procedural-3d-engine/radialblur/radialblur.cpp
2016-02-16 15:07:25 +01:00

1179 lines
No EOL
38 KiB
C++

/*
* Vulkan Example - Fullscreen radial blur (Single pass offscreen effect)
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#define GLM_FORCE_RADIANS
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#define VERTEX_BUFFER_BIND_ID 0
//#define USE_GLSL
#define ENABLE_VALIDATION false
// Texture properties
#define TEX_DIM 128
#define TEX_FORMAT VK_FORMAT_R8G8B8A8_UNORM
#define TEX_FILTER VK_FILTER_LINEAR;
// Offscreen frame buffer properties
#define FB_DIM TEX_DIM
#define FB_COLOR_FORMAT VK_FORMAT_R8G8B8A8_UNORM
// Vertex layout for this example
std::vector<vkMeshLoader::VertexLayout> vertexLayout =
{
vkMeshLoader::VERTEX_LAYOUT_POSITION,
vkMeshLoader::VERTEX_LAYOUT_UV,
vkMeshLoader::VERTEX_LAYOUT_COLOR,
vkMeshLoader::VERTEX_LAYOUT_NORMAL
};
class VulkanExample : public VulkanExampleBase
{
public:
bool blur = true;
bool displayTexture = false;
struct {
vkMeshLoader::MeshBuffer example;
vkMeshLoader::MeshBuffer quad;
} meshes;
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
struct {
vkTools::UniformData vsScene;
vkTools::UniformData vsQuad;
vkTools::UniformData fsQuad;
} uniformData;
struct {
glm::mat4 projection;
glm::mat4 model;
} uboVS;
struct {
glm::mat4 projection;
glm::mat4 model;
} uboQuadVS;
struct {
int32_t texWidth = TEX_DIM;
int32_t texHeight = TEX_DIM;
float radialBlurScale = 0.25f;
float radialBlurStrength = 0.75f;
glm::vec2 radialOrigin = glm::vec2(0.5f, 0.5f);
} uboQuadFS;
struct {
VkPipeline radialBlur;
VkPipeline colorPass;
VkPipeline phongPass;
VkPipeline fullScreenOnly;
} pipelines;
struct {
VkPipelineLayout radialBlur;
VkPipelineLayout scene;
} pipelineLayouts;
struct {
VkDescriptorSet scene;
VkDescriptorSet quad;
} descriptorSets;
// Descriptor set layout is shared amongst
// all descriptor sets
VkDescriptorSetLayout descriptorSetLayout;
// Framebuffer for offscreen rendering
struct FrameBufferAttachment {
VkImage image;
VkDeviceMemory mem;
VkImageView view;
};
struct FrameBuffer {
int32_t width, height;
VkFramebuffer frameBuffer;
FrameBufferAttachment color, depth;
// Texture target for framebuffer blit
vkTools::VulkanTexture textureTarget;
} offScreenFrameBuf;
VkCommandBuffer offScreenCmdBuffer = VK_NULL_HANDLE;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
zoom = -12.0f;
rotation = { -16.25f, -28.75f, 0.0f };
timerSpeed *= 0.5f;
title = "Vulkan Example - Radial blur";
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
// Texture target
textureLoader->destroyTexture(offScreenFrameBuf.textureTarget);
// Frame buffer
// Color attachment
vkDestroyImageView(device, offScreenFrameBuf.color.view, nullptr);
vkDestroyImage(device, offScreenFrameBuf.color.image, nullptr);
vkFreeMemory(device, offScreenFrameBuf.color.mem, nullptr);
// Depth attachment
vkDestroyImageView(device, offScreenFrameBuf.depth.view, nullptr);
vkDestroyImage(device, offScreenFrameBuf.depth.image, nullptr);
vkFreeMemory(device, offScreenFrameBuf.depth.mem, nullptr);
vkDestroyFramebuffer(device, offScreenFrameBuf.frameBuffer, nullptr);
vkDestroyPipeline(device, pipelines.radialBlur, nullptr);
vkDestroyPipeline(device, pipelines.phongPass, nullptr);
vkDestroyPipeline(device, pipelines.colorPass, nullptr);
vkDestroyPipeline(device, pipelines.fullScreenOnly, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.radialBlur, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.scene, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
// Meshes
vkMeshLoader::freeMeshBufferResources(device, &meshes.example);
vkMeshLoader::freeMeshBufferResources(device, &meshes.quad);
// Uniform buffers
vkTools::destroyUniformData(device, &uniformData.vsScene);
vkTools::destroyUniformData(device, &uniformData.vsQuad);
vkTools::destroyUniformData(device, &uniformData.fsQuad);
vkFreeCommandBuffers(device, cmdPool, 1, &offScreenCmdBuffer);
}
// Preapre an empty texture as the blit target from
// the offscreen framebuffer
void prepareTextureTarget(vkTools::VulkanTexture *tex, uint32_t width, uint32_t height, VkFormat format)
{
VkFormatProperties formatProperties;
VkResult err;
// Get device properites for the requested texture format
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
// Check if blit destination is supported for the requested format
