881 lines
No EOL
30 KiB
C++
881 lines
No EOL
30 KiB
C++
/*
|
|
* Vulkan Example - Compute shader culling and LOD using indirect rendering
|
|
*
|
|
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
|
|
*
|
|
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
|
*
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <time.h>
|
|
#include <vector>
|
|
#include <random>
|
|
|
|
#define GLM_FORCE_RADIANS
|
|
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
|
|
#include <glm/glm.hpp>
|
|
#include <glm/gtc/matrix_transform.hpp>
|
|
|
|
#include <vulkan/vulkan.h>
|
|
#include "vulkanexamplebase.h"
|
|
#include "vulkanbuffer.hpp"
|
|
#include "frustum.hpp"
|
|
|
|
#define VERTEX_BUFFER_BIND_ID 0
|
|
#define INSTANCE_BUFFER_BIND_ID 1
|
|
#define ENABLE_VALIDATION false
|
|
|
|
// Total number of objects (^3) in the scene
|
|
#if defined(__ANDROID__)
|
|
#define OBJECT_COUNT 32
|
|
#else
|
|
#define OBJECT_COUNT 64
|
|
#endif
|
|
|
|
#define MAX_LOD_LEVEL 5
|
|
|
|
// Vertex layout for this example
|
|
std::vector<vkMeshLoader::VertexLayout> vertexLayout =
|
|
{
|
|
vkMeshLoader::VERTEX_LAYOUT_POSITION,
|
|
vkMeshLoader::VERTEX_LAYOUT_NORMAL,
|
|
vkMeshLoader::VERTEX_LAYOUT_COLOR
|
|
};
|
|
|
|
class VulkanExample : public VulkanExampleBase
|
|
{
|
|
public:
|
|
bool fixedFrustum = false;
|
|
|
|
struct {
|
|
VkPipelineVertexInputStateCreateInfo inputState;
|
|
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
|
|
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
|
|
} vertices;
|
|
|
|
struct {
|
|
vkMeshLoader::MeshBuffer lodObject;
|
|
} meshes;
|
|
|
|
// Per-instance data block
|
|
struct InstanceData {
|
|
glm::vec3 pos;
|
|
float scale;
|
|
};
|
|
|
|
// Contains the instanced data
|
|
vk::Buffer instanceBuffer;
|
|
// Contains the indirect drawing commands
|
|
vk::Buffer indirectCommandsBuffer;
|
|
vk::Buffer indirectDrawCountBuffer;
|
|
|
|
// Indirect draw statistics (updated via compute)
|
|
struct {
|
|
uint32_t drawCount; // Total number of indirect draw counts to be issued
|
|
uint32_t lodCount[MAX_LOD_LEVEL + 1]; // Statistics for number of draws per LOD level (written by compute shader)
|
|
} indirectStats;
|
|
|
|
// Store the indirect draw commands containing index offsets and instance count per object
|
|
std::vector<VkDrawIndexedIndirectCommand> indirectCommands;
|
|
|
|
struct {
|
|
glm::mat4 projection;
|
|
glm::mat4 modelview;
|
|
glm::vec4 cameraPos;
|
|
glm::vec4 frustumPlanes[6];
|
|
} uboScene;
|
|
|
|
struct {
|
|
vk::Buffer scene;
|
|
} uniformData;
|
|
|
|
struct {
|
|
VkPipeline plants;
|
|
} pipelines;
|
|
|
|
VkPipelineLayout pipelineLayout;
|
|
VkDescriptorSet descriptorSet;
|
|
VkDescriptorSetLayout descriptorSetLayout;
|
|
|
|
// Resources for the compute part of the example
|
|
struct {
|
|
vk::Buffer lodLevelsBuffers; // Contains index start and counts for the different lod levels
|
|
VkQueue queue; // Separate queue for compute commands (queue family may differ from the one used for graphics)
|
|
VkCommandPool commandPool; // Use a separate command pool (queue family may differ from the one used for graphics)
|
|
VkCommandBuffer commandBuffer; // Command buffer storing the dispatch commands and barriers
|
|
VkFence fence; // Synchronization fence to avoid rewriting compute CB if still in use
|
|
VkSemaphore semaphore; // Used as a wait semaphore for graphics submission
|
|
VkDescriptorSetLayout descriptorSetLayout; // Compute shader binding layout
|
|
VkDescriptorSet descriptorSet; // Compute shader bindings
|
|
VkPipelineLayout pipelineLayout; // Layout of the compute pipeline
|
|
VkPipeline pipeline; // Compute pipeline for updating particle positions
|
|
} compute;
|
|
|
|
// View frustum for culling invisible objects
|
|
vkTools::Frustum frustum;
|
|
|
|
uint32_t objectCount = 0;
