procedural-3d-engine/examples/rayquery/rayquery.cpp
2022-09-10 09:05:07 +02:00

479 lines
22 KiB
C++

/*
* Vulkan Example - Using ray queries for hardware accelerated ray tracing queries in a fragment shader
*
* Copyright (C) 2020-2022 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkanexamplebase.h"
#include "VulkanglTFModel.h"
#include "VulkanRaytracingSample.h"
#define ENABLE_VALIDATION false
class VulkanExample : public VulkanRaytracingSample
{
public:
glm::vec3 lightPos = glm::vec3();
struct UniformData {
glm::mat4 projection;
glm::mat4 view;
glm::mat4 model;
glm::vec3 lightPos;
} uniformData;
vks::Buffer ubo;
vkglTF::Model scene;
VkPipeline pipeline;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
VulkanRaytracingSample::AccelerationStructure bottomLevelAS{};
VulkanRaytracingSample::AccelerationStructure topLevelAS{};
VkPhysicalDeviceRayQueryFeaturesKHR enabledRayQueryFeatures{};
VulkanExample() : VulkanRaytracingSample()
{
title = "Ray queries for ray traced shadows";
camera.type = Camera::CameraType::lookat;
timerSpeed *= 0.25f;
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
camera.setRotation(glm::vec3(0.0f, 0.0f, 0.0f));
camera.setTranslation(glm::vec3(0.0f, 3.0f, -10.0f));
rayQueryOnly = true;
enableExtensions();
enabledDeviceExtensions.push_back(VK_KHR_RAY_QUERY_EXTENSION_NAME);
}
~VulkanExample()
{
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
ubo.destroy();
deleteAccelerationStructure(bottomLevelAS);
deleteAccelerationStructure(topLevelAS);
}
/*
Create the bottom level acceleration structure contains the scene's actual geometry (vertices, triangles)
*/
void createBottomLevelAccelerationStructure()
{
VkDeviceOrHostAddressConstKHR vertexBufferDeviceAddress{};
VkDeviceOrHostAddressConstKHR indexBufferDeviceAddress{};
vertexBufferDeviceAddress.deviceAddress = getBufferDeviceAddress(scene.vertices.buffer);
indexBufferDeviceAddress.deviceAddress = getBufferDeviceAddress(scene.indices.buffer);
uint32_t numTriangles = static_cast<uint32_t>(scene.indices.count) / 3;
uint32_t maxVertex = scene.vertices.count;
// Build
VkAccelerationStructureGeometryKHR accelerationStructureGeometry = vks::initializers::accelerationStructureGeometryKHR();
accelerationStructureGeometry.flags = VK_GEOMETRY_OPAQUE_BIT_KHR;
accelerationStructureGeometry.geometryType = VK_GEOMETRY_TYPE_TRIANGLES_KHR;
accelerationStructureGeometry.geometry.triangles.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_TRIANGLES_DATA_KHR;
accelerationStructureGeometry.geometry.triangles.vertexFormat = VK_FORMAT_R32G32B32_SFLOAT;
accelerationStructureGeometry.geometry.triangles.vertexData = vertexBufferDeviceAddress;
accelerationStructureGeometry.geometry.triangles.maxVertex = maxVertex;
accelerationStructureGeometry.geometry.triangles.vertexStride = sizeof(vkglTF::Vertex);
accelerationStructureGeometry.geometry.triangles.indexType = VK_INDEX_TYPE_UINT32;
accelerationStructureGeometry.geometry.triangles.indexData = indexBufferDeviceAddress;
accelerationStructureGeometry.geometry.triangles.transformData.deviceAddress = 0;
accelerationStructureGeometry.geometry.triangles.transformData.hostAddress = nullptr;
// Get size info
VkAccelerationStructureBuildGeometryInfoKHR accelerationStructureBuildGeometryInfo = vks::initializers::accelerationStructureBuildGeometryInfoKHR();
accelerationStructureBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR;
accelerationStructureBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
accelerationStructureBuildGeometryInfo.geometryCount = 1;
accelerationStructureBuildGeometryInfo.pGeometries = &accelerationStructureGeometry;
VkAccelerationStructureBuildSizesInfoKHR accelerationStructureBuildSizesInfo = vks::initializers::accelerationStructureBuildSizesInfoKHR();
vkGetAccelerationStructureBuildSizesKHR(
device,
VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR,
&accelerationStructureBuildGeometryInfo,
&numTriangles,
&accelerationStructureBuildSizesInfo);
createAccelerationStructure(bottomLevelAS, VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR, accelerationStructureBuildSizesInfo);