// Only try for optimal tiling, linear tiling usually won't support blit as destination anyway
assert(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_BLIT_DST_BIT);
// Prepare blit target texture
tex->width = width;
tex->height = height;
VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.extent = { width, height, 1 };
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
// Texture will be sampled in a shader and is also the blit destination
imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
err = vkCreateImage(device, &imageCreateInfo, nullptr, &tex->image);
assert(!err);
vkGetImageMemoryRequirements(device, tex->image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAllocInfo.memoryTypeIndex);
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &(tex->deviceMemory));
assert(!err);
err = vkBindImageMemory(device, tex->image, tex->deviceMemory, 0);
assert(!err);
// Transform image layout to transer destination
tex->imageLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
vkTools::setImageLayout(
setupCmdBuffer,
tex->image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
tex->imageLayout);
// Create sampler
VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo();
sampler.magFilter = TEX_FILTER;
sampler.minFilter = TEX_FILTER;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
sampler.addressModeV = sampler.addressModeU;
sampler.addressModeW = sampler.addressModeU;
sampler.mipLodBias = 0.0f;
sampler.maxAnisotropy = 0;
sampler.compareOp = VK_COMPARE_OP_NEVER;
sampler.minLod = 0.0f;
sampler.maxLod = 0.0f;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
err = vkCreateSampler(device, &sampler, nullptr, &tex->sampler);
assert(!err);
// Create image view
VkImageViewCreateInfo view = vkTools::initializers::imageViewCreateInfo();
view.image = VK_NULL_HANDLE;
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
view.format = format;
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
view.image = tex->image;
err = vkCreateImageView(device, &view, nullptr, &tex->view);
assert(!err);
}
// Prepare a new framebuffer for offscreen rendering
// The contents of this framebuffer are then
// blitted to our render target
void prepareOffscreenFramebuffer()
{
createSetupCommandBuffer();
offScreenFrameBuf.width = FB_DIM;
offScreenFrameBuf.height = FB_DIM;
VkFormat fbColorFormat = FB_COLOR_FORMAT;
// Find supported depth format
// We prefer 24 bits of depth and 8 bits of stencil, but that may not be supported by all implementations
VkFormat fbDepthFormat;
std::vector<VkFormat> depthFormats = { VK_FORMAT_D24_UNORM_S8_UINT, VK_FORMAT_D16_UNORM_S8_UINT, VK_FORMAT_D16_UNORM };
bool depthFormatFound = false;
for (auto& format : depthFormats)
{
VkFormatProperties formatProps;
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProps);
// Format must support depth stencil attachment for optimal tiling
if (formatProps.optimalTilingFeatures && VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT)
{
fbDepthFormat = format;
depthFormatFound = true;
break;
}
}
assert(depthFormatFound);
VkResult err;
// Color attachment
VkImageCreateInfo image = vkTools::initializers::imageCreateInfo();
image.imageType = VK_IMAGE_TYPE_2D;
image.format = fbColorFormat;
image.extent.width = offScreenFrameBuf.width;
image.extent.height = offScreenFrameBuf.height;
image.mipLevels = 1;
image.arrayLayers = 1;
image.samples = VK_SAMPLE_COUNT_1_BIT;
image.tiling = VK_IMAGE_TILING_OPTIMAL;
// Image of the framebuffer is blit source
image.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
image.flags = 0;
VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
VkImageViewCreateInfo colorImageView = vkTools::initializers::imageViewCreateInfo();
colorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D;
colorImageView.format = fbColorFormat;
colorImageView.flags = 0;
colorImageView.subresourceRange = {};
colorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
colorImageView.subresourceRange.baseMipLevel = 0;
colorImageView.subresourceRange.levelCount = 1;
colorImageView.subresourceRange.baseArrayLayer = 0;
colorImageView.subresourceRange.layerCount = 1;
err = vkCreateImage(device, &image, nullptr, &offScreenFrameBuf.color.image);
assert(!err);
vkGetImageMemoryRequirements(device, offScreenFrameBuf.color.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAlloc.memoryTypeIndex);