|
|
|
|
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
|
|
{
|
|
enableTextOverlay = true;
|
|
title = "Vulkan Example - Compute cull and lod";
|
|
camera.type = Camera::CameraType::firstperson;
|
|
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
|
|
camera.setTranslation(glm::vec3(0.5f, 0.0f, 0.0f));
|
|
camera.movementSpeed = 5.0f;
|
|
memset(&indirectStats, 0, sizeof(indirectStats));
|
|
}
|
|
|
|
~VulkanExample()
|
|
{
|
|
vkDestroyPipeline(device, pipelines.plants, nullptr);
|
|
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
|
|
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
|
|
vkMeshLoader::freeMeshBufferResources(device, &meshes.lodObject);
|
|
instanceBuffer.destroy();
|
|
indirectCommandsBuffer.destroy();
|
|
uniformData.scene.destroy();
|
|
indirectDrawCountBuffer.destroy();
|
|
compute.lodLevelsBuffers.destroy();
|
|
vkDestroyPipelineLayout(device, compute.pipelineLayout, nullptr);
|
|
vkDestroyDescriptorSetLayout(device, compute.descriptorSetLayout, nullptr);
|
|
vkDestroyPipeline(device, compute.pipeline, nullptr);
|
|
vkDestroyFence(device, compute.fence, nullptr);
|
|
vkDestroyCommandPool(device, compute.commandPool, nullptr);
|
|
}
|
|
|
|
void reBuildCommandBuffers()
|
|
{
|
|
if (!checkCommandBuffers())
|
|
{
|
|
destroyCommandBuffers();
|
|
createCommandBuffers();
|
|
}
|
|
buildCommandBuffers();
|
|
}
|
|
|
|
void buildCommandBuffers()
|
|
{
|
|
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
|
|
|
|
VkClearValue clearValues[2];
|
|
clearValues[0].color = { { 0.18f, 0.27f, 0.5f, 0.0f } };
|
|
clearValues[1].depthStencil = { 1.0f, 0 };
|
|
|
|
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
|
|
renderPassBeginInfo.renderPass = renderPass;
|
|
renderPassBeginInfo.renderArea.extent.width = width;
|
|
renderPassBeginInfo.renderArea.extent.height = height;
|
|
renderPassBeginInfo.clearValueCount = 2;
|
|
renderPassBeginInfo.pClearValues = clearValues;
|
|
|
|
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
|
|
{
|
|
// Set target frame buffer
|
|
renderPassBeginInfo.framebuffer = frameBuffers[i];
|
|
|
|
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
|
|
|
|
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
|
|
|
VkViewport viewport = vkTools::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
|
|
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
|
|
|
VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0);
|
|
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
|
|
|
VkDeviceSize offsets[1] = { 0 };
|
|
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
|
|
|
|
// Mesh containing the LODs
|
|
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.plants);
|
|
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.lodObject.vertices.buf, offsets);
|
|
vkCmdBindVertexBuffers(drawCmdBuffers[i], INSTANCE_BUFFER_BIND_ID, 1, &instanceBuffer.buffer, offsets);
|
|
|
|
vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.lodObject.indices.buf, 0, VK_INDEX_TYPE_UINT32);
|
|
|
|
if (vulkanDevice->features.multiDrawIndirect)
|
|
{
|
|
vkCmdDrawIndexedIndirect(drawCmdBuffers[i], indirectCommandsBuffer.buffer, 0, indirectStats.drawCount, sizeof(VkDrawIndexedIndirectCommand));
|
|
}
|
|
else
|
|
{
|
|
// If multi draw is not available, we must issue separate draw commands
|
|
for (auto j = 0; j < indirectCommands.size(); j++)
|
|
{
|
|
vkCmdDrawIndexedIndirect(drawCmdBuffers[i], indirectCommandsBuffer.buffer, j * sizeof(VkDrawIndexedIndirectCommand), 1, sizeof(VkDrawIndexedIndirectCommand));
|
|
}
|
|
}
|
|
|
|
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
|
|
|
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
|
|
}
|
|
}
|
|
|
|
void loadAssets()
|
|
{
|
|
loadMesh(getAssetPath() + "models/suzanne_lods.dae", &meshes.lodObject, vertexLayout, 0.1f);