// Create a small scratch buffer used during build of the bottom level acceleration structure
ScratchBuffer scratchBuffer = createScratchBuffer(accelerationStructureBuildSizesInfo.buildScratchSize);
VkAccelerationStructureBuildGeometryInfoKHR accelerationBuildGeometryInfo = vks::initializers::accelerationStructureBuildGeometryInfoKHR();
accelerationBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR;
accelerationBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
accelerationBuildGeometryInfo.mode = VK_BUILD_ACCELERATION_STRUCTURE_MODE_BUILD_KHR;
accelerationBuildGeometryInfo.dstAccelerationStructure = bottomLevelAS.handle;
accelerationBuildGeometryInfo.geometryCount = 1;
accelerationBuildGeometryInfo.pGeometries = &accelerationStructureGeometry;
accelerationBuildGeometryInfo.scratchData.deviceAddress = scratchBuffer.deviceAddress;
VkAccelerationStructureBuildRangeInfoKHR accelerationStructureBuildRangeInfo{};
accelerationStructureBuildRangeInfo.primitiveCount = numTriangles;
accelerationStructureBuildRangeInfo.primitiveOffset = 0;
accelerationStructureBuildRangeInfo.firstVertex = 0;
accelerationStructureBuildRangeInfo.transformOffset = 0;
std::vector<VkAccelerationStructureBuildRangeInfoKHR*> accelerationBuildStructureRangeInfos = { &accelerationStructureBuildRangeInfo };
// Build the acceleration structure on the device via a one-time command buffer submission
// Some implementations may support acceleration structure building on the host (VkPhysicalDeviceAccelerationStructureFeaturesKHR->accelerationStructureHostCommands), but we prefer device builds
VkCommandBuffer commandBuffer = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
vkCmdBuildAccelerationStructuresKHR(
commandBuffer,
1,
&accelerationBuildGeometryInfo,
accelerationBuildStructureRangeInfos.data());
vulkanDevice->flushCommandBuffer(commandBuffer, queue);
deleteScratchBuffer(scratchBuffer);
}
/*
The top level acceleration structure contains the scene's object instances
*/
void createTopLevelAccelerationStructure()
{
VkTransformMatrixKHR transformMatrix = {
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f };
VkAccelerationStructureInstanceKHR instance{};
instance.transform = transformMatrix;
instance.instanceCustomIndex = 0;
instance.mask = 0xFF;
instance.instanceShaderBindingTableRecordOffset = 0;
instance.flags = VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR;
instance.accelerationStructureReference = bottomLevelAS.deviceAddress;
// Buffer for instance data
vks::Buffer instancesBuffer;
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&instancesBuffer,
sizeof(VkAccelerationStructureInstanceKHR),
&instance));
VkDeviceOrHostAddressConstKHR instanceDataDeviceAddress{};
instanceDataDeviceAddress.deviceAddress = getBufferDeviceAddress(instancesBuffer.buffer);
VkAccelerationStructureGeometryKHR accelerationStructureGeometry = vks::initializers::accelerationStructureGeometryKHR();
accelerationStructureGeometry.geometryType = VK_GEOMETRY_TYPE_INSTANCES_KHR;
accelerationStructureGeometry.flags = VK_GEOMETRY_OPAQUE_BIT_KHR;
accelerationStructureGeometry.geometry.instances.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_INSTANCES_DATA_KHR;
accelerationStructureGeometry.geometry.instances.arrayOfPointers = VK_FALSE;
accelerationStructureGeometry.geometry.instances.data = instanceDataDeviceAddress;
// Get size info
VkAccelerationStructureBuildGeometryInfoKHR accelerationStructureBuildGeometryInfo = vks::initializers::accelerationStructureBuildGeometryInfoKHR();
accelerationStructureBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR;
accelerationStructureBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
accelerationStructureBuildGeometryInfo.geometryCount = 1;
accelerationStructureBuildGeometryInfo.pGeometries = &accelerationStructureGeometry;
uint32_t primitive_count = 1;
VkAccelerationStructureBuildSizesInfoKHR accelerationStructureBuildSizesInfo = vks::initializers::accelerationStructureBuildSizesInfoKHR();
vkGetAccelerationStructureBuildSizesKHR(
device,
VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR,
&accelerationStructureBuildGeometryInfo,
&primitive_count,
&accelerationStructureBuildSizesInfo);
