayDesc;
rayDesc.Origin = WorldRayOrigin() + WorldRayDirection() * RayTCurrent();
rayDesc.Direction = lightVector;
rayDesc.TMin = 0.001;
rayDesc.TMax = 100.0;
payload.shadowed = true;
// Offset indices to match shadow hit/miss index
TraceRay(accelStruct, RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH | RAY_FLAG_FORCE_OPAQUE | RAY_FLAG_SKIP_CLOSEST_HIT_SHADER, 0xff, 0, 0, 1, rayDesc, payload);
if (payload.shadowed) {
payload.hitValue *= 0.3;
}
}
[shader("miss")]
void missMain(inout Payload payload)
{
payload.hitValue = float3(0.0, 0.0, 0.2);
}