937 lines
No EOL
36 KiB
C++
937 lines
No EOL
36 KiB
C++
/*
|
|
* Vulkan Example - Basic indexed triangle rendering
|
|
*
|
|
* Note :
|
|
* This is a "pedal to the metal" example to show off how to get Vulkan up an displaying something
|
|
* Contrary to the other examples, this one won't make use of helper functions or initializers
|
|
* Except in a few cases (swap chain setup e.g.)
|
|
*
|
|
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
|
|
*
|
|
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <vector>
|
|
|
|
#define GLM_FORCE_RADIANS
|
|
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
|
|
#include <glm/glm.hpp>
|
|
#include <glm/gtc/matrix_transform.hpp>
|
|
|
|
#include <vulkan/vulkan.h>
|
|
#include "vulkanexamplebase.h"
|
|
|
|
#ifdef __ANDROID__
|
|
#include "vulkanandroid.h"
|
|
#endif
|
|
|
|
#define VERTEX_BUFFER_BIND_ID 0
|
|
// Set to "true" to enable Vulkan's validation layers
|
|
// See vulkandebug.cpp for details
|
|
#define ENABLE_VALIDATION false
|
|
// Set to "true" to use staging buffers for uploading
|
|
// vertex and index data to device local memory
|
|
// See "prepareVertices" for details on what's staging
|
|
// and on why to use it
|
|
#define USE_STAGING true
|
|
|
|
class VulkanExample : public VulkanExampleBase
|
|
{
|
|
public:
|
|
struct {
|
|
VkBuffer buf;
|
|
VkDeviceMemory mem;
|
|
VkPipelineVertexInputStateCreateInfo vi;
|
|
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
|
|
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
|
|
} vertices;
|
|
|
|
struct {
|
|
int count;
|
|
VkBuffer buf;
|
|
VkDeviceMemory mem;
|
|
} indices;
|
|
|
|
struct {
|
|
VkBuffer buffer;
|
|
VkDeviceMemory memory;
|
|
VkDescriptorBufferInfo descriptor;
|
|
} uniformDataVS;
|
|
|
|
struct {
|
|
glm::mat4 projectionMatrix;
|
|
glm::mat4 modelMatrix;
|
|
glm::mat4 viewMatrix;
|
|
} uboVS;
|
|
|
|
struct {
|
|
VkPipeline solid;
|
|
} pipelines;
|
|
|
|
VkPipelineLayout pipelineLayout;
|
|
VkDescriptorSet descriptorSet;
|
|
VkDescriptorSetLayout descriptorSetLayout;
|
|
|
|
// Synchronization semaphores
|
|
struct {
|
|
VkSemaphore presentComplete;
|
|
VkSemaphore renderComplete;
|
|
} semaphores;
|
|
|
|
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
|
|
{
|
|
width = 1280;
|
|
height = 720;
|
|
zoom = -2.5f;
|
|
title = "Vulkan Example - Basic indexed triangle";
|
|
// Values not set here are initialized in the base class constructor
|
|
}
|
|
|
|
~VulkanExample()
|
|
{
|
|
// Clean up used Vulkan resources
|
|
// Note : Inherited destructor cleans up resources stored in base class
|
|
vkDestroyPipeline(device, pipelines.solid, nullptr);
|
|
|
|
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
|
|
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
|
|
|
|
vkDestroyBuffer(device, vertices.buf, nullptr);
|
|
vkFreeMemory(device, vertices.mem, nullptr);
|
|
|
|
vkDestroyBuffer(device, indices.buf, nullptr);
|
|
vkFreeMemory(device, indices.mem, nullptr);
|
|
|
|
vkDestroySemaphore(device, semaphores.presentComplete, nullptr);
|
|
vkDestroySemaphore(device, semaphores.renderComplete, nullptr);
|
|
|
|
vkDestroyBuffer(device, uniformDataVS.buffer, nullptr);
|
|
vkFreeMemory(device, uniformDataVS.memory, nullptr);
|
|
}
|
|
|
|
// Build separate command buffers for every framebuffer image
|
|
// Unlike in OpenGL all rendering commands are recorded once
|
|
// into command buffers that are then resubmitted to the queue
|
|
void buildCommandBuffers()
|
|
{
|
|
VkCommandBufferBeginInfo cmdBufInfo = {};
|
|
cmdBufInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
|
|
cmdBufInfo.pNext = NULL;
|
|
|
|
VkClearValue clearValues[2];
|
|
clearValues[0].color = defaultClearColor;
|
|
clearValues[1].depthStencil = { 1.0f, 0 };
|
|
|
|
VkRenderPassBeginInfo renderPassBeginInfo = {};
|
|
renderPassBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
|
|
renderPassBeginInfo.pNext = NULL;
|
|
renderPassBeginInfo.renderPass = renderPass;
|
|
renderPassBeginInfo.renderArea.offset.x = 0;
|
|
renderPassBeginInfo.renderArea.offset.y = 0;
|
|
renderPassBeginInfo.renderArea.extent.width = width;
|
|
renderPassBeginInfo.renderArea.extent.height = height;
|
|
renderPassBeginInfo.clearValueCount = 2;
|
|
renderPassBeginInfo.pClearValues = clearValues;
|
|
|
|
VkResult err;
|
|
|
|
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
|
|
{
|
|
// Set target frame buffer
|
|
renderPassBeginInfo.framebuffer = frameBuffers[i];
|
|
|
|
err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo);
|
|
assert(!err);
|
|
|
|
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