err = vkAllocateMemory(device, &memAlloc, nullptr, &offScreenFrameBuf.color.mem);
assert(!err);
err = vkBindImageMemory(device, offScreenFrameBuf.color.image, offScreenFrameBuf.color.mem, 0);
assert(!err);
vkTools::setImageLayout(
setupCmdBuffer,
offScreenFrameBuf.color.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
colorImageView.image = offScreenFrameBuf.color.image;
err = vkCreateImageView(device, &colorImageView, nullptr, &offScreenFrameBuf.color.view);
assert(!err);
// Depth stencil attachment
image.format = fbDepthFormat;
image.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
VkImageViewCreateInfo depthStencilView = vkTools::initializers::imageViewCreateInfo();
depthStencilView.viewType = VK_IMAGE_VIEW_TYPE_2D;
depthStencilView.format = fbDepthFormat;
depthStencilView.flags = 0;
depthStencilView.subresourceRange = {};
depthStencilView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
depthStencilView.subresourceRange.baseMipLevel = 0;
depthStencilView.subresourceRange.levelCount = 1;
depthStencilView.subresourceRange.baseArrayLayer = 0;
depthStencilView.subresourceRange.layerCount = 1;
err = vkCreateImage(device, &image, nullptr, &offScreenFrameBuf.depth.image);
assert(!err);
vkGetImageMemoryRequirements(device, offScreenFrameBuf.depth.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAlloc.memoryTypeIndex);
err = vkAllocateMemory(device, &memAlloc, nullptr, &offScreenFrameBuf.depth.mem);
assert(!err);
err = vkBindImageMemory(device, offScreenFrameBuf.depth.image, offScreenFrameBuf.depth.mem, 0);
assert(!err);
vkTools::setImageLayout(
setupCmdBuffer,
offScreenFrameBuf.depth.image,
VK_IMAGE_ASPECT_DEPTH_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
depthStencilView.image = offScreenFrameBuf.depth.image;
err = vkCreateImageView(device, &depthStencilView, nullptr, &offScreenFrameBuf.depth.view);
assert(!err);
flushSetupCommandBuffer();
VkImageView attachments[2];
attachments[0] = offScreenFrameBuf.color.view;
attachments[1] = offScreenFrameBuf.depth.view;
VkFramebufferCreateInfo fbufCreateInfo = vkTools::initializers::framebufferCreateInfo();
fbufCreateInfo.renderPass = renderPass;
fbufCreateInfo.attachmentCount = 2;
fbufCreateInfo.pAttachments = attachments;
fbufCreateInfo.width = offScreenFrameBuf.width;
fbufCreateInfo.height = offScreenFrameBuf.height;
fbufCreateInfo.layers = 1;
err = vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offScreenFrameBuf.frameBuffer);
assert(!err);
}
void createOffscreenCommandBuffer()
{
VkCommandBufferAllocateInfo cmd = vkTools::initializers::commandBufferAllocateInfo(
cmdPool,
VK_COMMAND_BUFFER_LEVEL_PRIMARY,
1);
VkResult vkRes = vkAllocateCommandBuffers(device, &cmd, &offScreenCmdBuffer);
assert(!vkRes);
}
// The command buffer to copy for rendering
// the offscreen scene and blitting it into
// the texture target is only build once
// and gets resubmitted
void buildOffscreenCommandBuffer()
{
VkResult err;
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 0.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.framebuffer = offScreenFrameBuf.frameBuffer;
renderPassBeginInfo.renderArea.extent.width = offScreenFrameBuf.width;
renderPassBeginInfo.renderArea.extent.height = offScreenFrameBuf.height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
err = vkBeginCommandBuffer(offScreenCmdBuffer, &cmdBufInfo);
assert(!err);
VkViewport viewport = vkTools::initializers::viewport(
(float)offScreenFrameBuf.width,
(float)offScreenFrameBuf.height,
0.0f,
1.0f);
vkCmdSetViewport(offScreenCmdBuffer, 0, 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D(
offScreenFrameBuf.width,
offScreenFrameBuf.height,
0,
0);
vkCmdSetScissor(offScreenCmdBuffer, 0, 1, &scissor);
vkCmdBeginRenderPass(offScreenCmdBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindDescriptorSets(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.scene, 0, 1, &descriptorSets.scene, 0, NULL);
vkCmdBindPipeline(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.colorPass);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(offScreenCmdBuffer, VERTEX_BUFFER_BIND_ID, 1, &meshes.example.vertices.buf, offsets);
vkCmdBindIndexBuffer(offScreenCmdBuffer, meshes.example.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(offScreenCmdBuffer, meshes.example.indexCount, 1, 0, 0, 0);
vkCmdEndRenderPass(offScreenCmdBuffer);