|
|
}
|
|
|
|
void setupVertexDescriptions()
|
|
{
|
|
vertices.bindingDescriptions.resize(2);
|
|
|
|
// Binding 0: Per vertex
|
|
vertices.bindingDescriptions[0] =
|
|
vkTools::initializers::vertexInputBindingDescription(VERTEX_BUFFER_BIND_ID, vkMeshLoader::vertexSize(vertexLayout), VK_VERTEX_INPUT_RATE_VERTEX);
|
|
|
|
// Binding 1: Per instance
|
|
vertices.bindingDescriptions[1] =
|
|
vkTools::initializers::vertexInputBindingDescription(INSTANCE_BUFFER_BIND_ID, sizeof(InstanceData), VK_VERTEX_INPUT_RATE_INSTANCE);
|
|
|
|
// Attribute descriptions
|
|
// Describes memory layout and shader positions
|
|
vertices.attributeDescriptions.clear();
|
|
|
|
// Per-Vertex attributes
|
|
// Location 0 : Position
|
|
vertices.attributeDescriptions.push_back(
|
|
vkTools::initializers::vertexInputAttributeDescription(
|
|
VERTEX_BUFFER_BIND_ID,
|
|
0,
|
|
VK_FORMAT_R32G32B32_SFLOAT,
|
|
0)
|
|
);
|
|
// Location 1 : Normal
|
|
vertices.attributeDescriptions.push_back(
|
|
vkTools::initializers::vertexInputAttributeDescription(
|
|
VERTEX_BUFFER_BIND_ID,
|
|
1,
|
|
VK_FORMAT_R32G32B32_SFLOAT,
|
|
sizeof(float) * 3)
|
|
);
|
|
// Location 2 : Color
|
|
vertices.attributeDescriptions.push_back(
|
|
vkTools::initializers::vertexInputAttributeDescription(
|
|
VERTEX_BUFFER_BIND_ID,
|
|
2,
|
|
VK_FORMAT_R32G32B32_SFLOAT,
|
|
sizeof(float) * 6)
|
|
);
|
|
|
|
// Instanced attributes
|
|
// Location 4: Position
|
|
vertices.attributeDescriptions.push_back(
|
|
vkTools::initializers::vertexInputAttributeDescription(
|
|
INSTANCE_BUFFER_BIND_ID, 4, VK_FORMAT_R32G32B32_SFLOAT, offsetof(InstanceData, pos))
|
|
);
|
|
// Location 5: Scale
|
|
vertices.attributeDescriptions.push_back(
|
|
vkTools::initializers::vertexInputAttributeDescription(
|
|
INSTANCE_BUFFER_BIND_ID, 5, VK_FORMAT_R32_SFLOAT, offsetof(InstanceData, scale))
|
|
);
|
|
|
|
vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
|
|
vertices.inputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertices.bindingDescriptions.size());
|
|
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
|
|
vertices.inputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertices.attributeDescriptions.size());
|
|
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
|
|
}
|
|
|
|
void buildComputeCommandBuffer()
|
|
{
|
|
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
|
|
|
|
VK_CHECK_RESULT(vkBeginCommandBuffer(compute.commandBuffer, &cmdBufInfo));
|
|
|
|
// Add memory barrier to ensure that the indirect commands have been consumed before the compute shader updates them
|
|
VkBufferMemoryBarrier bufferBarrier = vkTools::initializers::bufferMemoryBarrier();
|
|
bufferBarrier.buffer = indirectCommandsBuffer.buffer;
|
|
bufferBarrier.size = indirectCommandsBuffer.descriptor.range;
|
|
bufferBarrier.srcAccessMask = VK_ACCESS_INDIRECT_COMMAND_READ_BIT;
|
|
bufferBarrier.dstAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
|
|
bufferBarrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
|
|
bufferBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
|
|
|
|
vkCmdPipelineBarrier(
|
|
compute.commandBuffer,
|
|
VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT,
|
|
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
|
|
VK_FLAGS_NONE,
|
|
0, nullptr,
|
|
1, &bufferBarrier,
|
|
0, nullptr);
|
|
|
|
vkCmdBindPipeline(compute.commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipeline);
|
|
vkCmdBindDescriptorSets(compute.commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipelineLayout, 0, 1, &compute.descriptorSet, 0, 0);
|
|
|
|
// Dispatch the compute job
|
|
// The compute shader will do the frustum culling and adjust the indirect draw calls depending on object visibility.
|
|
// It also determines the lod to use depending on distance to the viewer.