|
|
|
// Update dynamic viewport state
|
|
VkViewport viewport = {};
|
|
viewport.height = (float)height;
|
|
viewport.width = (float)width;
|
|
viewport.minDepth = (float) 0.0f;
|
|
viewport.maxDepth = (float) 1.0f;
|
|
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
|
|
|
// Update dynamic scissor state
|
|
VkRect2D scissor = {};
|
|
scissor.extent.width = width;
|
|
scissor.extent.height = height;
|
|
scissor.offset.x = 0;
|
|
scissor.offset.y = 0;
|
|
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
|
|
|
// Bind descriptor sets describing shader binding points
|
|
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
|
|
|
|
// Bind the rendering pipeline (including the shaders)
|
|
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.solid);
|
|
|
|
// Bind triangle vertices
|
|
VkDeviceSize offsets[1] = { 0 };
|
|
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &vertices.buf, offsets);
|
|
|
|
// Bind triangle indices
|
|
vkCmdBindIndexBuffer(drawCmdBuffers[i], indices.buf, 0, VK_INDEX_TYPE_UINT32);
|
|
|
|
// Draw indexed triangle
|
|
vkCmdDrawIndexed(drawCmdBuffers[i], indices.count, 1, 0, 0, 1);
|
|
|
|
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
|
|
|
// Add a present memory barrier to the end of the command buffer
|
|
// This will transform the frame buffer color attachment to a
|
|
// new layout for presenting it to the windowing system integration
|
|
VkImageMemoryBarrier prePresentBarrier = {};
|
|
prePresentBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
|
|
prePresentBarrier.pNext = NULL;
|
|
prePresentBarrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
|
|
prePresentBarrier.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
|
|
prePresentBarrier.oldLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
|
|
prePresentBarrier.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
|
|
prePresentBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
|
prePresentBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
|
prePresentBarrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
|
|
prePresentBarrier.image = swapChain.buffers[i].image;
|
|
|
|
VkImageMemoryBarrier *pMemoryBarrier = &prePresentBarrier;
|
|
vkCmdPipelineBarrier(
|
|
drawCmdBuffers[i],
|
|
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
|
|
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
|
|
VK_FLAGS_NONE,
|
|
0, nullptr,
|
|
0, nullptr,
|
|
1, &prePresentBarrier);
|
|
|
|
err = vkEndCommandBuffer(drawCmdBuffers[i]);
|
|
assert(!err);
|
|
}
|
|
}
|
|
|
|
void draw()
|
|
{
|
|
VkResult err;
|
|
// Get next image in the swap chain (back/front buffer)
|
|
err = swapChain.acquireNextImage(semaphores.presentComplete, ¤tBuffer);
|
|
assert(!err);
|
|
|
|
// Add a post present image memory barrier
|
|
// This will transform the frame buffer color attachment back
|
|
// to it's initial layout after it has been presented to the
|
|
// windowing system
|
|
VkImageMemoryBarrier postPresentBarrier = {};
|
|
postPresentBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
|
|
postPresentBarrier.pNext = NULL;
|
|
postPresentBarrier.srcAccessMask = 0;
|
|
postPresentBarrier.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
|
|
postPresentBarrier.oldLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
|
|
postPresentBarrier.newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
|
|
postPresentBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
|
postPresentBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
|
postPresentBarrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
|
|
postPresentBarrier.image = swapChain.buffers[currentBuffer].image;
|
|
|
|
// Use dedicated command buffer from example base class for submitting the post present barrier
|
|
VkCommandBufferBeginInfo cmdBufInfo = {};
|
|
cmdBufInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
|
|
|
|
err = vkBeginCommandBuffer(postPresentCmdBuffer, &cmdBufInfo);
|
|
assert(!err);
|
|
|
|
// Put post present barrier into command buffer
|
|
vkCmdPipelineBarrier(
|
|
postPresentCmdBuffer,
|
|
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
|
|
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
|
|
VK_FLAGS_NONE,
|
|
0, nullptr,
|
|
0, nullptr,
|
|
1, &postPresentBarrier);
|
|
|
|
err = vkEndCommandBuffer(postPresentCmdBuffer);
|
|
assert(!err);
|
|
|
|
// Submit to the queue
|
|
submitInfo = {};
|
|
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = &postPresentCmdBuffer;
|
|
|
|
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
|
|
assert(!err);
|
|
err = vkQueueWaitIdle(queue);
|