createAccelerationStructure(topLevelAS, VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR, accelerationStructureBuildSizesInfo);
// Create a small scratch buffer used during build of the top level acceleration structure
ScratchBuffer scratchBuffer = createScratchBuffer(accelerationStructureBuildSizesInfo.buildScratchSize);
VkAccelerationStructureBuildGeometryInfoKHR accelerationBuildGeometryInfo = vks::initializers::accelerationStructureBuildGeometryInfoKHR();
accelerationBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR;
accelerationBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
accelerationBuildGeometryInfo.mode = VK_BUILD_ACCELERATION_STRUCTURE_MODE_BUILD_KHR;
accelerationBuildGeometryInfo.dstAccelerationStructure = topLevelAS.handle;
accelerationBuildGeometryInfo.geometryCount = 1;
accelerationBuildGeometryInfo.pGeometries = &accelerationStructureGeometry;
accelerationBuildGeometryInfo.scratchData.deviceAddress = scratchBuffer.deviceAddress;
VkAccelerationStructureBuildRangeInfoKHR accelerationStructureBuildRangeInfo{};
accelerationStructureBuildRangeInfo.primitiveCount = 1;
accelerationStructureBuildRangeInfo.primitiveOffset = 0;
accelerationStructureBuildRangeInfo.firstVertex = 0;
accelerationStructureBuildRangeInfo.transformOffset = 0;
std::vector<VkAccelerationStructureBuildRangeInfoKHR*> accelerationBuildStructureRangeInfos = { &accelerationStructureBuildRangeInfo };
// Build the acceleration structure on the device via a one-time command buffer submission
// Some implementations may support acceleration structure building on the host (VkPhysicalDeviceAccelerationStructureFeaturesKHR->accelerationStructureHostCommands), but we prefer device builds
VkCommandBuffer commandBuffer = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
vkCmdBuildAccelerationStructuresKHR(
commandBuffer,
1,
&accelerationBuildGeometryInfo,
accelerationBuildStructureRangeInfos.data());
vulkanDevice->flushCommandBuffer(commandBuffer, queue);
deleteScratchBuffer(scratchBuffer);
instancesBuffer.destroy();
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
VkViewport viewport;
VkRect2D scissor;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
/*
Note: Explicit synchronization is not required between the render pass, as this is done implicit via sub pass dependencies
*/
/*
Second pass: Scene rendering with applied shadow map
*/
clearValues[0].color = { { 0.0f, 0.0f, 0.2f, 1.0f } };;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.framebuffer = frameBuffers[i];
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
// 3D scene
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
scene.draw(drawCmdBuffers[i]);
VulkanExampleBase::drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void loadAssets()
{
vkglTF::memoryPropertyFlags = VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY;
scene.loadFromFile(getAssetPath() + "models/vulkanscene_shadow.gltf", vulkanDevice, queue, glTFLoadingFlags);
}
void setupDescriptorPool()
{
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, 1)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 1);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
// Shared pipeline layout for all pipelines used in this sample
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
// Binding 1 : Fragment shader image sampler (shadow map)
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1),
// Binding 2: Acceleration structure
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, VK_SHADER_STAGE_FRAGMENT_BIT, 2),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
}
void setupDescriptorSets()
{
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
// Debug display
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, nullptr);
// Scene rendering with shadow map applied
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
writeDescriptorSets = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &ubo.descriptor)
};
VkWriteDescriptorSetAccelerationStructureKHR descriptorAccelerationStructureInfo = vks::initializers::writeDescriptorSetAccelerationStructureKHR();
descriptorAccelerationStructureInfo.accelerationStructureCount = 1;