// Make sure color writes to the framebuffer are finished before using it as transfer source
vkTools::setImageLayout(
offScreenCmdBuffer,
offScreenFrameBuf.color.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
// Transform texture target to transfer destination
vkTools::setImageLayout(
offScreenCmdBuffer,
offScreenFrameBuf.textureTarget.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
// Blit offscreen color buffer to our texture target
VkImageBlit imgBlit;
imgBlit.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imgBlit.srcSubresource.mipLevel = 0;
imgBlit.srcSubresource.baseArrayLayer = 0;
imgBlit.srcSubresource.layerCount = 1;
imgBlit.srcOffsets[0] = { 0, 0, 0 };
imgBlit.srcOffsets[1].x = offScreenFrameBuf.width;
imgBlit.srcOffsets[1].y = offScreenFrameBuf.height;
imgBlit.srcOffsets[1].z = 1;
imgBlit.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imgBlit.dstSubresource.mipLevel = 0;
imgBlit.dstSubresource.baseArrayLayer = 0;
imgBlit.dstSubresource.layerCount = 1;
imgBlit.dstOffsets[0] = { 0, 0, 0 };
imgBlit.dstOffsets[1].x = offScreenFrameBuf.textureTarget.width;
imgBlit.dstOffsets[1].y = offScreenFrameBuf.textureTarget.height;
imgBlit.dstOffsets[1].z = 1;
// Blit from framebuffer image to texture image
// vkCmdBlitImage does scaling and (if necessary and possible) also does format conversions
vkCmdBlitImage(
offScreenCmdBuffer,
offScreenFrameBuf.color.image,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
offScreenFrameBuf.textureTarget.image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&imgBlit,
VK_FILTER_LINEAR
);
// Transform framebuffer color attachment back
vkTools::setImageLayout(
offScreenCmdBuffer,
offScreenFrameBuf.color.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
// Transform texture target back to shader read
// Makes sure that writes to the texture are finished before
// it's accessed in the shader
vkTools::setImageLayout(
offScreenCmdBuffer,
offScreenFrameBuf.textureTarget.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
err = vkEndCommandBuffer(offScreenCmdBuffer);
assert(!err);
}
void reBuildCommandBuffers()
{
if (!checkCommandBuffers())
{
destroyCommandBuffers();
createCommandBuffers();
}
buildCommandBuffers();
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
VkResult err;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo);
assert(!err);
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vkTools::initializers::viewport(
(float)width,
(float)height,
0.0f,
1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D(
width,
height,
0,
0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
// 3D scene
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.scene, 0, 1, &descriptorSets.scene, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.phongPass);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.example.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.example.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], meshes.example.indexCount, 1, 0, 0, 0);
// Fullscreen quad with radial blur
if (blur)
{
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.radialBlur, 0, 1, &descriptorSets.quad, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, (displayTexture) ? pipelines.fullScreenOnly : pipelines.radialBlur);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.quad.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.quad.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], meshes.quad.indexCount, 1, 0, 0, 0);
}
vkCmdEndRenderPass(drawCmdBuffers[i]);
VkImageMemoryBarrier prePresentBarrier = vkTools::prePresentBarrier(swapChain.buffers[i].image);
VkImageMemoryBarrier *pMemoryBarrier = &prePresentBarrier;
vkCmdPipelineBarrier(
drawCmdBuffers[i],
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_FLAGS_NONE,
0, nullptr,
0, nullptr,
1, &prePresentBarrier);
err = vkEndCommandBuffer(drawCmdBuffers[i]);
assert(!err);
}
}
void draw()
{
VkResult err;
VkSemaphore presentCompleteSemaphore;
VkSemaphoreCreateInfo presentCompleteSemaphoreCreateInfo =
vkTools::initializers::semaphoreCreateInfo(VK_FENCE_CREATE_SIGNALED_BIT);
err = vkCreateSemaphore(device, &presentCompleteSemaphoreCreateInfo, nullptr, &presentCompleteSemaphore);
assert(!err);
// Get next image in the swap chain (back/front buffer)
err = swapChain.acquireNextImage(presentCompleteSemaphore, &currentBuffer);