|
assert(!err);
|
|
|
|
// The submit infor strcuture contains a list of
|
|
// command buffers and semaphores to be submitted to a queue
|
|
// If you want to submit multiple command buffers, pass an array
|
|
VkPipelineStageFlags pipelineStages = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
|
|
VkSubmitInfo submitInfo = {};
|
|
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
|
|
submitInfo.pWaitDstStageMask = &pipelineStages;
|
|
// The wait semaphore ensures that the image is presented
|
|
// before we start submitting command buffers agein
|
|
submitInfo.waitSemaphoreCount = 1;
|
|
submitInfo.pWaitSemaphores = &semaphores.presentComplete;
|
|
// Submit the currently active command buffer
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
|
|
// The signal semaphore is used during queue presentation
|
|
// to ensure that the image is not rendered before all
|
|
// commands have been submitted
|
|
submitInfo.signalSemaphoreCount = 1;
|
|
submitInfo.pSignalSemaphores = &semaphores.renderComplete;
|
|
|
|
// Submit to the graphics queue
|
|
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
|
|
assert(!err);
|
|
|
|
// Present the current buffer to the swap chain
|
|
// We pass the signal semaphore from the submit info
|
|
// to ensure that the image is not rendered until
|
|
// all commands have been submitted
|
|
err = swapChain.queuePresent(queue, currentBuffer, semaphores.renderComplete);
|
|
assert(!err);
|
|
}
|
|
|
|
// Create synchronzation semaphores
|
|
void prepareSemaphore()
|
|
{
|
|
VkSemaphoreCreateInfo semaphoreCreateInfo = {};
|
|
semaphoreCreateInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
|
|
semaphoreCreateInfo.pNext = NULL;
|
|
|
|
// This semaphore ensures that the image is complete
|
|
// before starting to submit again
|
|
VkResult err = vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &semaphores.presentComplete);
|
|
assert(!err);
|
|
|
|
// This semaphore ensures that all commands submitted
|
|
// have been finished before submitting the image to the queue
|
|
err = vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &semaphores.renderComplete);
|
|
assert(!err);
|
|
}
|
|
|
|
// Setups vertex and index buffers for an indexed triangle,
|
|
// uploads them to the VRAM and sets binding points and attribute
|
|
// descriptions to match locations inside the shaders
|
|
void prepareVertices(bool useStagingBuffers)
|
|
{
|
|
struct Vertex {
|
|
float pos[3];
|
|
float col[3];
|
|
};
|
|
|
|
// Setup vertices
|
|
std::vector<Vertex> vertexBuffer = {
|
|
{ { 1.0f, 1.0f, 0.0f },{ 1.0f, 0.0f, 0.0f } },
|
|
{ { -1.0f, 1.0f, 0.0f },{ 0.0f, 1.0f, 0.0f } },
|
|
{ { 0.0f, -1.0f, 0.0f },{ 0.0f, 0.0f, 1.0f } }
|
|
};
|
|
int vertexBufferSize = vertexBuffer.size() * sizeof(Vertex);
|
|
|
|
// Setup indices
|
|
std::vector<uint32_t> indexBuffer = { 0, 1, 2 };
|
|
uint32_t indexBufferSize = indexBuffer.size() * sizeof(uint32_t);
|
|
indices.count = indexBuffer.size();
|
|
|
|
VkMemoryAllocateInfo memAlloc = {};
|
|
memAlloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
|
|
VkMemoryRequirements memReqs;
|
|
|
|
void *data;
|
|
|
|
if (useStagingBuffers)
|
|
{
|
|
// Static data like vertex and index buffer should be stored on the device memory
|
|
// for optimal (and fastest) access by the GPU
|
|
//
|
|
// To achieve this we use so-called "staging buffers" :
|
|
// - Create a buffer that's visible to the host (and can be mapped)
|
|
// - Copy the data to this buffer
|
|
// - Create another buffer that's local on the device (VRAM) with the same size
|
|
// - Copy the data from the host to the device using a command buffer
|
|
|
|
struct StagingBuffer {
|
|
VkDeviceMemory memory;
|
|
VkBuffer buffer;
|
|
};
|
|
|
|
struct {
|
|
StagingBuffer vertices;
|
|
StagingBuffer indices;
|
|
} stagingBuffers;
|
|
|
|
// Buffer copies are done on the queue, so we need a command buffer for them
|
|
VkCommandBufferAllocateInfo cmdBufInfo = {};
|
|
cmdBufInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
|
|
cmdBufInfo.commandPool = cmdPool;
|
|
cmdBufInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
|
|
cmdBufInfo.commandBufferCount = 1;
|
|
|
|
VkCommandBuffer copyCommandBuffer;
|
|
vkTools::checkResult(vkAllocateCommandBuffers(device, &cmdBufInfo, ©CommandBuffer));
|
|
|
|
// Vertex buffer
|
|
VkBufferCreateInfo vertexBufferInfo = {};
|
|
vertexBufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
|
|
vertexBufferInfo.size = vertexBufferSize;
|
|
// Buffer is used as the copy source
|
|
vertexBufferInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