descriptorAccelerationStructureInfo.pAccelerationStructures = &topLevelAS.handle;
VkWriteDescriptorSet accelerationStructureWrite{};
accelerationStructureWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
// The specialized acceleration structure descriptor has to be chained
accelerationStructureWrite.pNext = &descriptorAccelerationStructureInfo;
accelerationStructureWrite.dstSet = descriptorSet;
accelerationStructureWrite.dstBinding = 2;
accelerationStructureWrite.descriptorCount = 1;
accelerationStructureWrite.descriptorType = VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR;
writeDescriptorSets.push_back(accelerationStructureWrite);
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, nullptr);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), dynamicStateEnables.size(), 0);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
pipelineCI.pInputAssemblyState = &inputAssemblyStateCI;
pipelineCI.pRasterizationState = &rasterizationStateCI;
pipelineCI.pColorBlendState = &colorBlendStateCI;
pipelineCI.pMultisampleState = &multisampleStateCI;
pipelineCI.pViewportState = &viewportStateCI;
pipelineCI.pDepthStencilState = &depthStencilStateCI;
pipelineCI.pDynamicState = &dynamicStateCI;
pipelineCI.stageCount = shaderStages.size();
pipelineCI.pStages = shaderStages.data();
// Scene rendering with ray traced shadows applied
pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position, vkglTF::VertexComponent::UV, vkglTF::VertexComponent::Color, vkglTF::VertexComponent::Normal });
rasterizationStateCI.cullMode = VK_CULL_MODE_BACK_BIT;
shaderStages[0] = loadShader(getShadersPath() + "rayquery/scene.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "rayquery/scene.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline));
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Scene vertex shader uniform buffer block
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&ubo,
sizeof(UniformData)));
// Map persistent
VK_CHECK_RESULT(ubo.map());
updateLight();
updateUniformBuffers();
}
void updateLight()
{
// Animate the light source
lightPos.x = cos(glm::radians(timer * 360.0f)) * 40.0f;
lightPos.y = -50.0f + sin(glm::radians(timer * 360.0f)) * 20.0f;
lightPos.z = 25.0f + sin(glm::radians(timer * 360.0f)) * 5.0f;
}
void updateUniformBuffers()
{
uniformData.projection = camera.matrices.perspective;
uniformData.view = camera.matrices.view;
uniformData.model = glm::mat4(1.0f);
uniformData.lightPos = lightPos;
memcpy(ubo.mapped, &uniformData, sizeof(UniformData));
}
void getEnabledFeatures()
{
// Enable features required for ray tracing using feature chaining via pNext
enabledBufferDeviceAddresFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES;
enabledBufferDeviceAddresFeatures.bufferDeviceAddress = VK_TRUE;
enabledRayTracingPipelineFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_FEATURES_KHR;
enabledRayTracingPipelineFeatures.rayTracingPipeline = VK_TRUE;
enabledRayTracingPipelineFeatures.pNext = &enabledBufferDeviceAddresFeatures;
enabledAccelerationStructureFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_FEATURES_KHR;
enabledAccelerationStructureFeatures.accelerationStructure = VK_TRUE;
enabledAccelerationStructureFeatures.pNext = &enabledRayTracingPipelineFeatures;
enabledRayQueryFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_QUERY_FEATURES_KHR;
enabledRayQueryFeatures.rayQuery = VK_TRUE;
enabledRayQueryFeatures.pNext = &enabledAccelerationStructureFeatures;
deviceCreatepNextChain = &enabledRayQueryFeatures;
}
void draw()
{
VulkanExampleBase::prepareFrame();
// Command buffer to be submitted to the queue
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
// Submit to queue
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanRaytracingSample::prepare();
loadAssets();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
createBottomLevelAccelerationStructure();
createTopLevelAccelerationStructure();
setupDescriptorPool();
setupDescriptorSets();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
if (!paused || camera.updated)
{
updateLight();
updateUniformBuffers();
}
}
};
VULKAN_EXAMPLE_MAIN()