procedural-3d-engine/android/mesh/mesh.NativeActivity/mesh.cpp

707 lines
22 KiB
C++

/*
* Vulkan Example - Mesh rendering
*
* Uses tiny obj loader (https://github.com/syoyo/tinyobjloader) by syoyo
*
* Note :
* This is a basic android example. It may be integrated into the other examples at some point in the future.
* Until then this serves as a starting point for using Vulkan on Android, with some of the functionality required
* already moved to the example base classes (e.g. swap chain)
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <assert.h>
#include "vulkanandroid.h"
#include "vulkanswapchain.hpp"
#include "vulkanandroidbase.hpp"
#include <android/asset_manager.h>
#define TINYOBJLOADER_IMPLEMENTATION
#include "tiny_obj_loader.h"
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include "glm/glm.hpp"
#include "glm/gtc/matrix_transform.hpp"
#define LOGI(...) ((void)__android_log_print(ANDROID_LOG_INFO, "AndroidProject1.NativeActivity", __VA_ARGS__))
#define LOGW(...) ((void)__android_log_print(ANDROID_LOG_WARN, "AndroidProject1.NativeActivity", __VA_ARGS__))
#define VERTEX_BUFFER_BIND_ID 0
struct saved_state {
glm::vec3 rotation;
float zoom;
};
class VulkanExample : public VulkanAndroidExampleBase
{
public:
int animating;
struct saved_state state;
// Vulkan
struct Vertex {
glm::vec3 pos;
glm::vec3 normal;
glm::vec3 color;
};
VkDescriptorSetLayout descriptorSetLayout;
VkDescriptorSet descriptorSet;
VkPipelineLayout pipelineLayout;
struct {
VkBuffer buf;
VkDeviceMemory mem;
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
struct {
int count;
VkBuffer buf;
VkDeviceMemory mem;
} indices;
struct {
VkBuffer buffer;
VkDeviceMemory memory;
VkDescriptorBufferInfo descriptor;
} uniformDataVS;
struct {
glm::mat4 projection;
glm::mat4 model;
glm::vec4 lightPos = glm::vec4(0.0f, 0.0f, 10.0f, 1.0f);
} uboVS;
struct {
VkPipeline solid;
} pipelines;
void initVulkan()
{
VulkanAndroidExampleBase::initVulkan();
prepareVertices();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
state.zoom = -5.0f;
state.rotation = glm::vec3();
prepared = true;
}
void cleanupVulkan()
{
prepared = false;
vkDestroyPipeline(device, pipelines.solid, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vkDestroyBuffer(device, vertices.buf, nullptr);
vkFreeMemory(device, vertices.mem, nullptr);
vkDestroyBuffer(device, indices.buf, nullptr);
vkFreeMemory(device, indices.mem, nullptr);
vkDestroyBuffer(device, uniformDataVS.buffer, nullptr);
vkFreeMemory(device, uniformDataVS.memory, nullptr);
VulkanExample::cleanUpVulkan();
}
void prepareVertices()
{
// Load mesh from compressed asset
AAsset* asset = AAssetManager_open(app->activity->assetManager, "models/vulkanlogo.obj", AASSET_MODE_STREAMING);
assert(asset);
size_t size = AAsset_getLength(asset);
assert(size > 0);
char *assetData = new char[size];
AAsset_read(asset, assetData, size);
AAsset_close(asset);
std::stringstream assetStream(assetData);
std::vector<tinyobj::shape_t> shapes;
std::vector<tinyobj::material_t> materials;
std::string objerr;
tinyobj::MaterialFileReader matFileReader("");
bool ret = tinyobj::LoadObj(shapes, materials, objerr, assetStream, matFileReader, true);
LOGW("shapes %d", shapes.size());
// Setup vertices
float scale = 0.025f;
std::vector<Vertex> vertexBuffer;
std::vector<uint32_t> indexBuffer;
for (auto& shape : shapes)
{
// Vertices
for (size_t i = 0; i < shape.mesh.positions.size() / 3; i++)
{
Vertex v;
v.pos[0] = shape.mesh.positions[3 * i + 0] * scale;
v.pos[1] = -shape.mesh.positions[3 * i + 1] * scale;
v.pos[2] = shape.mesh.positions[3 * i + 2] * scale;
v.normal[0] = shape.mesh.normals[3 * i + 0];
v.normal[1] = shape.mesh.normals[3 * i + 1];
v.normal[2] = shape.mesh.normals[3 * i + 2];
v.color = glm::vec3(1.0f, 0.0f, 0.0f);
vertexBuffer.push_back(v);
}
// Indices
for (size_t i = 0; i < shape.mesh.indices.size() / 3; i++)