|
|
// Create a host-visible buffer to copy the vertex data to (staging buffer)
|
|
vkTools::checkResult(vkCreateBuffer(device, &vertexBufferInfo, nullptr, &stagingBuffers.vertices.buffer));
|
|
vkGetBufferMemoryRequirements(device, stagingBuffers.vertices.buffer, &memReqs);
|
|
memAlloc.allocationSize = memReqs.size;
|
|
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex);
|
|
vkTools::checkResult(vkAllocateMemory(device, &memAlloc, nullptr, &stagingBuffers.vertices.memory));
|
|
// Map and copy
|
|
vkTools::checkResult(vkMapMemory(device, stagingBuffers.vertices.memory, 0, memAlloc.allocationSize, 0, &data));
|
|
memcpy(data, vertexBuffer.data(), vertexBufferSize);
|
|
vkUnmapMemory(device, stagingBuffers.vertices.memory);
|
|
vkTools::checkResult(vkBindBufferMemory(device, stagingBuffers.vertices.buffer, stagingBuffers.vertices.memory, 0));
|
|
|
|
// Create the destination buffer with device only visibility
|
|
// Buffer will be used as a vertex buffer and is the copy destination
|
|
vertexBufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
|
|
vkTools::checkResult(vkCreateBuffer(device, &vertexBufferInfo, nullptr, &vertices.buf));
|
|
vkGetBufferMemoryRequirements(device, vertices.buf, &memReqs);
|
|
memAlloc.allocationSize = memReqs.size;
|
|
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAlloc.memoryTypeIndex);
|
|
vkTools::checkResult(vkAllocateMemory(device, &memAlloc, nullptr, &vertices.mem));
|
|
vkTools::checkResult(vkBindBufferMemory(device, vertices.buf, vertices.mem, 0));
|
|
|
|
// Index buffer
|
|
// todo : comment
|
|
VkBufferCreateInfo indexbufferInfo = {};
|
|
indexbufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
|
|
indexbufferInfo.size = indexBufferSize;
|
|
indexbufferInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
|
|
// Copy index data to a buffer visible to the host (staging buffer)
|
|
vkTools::checkResult(vkCreateBuffer(device, &indexbufferInfo, nullptr, &stagingBuffers.indices.buffer));
|
|
vkGetBufferMemoryRequirements(device, stagingBuffers.indices.buffer, &memReqs);
|
|
memAlloc.allocationSize = memReqs.size;
|
|
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex);
|
|
vkTools::checkResult(vkAllocateMemory(device, &memAlloc, nullptr, &stagingBuffers.indices.memory));
|
|
vkTools::checkResult(vkMapMemory(device, stagingBuffers.indices.memory, 0, indexBufferSize, 0, &data));
|
|
memcpy(data, indexBuffer.data(), indexBufferSize);
|
|
vkUnmapMemory(device, stagingBuffers.indices.memory);
|
|
vkTools::checkResult(vkBindBufferMemory(device, stagingBuffers.indices.buffer, stagingBuffers.indices.memory, 0));
|
|
|
|
// Create destination buffer with device only visibility
|
|
indexbufferInfo.usage = VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
|
|
vkTools::checkResult(vkCreateBuffer(device, &indexbufferInfo, nullptr, &indices.buf));
|
|
vkGetBufferMemoryRequirements(device, indices.buf, &memReqs);
|
|
memAlloc.allocationSize = memReqs.size;
|
|
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAlloc.memoryTypeIndex);
|
|
vkTools::checkResult(vkAllocateMemory(device, &memAlloc, nullptr, &indices.mem));
|
|
vkTools::checkResult(vkBindBufferMemory(device, indices.buf, indices.mem, 0));
|
|
indices.count = indexBuffer.size();
|
|
|
|
VkCommandBufferBeginInfo cmdBufferBeginInfo = {};
|
|
cmdBufferBeginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
|
|
cmdBufferBeginInfo.pNext = NULL;
|
|
|
|
VkBufferCopy copyRegion = {};
|
|
|
|
// Put buffer region copies into command buffer
|
|
// Note that the staging buffer must not be deleted before the copies
|
|
// have been submitted and executed
|
|
vkTools::checkResult(vkBeginCommandBuffer(copyCommandBuffer, &cmdBufferBeginInfo));
|
|
|
|
// Vertex buffer
|
|
copyRegion.size = vertexBufferSize;
|
|
vkCmdCopyBuffer(
|
|
copyCommandBuffer,
|
|
stagingBuffers.vertices.buffer,
|
|
vertices.buf,
|
|
1,
|
|
©Region);
|
|
// Index buffer
|
|
copyRegion.size = indexBufferSize;
|
|
vkCmdCopyBuffer(
|
|
copyCommandBuffer,
|
|
stagingBuffers.indices.buffer,
|
|
indices.buf,
|
|
1,
|
|
©Region);
|
|
|
|
vkTools::checkResult(vkEndCommandBuffer(copyCommandBuffer));
|
|
|
|
// Submit copies to the queue
|
|
VkSubmitInfo copySubmitInfo = {};
|
|
copySubmitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
|
|
copySubmitInfo.commandBufferCount = 1;
|
|
copySubmitInfo.pCommandBuffers = ©CommandBuffer;
|
|
|
|
vkTools::checkResult(vkQueueSubmit(queue, 1, ©SubmitInfo, VK_NULL_HANDLE));
|
|
vkTools::checkResult(vkQueueWaitIdle(queue));
|
|
|
|
// todo : sync necessary (fence, semaphore?)