|
|
vkCmdDispatch(compute.commandBuffer, objectCount / 16, 1, 1);
|
|
|
|
// Add memory barrier to ensure that the compute shader has finished writing the indirect command buffer before it's consumed
|
|
bufferBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
|
|
bufferBarrier.dstAccessMask = VK_ACCESS_INDIRECT_COMMAND_READ_BIT;
|
|
bufferBarrier.buffer = indirectCommandsBuffer.buffer;
|
|
bufferBarrier.size = indirectCommandsBuffer.descriptor.range;
|
|
bufferBarrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
|
|
bufferBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
|
|
|
|
vkCmdPipelineBarrier(
|
|
compute.commandBuffer,
|
|
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
|
|
VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT,
|
|
VK_FLAGS_NONE,
|
|
0, nullptr,
|
|
1, &bufferBarrier,
|
|
0, nullptr);
|
|
|
|
// todo: barrier for indirect stats buffer?
|
|
|
|
vkEndCommandBuffer(compute.commandBuffer);
|
|
}
|
|
|
|
void setupDescriptorPool()
|
|
{
|
|
// Example uses one ubo
|
|
std::vector<VkDescriptorPoolSize> poolSizes =
|
|
{
|
|
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2),
|
|
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 4)
|
|
};
|
|
|
|
VkDescriptorPoolCreateInfo descriptorPoolInfo =
|
|
vkTools::initializers::descriptorPoolCreateInfo(
|
|
static_cast<uint32_t>(poolSizes.size()),
|
|
poolSizes.data(),
|
|
2);
|
|
|
|
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
|
|
}
|
|
|
|
void setupDescriptorSetLayout()
|
|
{
|
|
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
|
|
{
|
|
// Binding 0: Vertex shader uniform buffer
|
|
vkTools::initializers::descriptorSetLayoutBinding(
|
|
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
|
|
VK_SHADER_STAGE_VERTEX_BIT,
|
|
0),
|
|
};
|
|
|
|
VkDescriptorSetLayoutCreateInfo descriptorLayout =
|
|
vkTools::initializers::descriptorSetLayoutCreateInfo(
|
|
setLayoutBindings.data(),
|
|
static_cast<uint32_t>(setLayoutBindings.size()));
|
|
|
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
|
|
|
|
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
|
|
vkTools::initializers::pipelineLayoutCreateInfo(
|
|
&descriptorSetLayout,
|
|
1);
|
|
|
|
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
|
|
}
|
|
|
|
void setupDescriptorSet()
|
|
{
|
|
VkDescriptorSetAllocateInfo allocInfo =
|
|
vkTools::initializers::descriptorSetAllocateInfo(
|
|
descriptorPool,
|
|
&descriptorSetLayout,
|
|
1);
|
|
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
|
|
|
|
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
|
|
{
|
|
// Binding 0: Vertex shader uniform buffer
|
|
vkTools::initializers::writeDescriptorSet(
|
|
descriptorSet,
|
|
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
|
|
0,
|
|
&uniformData.scene.descriptor),
|
|
};
|
|
|
|
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
|
|
}
|
|
|
|
void preparePipelines()
|
|
{
|
|
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
|
|
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
|
|
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
|
|
0,
|
|
VK_FALSE);
|
|
|
|
VkPipelineRasterizationStateCreateInfo rasterizationState =
|
|
vkTools::initializers::pipelineRasterizationStateCreateInfo(
|
|
VK_POLYGON_MODE_FILL,
|
|
VK_CULL_MODE_BACK_BIT,
|
|
VK_FRONT_FACE_CLOCKWISE,
|
|
0);
|
|
|
|
VkPipelineColorBlendAttachmentState blendAttachmentState =
|
|
vkTools::initializers::pipelineColorBlendAttachmentState(
|
|
0xf,
|
|
VK_FALSE);
|
|
|
|
VkPipelineColorBlendStateCreateInfo colorBlendState =
|
|
vkTools::initializers::pipelineColorBlendStateCreateInfo(
|
|
1,
|
|
&blendAttachmentState);
|
|
|
|
VkPipelineDepthStencilStateCreateInfo depthStencilState =
|
|
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
|
|
VK_TRUE,
|
|
VK_TRUE,
|
|
VK_COMPARE_OP_LESS_OR_EQUAL);