assert(!err);
// Gather command buffers to be sumitted to the queue
std::vector<VkCommandBuffer> submitCmdBuffers = {
offScreenCmdBuffer,
drawCmdBuffers[currentBuffer]
};
VkSubmitInfo submitInfo = vkTools::initializers::submitInfo();
submitInfo.waitSemaphoreCount = 1;
submitInfo.pWaitSemaphores = &presentCompleteSemaphore;
submitInfo.commandBufferCount = submitCmdBuffers.size();
submitInfo.pCommandBuffers = submitCmdBuffers.data();
// Submit draw command buffer
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
assert(!err);
err = swapChain.queuePresent(queue, currentBuffer);
assert(!err);
vkDestroySemaphore(device, presentCompleteSemaphore, nullptr);
submitPostPresentBarrier(swapChain.buffers[currentBuffer].image);
err = vkQueueWaitIdle(queue);
assert(err == VK_SUCCESS);
}
void loadMeshes()
{
loadMesh("./../data/models/glowsphere.X", &meshes.example, vertexLayout, 0.05f);
}
// Setup vertices for a single uv-mapped quad
void generateQuad()
{
struct Vertex {
float pos[3];
float uv[2];
float col[3];
float normal[3];
};
#define QUAD_COLOR_NORMAL { 1.0f, 1.0f, 1.0f }, { 0.0f, 0.0f, 1.0f }
std::vector<Vertex> vertexBuffer =
{
{ { 1.0f, 1.0f, 0.0f },{ 1.0f, 1.0f }, QUAD_COLOR_NORMAL },
{ { 0.0f, 1.0f, 0.0f },{ 0.0f, 1.0f }, QUAD_COLOR_NORMAL },
{ { 0.0f, 0.0f, 0.0f },{ 0.0f, 0.0f }, QUAD_COLOR_NORMAL },
{ { 1.0f, 0.0f, 0.0f },{ 1.0f, 0.0f }, QUAD_COLOR_NORMAL }
};
#undef QUAD_COLOR_NORMAL
createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
vertexBuffer.size() * sizeof(Vertex),
vertexBuffer.data(),
&meshes.quad.vertices.buf,
&meshes.quad.vertices.mem);
// Setup indices
std::vector<uint32_t> indexBuffer = { 0,1,2, 2,3,0 };
meshes.quad.indexCount = indexBuffer.size();
createBuffer(
VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
indexBuffer.size() * sizeof(uint32_t),
indexBuffer.data(),
&meshes.quad.indices.buf,
&meshes.quad.indices.mem);
}
void setupVertexDescriptions()
{
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vkTools::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
vkMeshLoader::vertexSize(vertexLayout),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
vertices.attributeDescriptions.resize(4);
// Location 0 : Position
vertices.attributeDescriptions[0] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32_SFLOAT,
0);
// Location 1 : Texture coordinates
vertices.attributeDescriptions[1] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32_SFLOAT,
sizeof(float) * 3);
// Location 2 : Color
vertices.attributeDescriptions[2] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
2,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 5);
// Location 3 : Normal
vertices.attributeDescriptions[3] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
3,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 8);
vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupDescriptorPool()
{
// Example uses three ubos and one image sampler
std::vector<VkDescriptorPoolSize> poolSizes =
{
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 4),
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vkTools::initializers::descriptorPoolCreateInfo(
poolSizes.size(),
poolSizes.data(),
2);
VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool);
assert(!vkRes);
}
void setupDescriptorSetLayout()
{
// Textured quad pipeline layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT,
0),
// Binding 1 : Fragment shader image sampler
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
1),
// Binding 2 : Fragment shader uniform buffer
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_FRAGMENT_BIT,
2)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vkTools::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
setLayoutBindings.size());
VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout);
assert(!err);
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vkTools::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.radialBlur);
assert(!err);
// Offscreen pipeline layout
err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.scene);
assert(!err);
}
void setupDescriptorSet()
{
// Textured quad descriptor set
VkDescriptorSetAllocateInfo allocInfo =
vkTools::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.quad);
assert(!vkRes);
// Image descriptor for the color map texture
VkDescriptorImageInfo texDescriptor =