|
|
|
|
// Destroy staging buffers
|
|
vkDestroyBuffer(device, stagingBuffers.vertices.buffer, nullptr);
|
|
vkFreeMemory(device, stagingBuffers.vertices.memory, nullptr);
|
|
vkDestroyBuffer(device, stagingBuffers.indices.buffer, nullptr);
|
|
vkFreeMemory(device, stagingBuffers.indices.memory, nullptr);
|
|
}
|
|
else
|
|
{
|
|
// Don't use staging
|
|
// Create host-visible buffers only and use these for rendering
|
|
// This is not advised for real world applications and will
|
|
// result in lower performances
|
|
|
|
// Vertex buffer
|
|
VkBufferCreateInfo vertexBufferInfo = {};
|
|
vertexBufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
|
|
vertexBufferInfo.size = vertexBufferSize;
|
|
vertexBufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
|
|
|
|
// Copy vertex data to a buffer visible to the host
|
|
vkTools::checkResult(vkCreateBuffer(device, &vertexBufferInfo, nullptr, &vertices.buf));
|
|
vkGetBufferMemoryRequirements(device, vertices.buf, &memReqs);
|
|
memAlloc.allocationSize = memReqs.size;
|
|
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex);
|
|
vkTools::checkResult(vkAllocateMemory(device, &memAlloc, nullptr, &vertices.mem));
|
|
vkTools::checkResult(vkMapMemory(device, vertices.mem, 0, memAlloc.allocationSize, 0, &data));
|
|
memcpy(data, vertexBuffer.data(), vertexBufferSize);
|
|
vkUnmapMemory(device, vertices.mem);
|
|
vkTools::checkResult(vkBindBufferMemory(device, vertices.buf, vertices.mem, 0));
|
|
|
|
// Index buffer
|
|
VkBufferCreateInfo indexbufferInfo = {};
|
|
indexbufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
|
|
indexbufferInfo.size = indexBufferSize;
|
|
indexbufferInfo.usage = VK_BUFFER_USAGE_INDEX_BUFFER_BIT;
|
|
|
|
// Copy index data to a buffer visible to the host
|
|
memset(&indices, 0, sizeof(indices));
|
|
vkTools::checkResult(vkCreateBuffer(device, &indexbufferInfo, nullptr, &indices.buf));
|
|
vkGetBufferMemoryRequirements(device, indices.buf, &memReqs);
|
|
memAlloc.allocationSize = memReqs.size;
|
|
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex);
|
|
vkTools::checkResult(vkAllocateMemory(device, &memAlloc, nullptr, &indices.mem));
|
|
vkTools::checkResult(vkMapMemory(device, indices.mem, 0, indexBufferSize, 0, &data));
|
|
memcpy(data, indexBuffer.data(), indexBufferSize);
|
|
vkUnmapMemory(device, indices.mem);
|
|
vkTools::checkResult(vkBindBufferMemory(device, indices.buf, indices.mem, 0));
|
|
indices.count = indexBuffer.size();
|
|
}
|
|
|
|
// Binding description
|
|
vertices.bindingDescriptions.resize(1);
|
|
vertices.bindingDescriptions[0].binding = VERTEX_BUFFER_BIND_ID;
|
|
vertices.bindingDescriptions[0].stride = sizeof(Vertex);
|
|
vertices.bindingDescriptions[0].inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
|
|
|
|
// Attribute descriptions
|
|
// Describes memory layout and shader attribute locations
|
|
vertices.attributeDescriptions.resize(2);
|
|
// Location 0 : Position
|
|
vertices.attributeDescriptions[0].binding = VERTEX_BUFFER_BIND_ID;
|
|
vertices.attributeDescriptions[0].location = 0;
|
|
vertices.attributeDescriptions[0].format = VK_FORMAT_R32G32B32_SFLOAT;
|
|
vertices.attributeDescriptions[0].offset = 0;
|
|
vertices.attributeDescriptions[0].binding = 0;
|
|
// Location 1 : Color
|
|
vertices.attributeDescriptions[1].binding = VERTEX_BUFFER_BIND_ID;
|
|
vertices.attributeDescriptions[1].location = 1;
|
|
vertices.attributeDescriptions[1].format = VK_FORMAT_R32G32B32_SFLOAT;
|
|
vertices.attributeDescriptions[1].offset = sizeof(float) * 3;
|
|
vertices.attributeDescriptions[1].binding = 0;
|
|
|
|
// Assign to vertex buffer
|
|
vertices.vi.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
|
|
vertices.vi.pNext = NULL;
|
|
vertices.vi.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
|
|
vertices.vi.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
|
|
vertices.vi.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
|
|
vertices.vi.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
|
|
}
|
|
|
|
void setupDescriptorPool()
|
|
{
|
|
// We need to tell the API the number of max. requested descriptors per type
|
|
VkDescriptorPoolSize typeCounts[1];
|
|
// This example only uses one descriptor type (uniform buffer) and only
|
|
// requests one descriptor of this type
|
|
typeCounts[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
|
|
typeCounts[0].descriptorCount = 1;
|
|
// For additional types you need to add new entries in the type count list
|
|
// E.g. for two combined image samplers :
|
|
// typeCounts[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
|
|
// typeCounts[1].descriptorCount = 2;
|
|
|
|
// Create the global descriptor pool
|
|
// All descriptors used in this example are allocated from this pool
|
|
VkDescriptorPoolCreateInfo descriptorPoolInfo = {};
|
|
descriptorPoolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
|
|
descriptorPoolInfo.pNext = NULL;
|
|
descriptorPoolInfo.poolSizeCount = 1;
|
|
descriptorPoolInfo.pPoolSizes = typeCounts;
|
|
// Set the max. number of sets that can be requested
|
|
// Requesting descriptors beyond maxSets will result in an error
|
|
descriptorPoolInfo.maxSets = 1;
|
|
|
|
VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool);
|
|
assert(!vkRes);
|
|
}
|
|
|
|
void setupDescriptorSetLayout()
|
|
{
|
|
// Setup layout of descriptors used in this example
|
|
// Basically connects the different shader stages to descriptors
|
|
// for binding uniform buffers, image samplers, etc.