|
|
|
|
VkPipelineViewportStateCreateInfo viewportState =
|
|
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
|
|
|
VkPipelineMultisampleStateCreateInfo multisampleState =
|
|
vkTools::initializers::pipelineMultisampleStateCreateInfo(
|
|
VK_SAMPLE_COUNT_1_BIT,
|
|
0);
|
|
|
|
std::vector<VkDynamicState> dynamicStateEnables = {
|
|
VK_DYNAMIC_STATE_VIEWPORT,
|
|
VK_DYNAMIC_STATE_SCISSOR
|
|
};
|
|
VkPipelineDynamicStateCreateInfo dynamicState =
|
|
vkTools::initializers::pipelineDynamicStateCreateInfo(
|
|
dynamicStateEnables.data(),
|
|
static_cast<uint32_t>(dynamicStateEnables.size()),
|
|
0);
|
|
|
|
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
|
|
vkTools::initializers::pipelineCreateInfo(
|
|
pipelineLayout,
|
|
renderPass,
|
|
0);
|
|
|
|
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
|
|
|
|
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
|
|
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
|
|
pipelineCreateInfo.pRasterizationState = &rasterizationState;
|
|
pipelineCreateInfo.pColorBlendState = &colorBlendState;
|
|
pipelineCreateInfo.pMultisampleState = &multisampleState;
|
|
pipelineCreateInfo.pViewportState = &viewportState;
|
|
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
|
|
pipelineCreateInfo.pDynamicState = &dynamicState;
|
|
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
|
|
pipelineCreateInfo.pStages = shaderStages.data();
|
|
|
|
// Indirect (and instanced) pipeline for the plants
|
|
shaderStages[0] = loadShader(getAssetPath() + "shaders/computecullandlod/indirectdraw.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
|
shaderStages[1] = loadShader(getAssetPath() + "shaders/computecullandlod/indirectdraw.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.plants));
|
|
}
|
|
|
|
void prepareBuffers()
|
|
{
|
|
objectCount = OBJECT_COUNT * OBJECT_COUNT * OBJECT_COUNT;
|
|
|
|
vk::Buffer stagingBuffer;
|
|
|
|
std::vector<InstanceData> instanceData(objectCount);
|
|
indirectCommands.resize(objectCount);
|
|
|
|
// Indirect draw commands
|
|
for (uint32_t x = 0; x < OBJECT_COUNT; x++)
|
|
{
|
|
for (uint32_t y = 0; y < OBJECT_COUNT; y++)
|
|
{
|
|
for (uint32_t z = 0; z < OBJECT_COUNT; z++)
|
|
{
|
|
uint32_t index = x + y * OBJECT_COUNT + z * OBJECT_COUNT * OBJECT_COUNT;
|
|
indirectCommands[index].instanceCount = 1;
|
|
indirectCommands[index].firstInstance = index;
|
|
// firstIndex and indexCount are written by the compute shader
|
|
}
|
|
}
|
|
}
|
|
|
|
indirectStats.drawCount = static_cast<uint32_t>(indirectCommands.size());
|
|
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&stagingBuffer,
|
|
indirectCommands.size() * sizeof(VkDrawIndexedIndirectCommand),
|
|
indirectCommands.data()));
|
|
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
|
|
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
|
|
&indirectCommandsBuffer,
|
|
stagingBuffer.size));
|
|
|
|
vulkanDevice->copyBuffer(&stagingBuffer, &indirectCommandsBuffer, queue);
|
|
|
|
stagingBuffer.destroy();
|
|
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&indirectDrawCountBuffer,
|
|
sizeof(indirectStats)));
|
|
|
|
// Map for host access
|
|
VK_CHECK_RESULT(indirectDrawCountBuffer.map());
|
|
|
|
// Instance data
|
|
for (uint32_t x = 0; x < OBJECT_COUNT; x++)
|
|
{
|
|
for (uint32_t y = 0; y < OBJECT_COUNT; y++)
|
|
{
|
|
for (uint32_t z = 0; z < OBJECT_COUNT; z++)
|
|
{
|
|
uint32_t index = x + y * OBJECT_COUNT + z * OBJECT_COUNT * OBJECT_COUNT;
|
|
instanceData[index].pos = glm::vec3((float)x, (float)y, (float)z) - glm::vec3((float)OBJECT_COUNT / 2.0f);
|
|
instanceData[index].scale = 2.0f;
|
|
}
|
|
}
|
|
}
|
|
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&stagingBuffer,
|
|
instanceData.size() * sizeof(InstanceData),
|
|
instanceData.data()));
|
|