vkTools::initializers::descriptorImageInfo(
offScreenFrameBuf.textureTarget.sampler,
offScreenFrameBuf.textureTarget.view,
VK_IMAGE_LAYOUT_GENERAL);
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSets.quad,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformData.vsScene.descriptor),
// Binding 1 : Fragment shader texture sampler
vkTools::initializers::writeDescriptorSet(
descriptorSets.quad,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&texDescriptor),
// Binding 2 : Fragment shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSets.quad,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
2,
&uniformData.fsQuad.descriptor)
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
// Offscreen 3D scene descriptor set
vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.scene);
assert(!vkRes);
std::vector<VkWriteDescriptorSet> offScreenWriteDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSets.scene,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformData.vsQuad.descriptor)
};
vkUpdateDescriptorSets(device, offScreenWriteDescriptorSets.size(), offScreenWriteDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vkTools::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_NONE,
VK_FRONT_FACE_COUNTER_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vkTools::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vkTools::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vkTools::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vkTools::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
dynamicStateEnables.size(),
0);
// Radial blur pipeline
// Load shaders
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
#ifdef USE_GLSL
shaderStages[0] = loadShaderGLSL("./../data/shaders/radialblur/radialblur.vert", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShaderGLSL("./../data/shaders/radialblur/radialblur.frag", VK_SHADER_STAGE_FRAGMENT_BIT);
#else
shaderStages[0] = loadShader("./../data/shaders/radialblur/radialblur.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader("./../data/shaders/radialblur/radialblur.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
#endif
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vkTools::initializers::pipelineCreateInfo(
pipelineLayouts.radialBlur,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data();
// Additive blending
blendAttachmentState.colorWriteMask = 0xF;
blendAttachmentState.blendEnable = VK_TRUE;
blendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD;
blendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_ONE;
blendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE;
blendAttachmentState.alphaBlendOp = VK_BLEND_OP_ADD;
blendAttachmentState.srcAlphaBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
blendAttachmentState.dstAlphaBlendFactor = VK_BLEND_FACTOR_DST_ALPHA;
VkResult err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.radialBlur);
assert(!err);
// No blending (for debug display)
blendAttachmentState.blendEnable = VK_FALSE;
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.fullScreenOnly);
assert(!err);
// Phong pass
#ifdef USE_GLSL
shaderStages[0] = loadShaderGLSL("./../data/shaders/radialblur/phongpass.vert", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShaderGLSL("./../data/shaders/radialblur/phongpass.frag", VK_SHADER_STAGE_FRAGMENT_BIT);
#else
shaderStages[0] = loadShader("./../data/shaders/radialblur/phongpass.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader("./../data/shaders/radialblur/phongpass.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
#endif
pipelineCreateInfo.layout = pipelineLayouts.scene;
blendAttachmentState.blendEnable = VK_FALSE;
depthStencilState.depthWriteEnable = VK_TRUE;
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.phongPass);
assert(!err);
// Color only pass (offscreen blur base)
#ifdef USE_GLSL
shaderStages[0] = loadShaderGLSL("./../data/shaders/radialblur/colorpass.vert", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShaderGLSL("./../data/shaders/radialblur/colorpass.frag", VK_SHADER_STAGE_FRAGMENT_BIT);
#else
shaderStages[0] = loadShader("./../data/shaders/radialblur/colorpass.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader("./../data/shaders/radialblur/colorpass.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
#endif