|
|
// So every shader binding should map to one descriptor set layout
|
|
// binding
|
|
|
|
// Binding 0 : Uniform buffer (Vertex shader)
|
|
VkDescriptorSetLayoutBinding layoutBinding = {};
|
|
layoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
|
|
layoutBinding.descriptorCount = 1;
|
|
layoutBinding.stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
|
|
layoutBinding.pImmutableSamplers = NULL;
|
|
|
|
VkDescriptorSetLayoutCreateInfo descriptorLayout = {};
|
|
descriptorLayout.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
|
|
descriptorLayout.pNext = NULL;
|
|
descriptorLayout.bindingCount = 1;
|
|
descriptorLayout.pBindings = &layoutBinding;
|
|
|
|
VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, NULL, &descriptorSetLayout);
|
|
assert(!err);
|
|
|
|
// Create the pipeline layout that is used to generate the rendering pipelines that
|
|
// are based on this descriptor set layout
|
|
// In a more complex scenario you would have different pipeline layouts for different
|
|
// descriptor set layouts that could be reused
|
|
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = {};
|
|
pPipelineLayoutCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
|
|
pPipelineLayoutCreateInfo.pNext = NULL;
|
|
pPipelineLayoutCreateInfo.setLayoutCount = 1;
|
|
pPipelineLayoutCreateInfo.pSetLayouts = &descriptorSetLayout;
|
|
|
|
err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout);
|
|
assert(!err);
|
|
}
|
|
|
|
void setupDescriptorSet()
|
|
{
|
|
// Update descriptor sets determining the shader binding points
|
|
// For every binding point used in a shader there needs to be one
|
|
// descriptor set matching that binding point
|
|
VkWriteDescriptorSet writeDescriptorSet = {};
|
|
|
|
VkDescriptorSetAllocateInfo allocInfo = {};
|
|
allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
|
|
allocInfo.descriptorPool = descriptorPool;
|
|
allocInfo.descriptorSetCount = 1;
|
|
allocInfo.pSetLayouts = &descriptorSetLayout;
|
|
|
|
VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet);
|
|
assert(!vkRes);
|
|
|
|
// Binding 0 : Uniform buffer
|
|
writeDescriptorSet.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
|
|
writeDescriptorSet.dstSet = descriptorSet;
|
|
writeDescriptorSet.descriptorCount = 1;
|
|
writeDescriptorSet.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
|
|
writeDescriptorSet.pBufferInfo = &uniformDataVS.descriptor;
|
|
// Binds this uniform buffer to binding point 0
|
|
writeDescriptorSet.dstBinding = 0;
|
|
|
|
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, NULL);
|
|
}
|
|
|
|
void preparePipelines()
|
|
{
|
|
// Create our rendering pipeline used in this example
|
|
// Vulkan uses the concept of rendering pipelines to encapsulate
|
|
// fixed states
|
|
// This replaces OpenGL's huge (and cumbersome) state machine
|
|
// A pipeline is then stored and hashed on the GPU making
|
|
// pipeline changes much faster than having to set dozens of
|
|
// states
|
|
// In a real world application you'd have dozens of pipelines
|
|
// for every shader set used in a scene
|
|
// Note that there are a few states that are not stored with
|
|
// the pipeline. These are called dynamic states and the
|
|
// pipeline only stores that they are used with this pipeline,
|
|
// but not their states
|
|
|
|
VkGraphicsPipelineCreateInfo pipelineCreateInfo = {};
|
|
|
|
VkResult err;
|
|
|
|
pipelineCreateInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
|
|
// The layout used for this pipeline
|
|
pipelineCreateInfo.layout = pipelineLayout;
|
|
// Renderpass this pipeline is attached to
|
|
pipelineCreateInfo.renderPass = renderPass;
|
|
|
|
// Vertex input state
|
|
// Describes the topoloy used with this pipeline
|
|
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = {};
|
|
inputAssemblyState.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
|
|
// This pipeline renders vertex data as triangle lists
|
|
inputAssemblyState.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
|
|
|
|
// Rasterization state
|
|
VkPipelineRasterizationStateCreateInfo rasterizationState = {};
|
|
rasterizationState.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
|
|
// Solid polygon mode
|
|
rasterizationState.polygonMode = VK_POLYGON_MODE_FILL;
|
|
// No culling
|
|
rasterizationState.cullMode = VK_CULL_MODE_NONE;
|
|
rasterizationState.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
|
|
rasterizationState.depthClampEnable = VK_FALSE;
|
|
rasterizationState.rasterizerDiscardEnable = VK_FALSE;
|
|
rasterizationState.depthBiasEnable = VK_FALSE;