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
|
|
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
|
|
&instanceBuffer,
|
|
stagingBuffer.size));
|
|
|
|
vulkanDevice->copyBuffer(&stagingBuffer, &instanceBuffer, queue);
|
|
|
|
stagingBuffer.destroy();
|
|
|
|
// Shader storage buffer containing index offsets and counts for the LODs
|
|
struct LOD
|
|
{
|
|
uint32_t firstIndex;
|
|
uint32_t indexCount;
|
|
float distance;
|
|
float _pad0;
|
|
};
|
|
std::vector<LOD> LODLevels;
|
|
uint32_t n = 0;
|
|
for (auto meshDescriptor : meshes.lodObject.meshDescriptors)
|
|
{
|
|
LOD lod;
|
|
lod.firstIndex = meshDescriptor.indexBase; // First index for this LOD
|
|
lod.indexCount = meshDescriptor.indexCount; // Index count for this LOD
|
|
lod.distance = 5.0f + n * 5.0f; // Starting distance (to viewer) for this LOD
|
|
n++;
|
|
LODLevels.push_back(lod);
|
|
}
|
|
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&stagingBuffer,
|
|
LODLevels.size() * sizeof(LOD),
|
|
LODLevels.data()));
|
|
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
|
|
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
|
|
&compute.lodLevelsBuffers,
|
|
stagingBuffer.size));
|
|
|
|
vulkanDevice->copyBuffer(&stagingBuffer, &compute.lodLevelsBuffers, queue);
|
|
|
|
stagingBuffer.destroy();
|
|
|
|
// Scene uniform buffer
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&uniformData.scene,
|
|
sizeof(uboScene)));
|
|
|
|
VK_CHECK_RESULT(uniformData.scene.map());
|
|
|
|
updateUniformBuffer(true);
|
|
}
|
|
|
|
void prepareCompute()
|
|
{
|
|
// Create a compute capable device queue
|
|
VkDeviceQueueCreateInfo queueCreateInfo = {};
|
|
queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
|
|
queueCreateInfo.pNext = NULL;
|
|
queueCreateInfo.queueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
|
|
queueCreateInfo.queueCount = 1;
|
|
vkGetDeviceQueue(device, vulkanDevice->queueFamilyIndices.compute, 0, &compute.queue);
|
|
|
|
// Create compute pipeline
|
|
// Compute pipelines are created separate from graphics pipelines even if they use the same queue (family index)
|
|
|
|
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
|
|
// Binding 0: Instance input data buffer
|
|
vkTools::initializers::descriptorSetLayoutBinding(
|
|
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
|
|
VK_SHADER_STAGE_COMPUTE_BIT,
|
|
0),
|
|
// Binding 1: Indirect draw command output buffer (input)
|
|
vkTools::initializers::descriptorSetLayoutBinding(
|
|
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
|
|
VK_SHADER_STAGE_COMPUTE_BIT,
|
|
1),
|
|
// Binding 2: Uniform buffer with global matrices (input)
|
|
vkTools::initializers::descriptorSetLayoutBinding(
|
|
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
|
|
VK_SHADER_STAGE_COMPUTE_BIT,
|
|
2),
|
|
// Binding 3: Indirect draw stats (output)
|
|
vkTools::initializers::descriptorSetLayoutBinding(
|
|
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
|
|
VK_SHADER_STAGE_COMPUTE_BIT,
|
|
3),
|
|
// Binding 4: LOD info (input)
|
|
vkTools::initializers::descriptorSetLayoutBinding(
|
|
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
|
|
VK_SHADER_STAGE_COMPUTE_BIT,
|
|
4),
|
|
};
|
|
|
|
VkDescriptorSetLayoutCreateInfo descriptorLayout =
|
|
vkTools::initializers::descriptorSetLayoutCreateInfo(
|
|
setLayoutBindings.data(),
|
|
static_cast<uint32_t>(setLayoutBindings.size()));
|
|
|
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &compute.descriptorSetLayout));
|
|
|
|
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
|
|
vkTools::initializers::pipelineLayoutCreateInfo(
|
|
&compute.descriptorSetLayout,
|
|
1);
|
|
|
|
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &compute.pipelineLayout));
|
|
|
|
VkDescriptorSetAllocateInfo allocInfo =
|
|
vkTools::initializers::descriptorSetAllocateInfo(