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.colorPass);
assert(!err);
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
VkResult err;
// Phong and color pass vertex shader uniform buffer
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
sizeof(uboVS),
&uboVS,
&uniformData.vsScene.buffer,
&uniformData.vsScene.memory,
&uniformData.vsScene.descriptor);
// Fullscreen quad vertex shader uniform buffer
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
sizeof(uboVS),
&uboVS,
&uniformData.vsQuad.buffer,
&uniformData.vsQuad.memory,
&uniformData.vsQuad.descriptor);
// Fullscreen quad fragment shader uniform buffer
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
sizeof(uboQuadFS),
&uboQuadFS,
&uniformData.fsQuad.buffer,
&uniformData.fsQuad.memory,
&uniformData.fsQuad.descriptor);
updateUniformBuffersScene();
updateUniformBuffersScreen();
}
// Update uniform buffers for rendering the 3D scene
void updateUniformBuffersScene()
{
uboQuadVS.projection = glm::perspective(deg_to_rad(45.0f), (float)width / (float)height, 1.0f, 256.0f);
glm::mat4 viewMatrix = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, zoom));
uboQuadVS.model = glm::mat4();
uboQuadVS.model = viewMatrix * glm::translate(uboQuadVS.model, glm::vec3(0, 0, 0));
uboQuadVS.model = glm::rotate(uboQuadVS.model, deg_to_rad(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
uboQuadVS.model = glm::rotate(uboQuadVS.model, deg_to_rad(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
uboQuadVS.model = glm::rotate(uboQuadVS.model, deg_to_rad(timer * 360.0f), glm::vec3(0.0f, 1.0f, 0.0f));
uboQuadVS.model = glm::rotate(uboQuadVS.model, deg_to_rad(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
uint8_t *pData;
VkResult err = vkMapMemory(device, uniformData.vsQuad.memory, 0, sizeof(uboQuadVS), 0, (void **)&pData);
assert(!err);
memcpy(pData, &uboQuadVS, sizeof(uboQuadVS));
vkUnmapMemory(device, uniformData.vsQuad.memory);
}
// Update uniform buffers for the fullscreen quad
void updateUniformBuffersScreen()
{
// Vertex shader
uboVS.projection = glm::ortho(0.0f, 1.0f, 0.0f, 1.0f, -1.0f, 1.0f);
uboVS.model = glm::mat4();
uint8_t *pData;
VkResult err = vkMapMemory(device, uniformData.vsScene.memory, 0, sizeof(uboVS), 0, (void **)&pData);
assert(!err);
memcpy(pData, &uboVS, sizeof(uboVS));
vkUnmapMemory(device, uniformData.vsScene.memory);
// Fragment shader
err = vkMapMemory(device, uniformData.fsQuad.memory, 0, sizeof(uboQuadFS), 0, (void **)&pData);
assert(!err);
memcpy(pData, &uboQuadFS, sizeof(uboQuadFS));
vkUnmapMemory(device, uniformData.fsQuad.memory);
}
void prepare()
{
VulkanExampleBase::prepare();
generateQuad();
loadMeshes();
setupVertexDescriptions();
prepareUniformBuffers();
prepareTextureTarget(&offScreenFrameBuf.textureTarget, TEX_DIM, TEX_DIM, TEX_FORMAT);
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
createOffscreenCommandBuffer();
prepareOffscreenFramebuffer();
buildCommandBuffers();
buildOffscreenCommandBuffer();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
vkDeviceWaitIdle(device);
draw();
vkDeviceWaitIdle(device);
if (!paused)
{
updateUniformBuffersScene();
}
}
virtual void viewChanged()
{
updateUniformBuffersScene();
updateUniformBuffersScreen();
}
void toggleBlur()
{
blur = !blur;
updateUniformBuffersScene();
reBuildCommandBuffers();
}
void toggleTextureDisplay()
{
displayTexture = !displayTexture;
reBuildCommandBuffers();
}
};
VulkanExample *vulkanExample;
#ifdef _WIN32
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
if (vulkanExample != NULL)
{
vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam);
if (uMsg == WM_KEYDOWN)
{
switch (wParam)
{
case 0x42:
vulkanExample->toggleBlur();
break;
case 0x54:
vulkanExample->toggleTextureDisplay();
break;
}
}
}
return (DefWindowProc(hWnd, uMsg, wParam, lParam));
}
#else
static void handleEvent(const xcb_generic_event_t *event)
{
if (vulkanExample != NULL)
{
vulkanExample->handleEvent(event);
}
}
#endif
#ifdef _WIN32
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow)
#else
int main(const int argc, const char *argv[])
#endif
{
vulkanExample = new VulkanExample();
#ifdef _WIN32
vulkanExample->setupWindow(hInstance, WndProc);
#else
vulkanExample->setupWindow();
#endif
vulkanExample->initSwapchain();
vulkanExample->prepare();
vulkanExample->renderLoop();
delete(vulkanExample);
return 0;
}