|
|
|
|
// Color blend state
|
|
// Describes blend modes and color masks
|
|
VkPipelineColorBlendStateCreateInfo colorBlendState = {};
|
|
colorBlendState.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
|
|
// One blend attachment state
|
|
// Blending is not used in this example
|
|
VkPipelineColorBlendAttachmentState blendAttachmentState[1] = {};
|
|
blendAttachmentState[0].colorWriteMask = 0xf;
|
|
blendAttachmentState[0].blendEnable = VK_FALSE;
|
|
colorBlendState.attachmentCount = 1;
|
|
colorBlendState.pAttachments = blendAttachmentState;
|
|
|
|
// Viewport state
|
|
VkPipelineViewportStateCreateInfo viewportState = {};
|
|
viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
|
|
// One viewport
|
|
viewportState.viewportCount = 1;
|
|
// One scissor rectangle
|
|
viewportState.scissorCount = 1;
|
|
|
|
// Enable dynamic states
|
|
// Describes the dynamic states to be used with this pipeline
|
|
// Dynamic states can be set even after the pipeline has been created
|
|
// So there is no need to create new pipelines just for changing
|
|
// a viewport's dimensions or a scissor box
|
|
VkPipelineDynamicStateCreateInfo dynamicState = {};
|
|
// The dynamic state properties themselves are stored in the command buffer
|
|
std::vector<VkDynamicState> dynamicStateEnables;
|
|
dynamicStateEnables.push_back(VK_DYNAMIC_STATE_VIEWPORT);
|
|
dynamicStateEnables.push_back(VK_DYNAMIC_STATE_SCISSOR);
|
|
dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
|
|
dynamicState.pDynamicStates = dynamicStateEnables.data();
|
|
dynamicState.dynamicStateCount = dynamicStateEnables.size();
|
|
|
|
// Depth and stencil state
|
|
// Describes depth and stenctil test and compare ops
|
|
VkPipelineDepthStencilStateCreateInfo depthStencilState = {};
|
|
// Basic depth compare setup with depth writes and depth test enabled
|
|
// No stencil used
|
|
depthStencilState.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
|
|
depthStencilState.depthTestEnable = VK_TRUE;
|
|
depthStencilState.depthWriteEnable = VK_TRUE;
|
|
depthStencilState.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL;
|
|
depthStencilState.depthBoundsTestEnable = VK_FALSE;
|
|
depthStencilState.back.failOp = VK_STENCIL_OP_KEEP;
|
|
depthStencilState.back.passOp = VK_STENCIL_OP_KEEP;
|
|
depthStencilState.back.compareOp = VK_COMPARE_OP_ALWAYS;
|
|
depthStencilState.stencilTestEnable = VK_FALSE;
|
|
depthStencilState.front = depthStencilState.back;
|
|
|
|
// Multi sampling state
|
|
VkPipelineMultisampleStateCreateInfo multisampleState = {};
|
|
multisampleState.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
|
|
multisampleState.pSampleMask = NULL;
|
|
// No multi sampling used in this example
|
|
multisampleState.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
|
|
|
|
// Load shaders
|
|
// Shaders are loaded from the SPIR-V format, which can be generated from glsl
|
|
std::array<VkPipelineShaderStageCreateInfo,2> shaderStages;
|
|
shaderStages[0] = loadShader(getAssetPath() + "shaders/triangle.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
|
shaderStages[1] = loadShader(getAssetPath() + "shaders/triangle.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
|
|
|
// Assign states
|
|
// Assign pipeline state create information
|
|
pipelineCreateInfo.stageCount = shaderStages.size();
|
|
pipelineCreateInfo.pStages = shaderStages.data();
|
|
pipelineCreateInfo.pVertexInputState = &vertices.vi;
|
|
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
|
|
pipelineCreateInfo.pRasterizationState = &rasterizationState;
|
|
pipelineCreateInfo.pColorBlendState = &colorBlendState;
|
|
pipelineCreateInfo.pMultisampleState = &multisampleState;
|
|
pipelineCreateInfo.pViewportState = &viewportState;
|
|
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
|
|
pipelineCreateInfo.renderPass = renderPass;
|
|
pipelineCreateInfo.pDynamicState = &dynamicState;
|
|
|
|
// Create rendering pipeline
|
|
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid);
|
|
assert(!err);
|
|
}
|
|
|
|
void prepareUniformBuffers()
|
|
{
|
|
// Prepare and initialize uniform buffer containing shader uniforms
|
|
VkMemoryRequirements memReqs;
|
|
|
|
// Vertex shader uniform buffer block
|
|
VkBufferCreateInfo bufferInfo = {};
|
|
VkMemoryAllocateInfo allocInfo = {};
|
|
allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
|
|
allocInfo.pNext = NULL;
|
|
allocInfo.allocationSize = 0;
|
|
allocInfo.memoryTypeIndex = 0;
|
|
VkResult err;
|
|
|
|
bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