|
|
descriptorPool,
|
|
&compute.descriptorSetLayout,
|
|
1);
|
|
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &compute.descriptorSet));
|
|
|
|
std::vector<VkWriteDescriptorSet> computeWriteDescriptorSets =
|
|
{
|
|
// Binding 0: Instance input data buffer
|
|
vkTools::initializers::writeDescriptorSet(
|
|
compute.descriptorSet,
|
|
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
|
|
0,
|
|
&instanceBuffer.descriptor),
|
|
// Binding 1: Indirect draw command output buffer
|
|
vkTools::initializers::writeDescriptorSet(
|
|
compute.descriptorSet,
|
|
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
|
|
1,
|
|
&indirectCommandsBuffer.descriptor),
|
|
// Binding 2: Uniform buffer with global matrices
|
|
vkTools::initializers::writeDescriptorSet(
|
|
compute.descriptorSet,
|
|
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
|
|
2,
|
|
&uniformData.scene.descriptor),
|
|
// Binding 3: Atomic counter (written in shader)
|
|
vkTools::initializers::writeDescriptorSet(
|
|
compute.descriptorSet,
|
|
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
|
|
3,
|
|
&indirectDrawCountBuffer.descriptor),
|
|
// Binding 4: LOD info
|
|
vkTools::initializers::writeDescriptorSet(
|
|
compute.descriptorSet,
|
|
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
|
|
4,
|
|
&compute.lodLevelsBuffers.descriptor)
|
|
};
|
|
|
|
vkUpdateDescriptorSets(device, static_cast<uint32_t>(computeWriteDescriptorSets.size()), computeWriteDescriptorSets.data(), 0, NULL);
|
|
|
|
// Create pipeline
|
|
VkComputePipelineCreateInfo computePipelineCreateInfo = vkTools::initializers::computePipelineCreateInfo(compute.pipelineLayout, 0);
|
|
computePipelineCreateInfo.stage = loadShader(getAssetPath() + "shaders/computecullandlod/cull.comp.spv", VK_SHADER_STAGE_COMPUTE_BIT);
|
|
|
|
// Use specialization constants to pass max. level of detail (determined by no. of meshes)
|
|
VkSpecializationMapEntry specializationEntry{};
|
|
specializationEntry.constantID = 0;
|
|
specializationEntry.offset = 0;
|
|
specializationEntry.size = sizeof(uint32_t);
|
|
|
|
uint32_t specializationData = static_cast<uint32_t>(meshes.lodObject.meshDescriptors.size()) - 1;
|
|
|
|
VkSpecializationInfo specializationInfo;
|
|
specializationInfo.mapEntryCount = 1;
|
|
specializationInfo.pMapEntries = &specializationEntry;
|
|
specializationInfo.dataSize = sizeof(specializationData);
|
|
specializationInfo.pData = &specializationData;
|
|
|
|
computePipelineCreateInfo.stage.pSpecializationInfo = &specializationInfo;
|
|
|
|
VK_CHECK_RESULT(vkCreateComputePipelines(device, pipelineCache, 1, &computePipelineCreateInfo, nullptr, &compute.pipeline));
|
|
|
|
// Separate command pool as queue family for compute may be different than graphics
|
|
VkCommandPoolCreateInfo cmdPoolInfo = {};
|
|
cmdPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
|
|
cmdPoolInfo.queueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
|
|
cmdPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
|
|
VK_CHECK_RESULT(vkCreateCommandPool(device, &cmdPoolInfo, nullptr, &compute.commandPool));
|
|
|
|
// Create a command buffer for compute operations
|
|
VkCommandBufferAllocateInfo cmdBufAllocateInfo =
|
|
vkTools::initializers::commandBufferAllocateInfo(
|
|
compute.commandPool,
|
|
VK_COMMAND_BUFFER_LEVEL_PRIMARY,
|
|
1);
|
|
|
|
VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &compute.commandBuffer));
|
|
|
|
// Fence for compute CB sync
|
|
VkFenceCreateInfo fenceCreateInfo = vkTools::initializers::fenceCreateInfo(VK_FENCE_CREATE_SIGNALED_BIT);
|
|
VK_CHECK_RESULT(vkCreateFence(device, &fenceCreateInfo, nullptr, &compute.fence));
|
|
|
|
VkSemaphoreCreateInfo semaphoreCreateInfo = vkTools::initializers::semaphoreCreateInfo();
|
|
VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &compute.semaphore));
|
|
|
|
// Build a single command buffer containing the compute dispatch commands
|
|
buildComputeCommandBuffer();
|
|
}
|
|
|
|
void updateUniformBuffer(bool viewChanged)
|
|
{
|
|
if (viewChanged)
|
|
{
|
|
uboScene.projection = camera.matrices.perspective;
|
|
uboScene.modelview = camera.matrices.view;
|
|
if (!fixedFrustum)
|
|
{
|
|
uboScene.cameraPos = glm::vec4(camera.position, 1.0f) * -1.0f;
|
|
frustum.update(uboScene.projection * uboScene.modelview);
|
|
memcpy(uboScene.frustumPlanes, frustum.planes.data(), sizeof(glm::vec4) * 6);
|
|
}
|
|
}
|
|
|
|
memcpy(uniformData.scene.mapped, &uboScene, sizeof(uboScene));
|
|
}
|
|
|
|
void draw()
|
|
{
|
|
VulkanExampleBase::prepareFrame();
|
|
|
|
// Submit compute shader for frustum culling
|
|
|
|
// Wait for fence to ensure that compute buffer writes have finished
|
|
vkWaitForFences(device, 1, &compute.fence, VK_TRUE, UINT64_MAX);
|
|
vkResetFences(device, 1, &compute.fence);
|
|
|
|
VkSubmitInfo computeSubmitInfo = vkTools::initializers::submitInfo();
|
|
computeSubmitInfo.commandBufferCount = 1;
|
|
computeSubmitInfo.pCommandBuffers = &compute.commandBuffer;
|
|
computeSubmitInfo.signalSemaphoreCount = 1;
|
|
computeSubmitInfo.pSignalSemaphores = &compute.semaphore;
|
|
|
|
VK_CHECK_RESULT(vkQueueSubmit(compute.queue, 1, &computeSubmitInfo, VK_NULL_HANDLE));
|
|
|
|
// Submit graphics command buffer
|
|
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
|
|
|
|
// Wait on present and compute semaphores
|
|
std::vector<VkPipelineStageFlags> stageFlags = {
|
|
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
|
|
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
|
|
};
|
|
std::vector<VkSemaphore> waitSemaphores = {
|
|
semaphores.presentComplete, // Wait for presentation to finished
|
|
compute.semaphore // Wait for compute to finish
|
|
};
|
|
|
|
submitInfo.pWaitSemaphores = waitSemaphores.data();
|
|
submitInfo.waitSemaphoreCount = static_cast<uint32_t>(waitSemaphores.size());
|
|
submitInfo.pWaitDstStageMask = stageFlags.data();
|
|
|
|
// Submit to queue
|
|
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, compute.fence));
|
|
|
|
VulkanExampleBase::submitFrame();
|
|
|
|
// Get draw count from compute
|
|
memcpy(&indirectStats, indirectDrawCountBuffer.mapped, sizeof(indirectStats));
|
|
}
|
|
|
|
void prepare()
|
|
{
|
|
VulkanExampleBase::prepare();
|
|
loadAssets();
|
|
setupVertexDescriptions();
|
|
prepareBuffers();
|
|
setupDescriptorSetLayout();
|
|
preparePipelines();
|
|
setupDescriptorPool();
|
|
setupDescriptorSet();
|
|
prepareCompute();
|
|
buildCommandBuffers();
|
|
prepared = true;
|
|
}
|
|
|
|
virtual void render()
|
|
{
|
|
if (!prepared)
|
|
{
|
|
return;
|
|
}
|
|
draw();
|
|
}
|
|
|
|
virtual void viewChanged()
|
|
{
|
|
updateUniformBuffer(true);
|
|
}
|
|
|
|
virtual void keyPressed(uint32_t keyCode)
|
|
{
|
|
switch (keyCode)
|
|
{
|
|
case KEY_F:
|
|
case GAMEPAD_BUTTON_A:
|
|
fixedFrustum = !fixedFrustum;
|
|
updateUniformBuffer(true);
|
|
break;
|
|
}
|
|
}
|
|
|
|
virtual void getOverlayText(VulkanTextOverlay *textOverlay)
|
|
{
|
|
#if defined(__ANDROID__)
|
|
textOverlay->addText("\"Button A\" to freeze frustum", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
|
|
#else
|
|
textOverlay->addText("\"f\" to freeze frustum", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
|
|
#endif
|
|
textOverlay->addText("visible: " + std::to_string(indirectStats.drawCount), 5.0f, 110.0f, VulkanTextOverlay::alignLeft);
|
|
for (uint32_t i = 0; i < MAX_LOD_LEVEL + 1; i++)
|
|
{
|
|
textOverlay->addText("lod " + std::to_string(i) + ": " + std::to_string(indirectStats.lodCount[i]), 5.0f, 125.0f + (float)i * 20.0f, VulkanTextOverlay::alignLeft);
|
|
}
|
|
}
|
|
};
|
|
|
|
VULKAN_EXAMPLE_MAIN() |