|
|
bufferInfo.size = sizeof(uboVS);
|
|
bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
|
|
|
|
// Create a new buffer
|
|
err = vkCreateBuffer(device, &bufferInfo, nullptr, &uniformDataVS.buffer);
|
|
assert(!err);
|
|
// Get memory requirements including size, alignment and memory type
|
|
vkGetBufferMemoryRequirements(device, uniformDataVS.buffer, &memReqs);
|
|
allocInfo.allocationSize = memReqs.size;
|
|
// Gets the appropriate memory type for this type of buffer allocation
|
|
// Only memory types that are visible to the host
|
|
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &allocInfo.memoryTypeIndex);
|
|
// Allocate memory for the uniform buffer
|
|
err = vkAllocateMemory(device, &allocInfo, nullptr, &(uniformDataVS.memory));
|
|
assert(!err);
|
|
// Bind memory to buffer
|
|
err = vkBindBufferMemory(device, uniformDataVS.buffer, uniformDataVS.memory, 0);
|
|
assert(!err);
|
|
|
|
// Store information in the uniform's descriptor
|
|
uniformDataVS.descriptor.buffer = uniformDataVS.buffer;
|
|
uniformDataVS.descriptor.offset = 0;
|
|
uniformDataVS.descriptor.range = sizeof(uboVS);
|
|
|
|
updateUniformBuffers();
|
|
}
|
|
|
|
void updateUniformBuffers()
|
|
{
|
|
// Update matrices
|
|
uboVS.projectionMatrix = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.1f, 256.0f);
|
|
|
|
uboVS.viewMatrix = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, zoom));
|
|
|
|
uboVS.modelMatrix = glm::mat4();
|
|
uboVS.modelMatrix = glm::rotate(uboVS.modelMatrix, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
|
|
uboVS.modelMatrix = glm::rotate(uboVS.modelMatrix, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
|
|
uboVS.modelMatrix = glm::rotate(uboVS.modelMatrix, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
|
|
|
|
// Map uniform buffer and update it
|
|
uint8_t *pData;
|
|
VkResult err = vkMapMemory(device, uniformDataVS.memory, 0, sizeof(uboVS), 0, (void **)&pData);
|
|
assert(!err);
|
|
memcpy(pData, &uboVS, sizeof(uboVS));
|
|
vkUnmapMemory(device, uniformDataVS.memory);
|
|
assert(!err);
|
|
}
|
|
|
|
void prepare()
|
|
{
|
|
VulkanExampleBase::prepare();
|
|
prepareSemaphore();
|
|
prepareVertices(USE_STAGING);
|
|
prepareUniformBuffers();
|
|
setupDescriptorSetLayout();
|
|
preparePipelines();
|
|
setupDescriptorPool();
|
|
setupDescriptorSet();
|
|
buildCommandBuffers();
|
|
prepared = true;
|
|
}
|
|
|
|
virtual void render()
|
|
{
|
|
if (!prepared)
|
|
return;
|
|
vkDeviceWaitIdle(device);
|
|
draw();
|
|
vkDeviceWaitIdle(device);
|
|
}
|
|
|
|
virtual void viewChanged()
|
|
{
|
|
// This function is called by the base example class
|
|
// each time the view is changed by user input
|
|
updateUniformBuffers();
|
|
}
|
|
};
|
|
|
|
VulkanExample *vulkanExample;
|
|
|
|
#ifdef _WIN32
|
|
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
|
|
{
|
|
if (vulkanExample != NULL)
|
|
{
|
|
vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam);
|
|
}
|
|
return (DefWindowProc(hWnd, uMsg, wParam, lParam));
|
|
}
|
|
#endif
|
|
|
|
#ifdef __linux__
|
|
#ifdef __ANDROID__
|
|
// todo : android event handling
|
|
#else
|
|
static void handleEvent(const xcb_generic_event_t *event)
|
|
{
|
|
if (vulkanExample != NULL)
|
|
{
|
|
vulkanExample->handleEvent(event);
|
|
}
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
// Main entry point
|
|
#if defined(_WIN32)
|
|
// Windows entry point
|
|
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow)
|
|
#elif defined(__ANDROID__)
|
|
// Android entry point
|
|
void android_main(android_app* state)
|
|
#elif defined(__linux__)
|
|
// Linux entry point
|
|
int main(const int argc, const char *argv[])
|
|
#endif
|
|
{
|
|
#if defined(__ANDROID__)
|
|
// Removing this may cause the compiler to omit the main entry point
|
|
// which would make the application crash at start
|
|
app_dummy();
|
|
#endif
|
|
vulkanExample = new VulkanExample();
|
|
#if defined(_WIN32)
|
|
vulkanExample->setupWindow(hInstance, WndProc);
|
|
#elif defined(__ANDROID__)
|
|
// Attach vulkan example to global android application state
|
|
state->userData = vulkanExample;
|
|
state->onAppCmd = VulkanExample::handleAppCommand;
|
|
state->onInputEvent = VulkanExample::handleAppInput;
|
|
vulkanExample->androidApp = state;
|
|
#elif defined(__linux__)
|
|
vulkanExample->setupWindow();
|
|
#endif
|
|
#if !defined(__ANDROID__)
|
|
vulkanExample->initSwapchain();
|
|
vulkanExample->prepare();
|
|
#endif
|
|
vulkanExample->renderLoop();
|
|
#if !defined(__ANDROID__)
|
|
delete(vulkanExample);
|
|
return 0;
|
|
#endif
|
|
} |