{
indexBuffer.push_back(shape.mesh.indices[3 * i + 0]);
indexBuffer.push_back(shape.mesh.indices[3 * i + 1]);
indexBuffer.push_back(shape.mesh.indices[3 * i + 2]);
}
}
uint32_t vertexBufferSize = vertexBuffer.size() * sizeof(Vertex);
uint32_t indexBufferSize = indexBuffer.size() * sizeof(uint32_t);
VkMemoryAllocateInfo memAlloc = {};
memAlloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
memAlloc.pNext = NULL;
memAlloc.allocationSize = 0;
memAlloc.memoryTypeIndex = 0;
VkMemoryRequirements memReqs;
VkResult err;
void *data;
// Generate vertex buffer
// Setup
VkBufferCreateInfo bufInfo = {};
bufInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufInfo.pNext = NULL;
bufInfo.size = vertexBufferSize;
bufInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
bufInfo.flags = 0;
// Copy vertex data to VRAM
memset(&vertices, 0, sizeof(vertices));
err = vkCreateBuffer(device, &bufInfo, nullptr, &vertices.buf);
assert(!err);
vkGetBufferMemoryRequirements(device, vertices.buf, &memReqs);
memAlloc.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex);
vkAllocateMemory(device, &memAlloc, nullptr, &vertices.mem);
assert(!err);
err = vkMapMemory(device, vertices.mem, 0, memAlloc.allocationSize, 0, &data);
assert(!err);
memcpy(data, vertexBuffer.data(), vertexBufferSize);
vkUnmapMemory(device, vertices.mem);
assert(!err);
err = vkBindBufferMemory(device, vertices.buf, vertices.mem, 0);
assert(!err);
// Generate index buffer
// Setup
VkBufferCreateInfo indexbufferInfo = {};
indexbufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
indexbufferInfo.pNext = NULL;
indexbufferInfo.size = indexBufferSize;
indexbufferInfo.usage = VK_BUFFER_USAGE_INDEX_BUFFER_BIT;
indexbufferInfo.flags = 0;
// Copy index data to VRAM
memset(&indices, 0, sizeof(indices));
err = vkCreateBuffer(device, &bufInfo, nullptr, &indices.buf);
assert(!err);
vkGetBufferMemoryRequirements(device, indices.buf, &memReqs);
memAlloc.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex);
err = vkAllocateMemory(device, &memAlloc, nullptr, &indices.mem);
assert(!err);
err = vkMapMemory(device, indices.mem, 0, indexBufferSize, 0, &data);
assert(!err);
memcpy(data, indexBuffer.data(), indexBufferSize);
vkUnmapMemory(device, indices.mem);
err = vkBindBufferMemory(device, indices.buf, indices.mem, 0);
assert(!err);
indices.count = indexBuffer.size();
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vkTools::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
sizeof(Vertex),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
// Describes memory layout and shader positions
vertices.attributeDescriptions.resize(3);
// Location 0 : Position
vertices.attributeDescriptions[0] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32_SFLOAT,
0);
// Location 1 : Normal
vertices.attributeDescriptions[1] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 3);
// Location 2 : Color
vertices.attributeDescriptions[2] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
2,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 6);
// Assign to vertex buffer
vertices.inputState.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
vertices.inputState.pNext = NULL;
vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void updateUniformBuffers()
{
// Update matrices
uboVS.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.1f, 256.0f);
glm::mat4 viewMatrix = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, state.zoom));
uboVS.model = viewMatrix;
uboVS.model = glm::rotate(uboVS.model, glm::radians(state.rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
uboVS.model = glm::rotate(uboVS.model, glm::radians(state.rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
uboVS.model = glm::rotate(uboVS.model, glm::radians(state.rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
// Map uniform buffer and update it
uint8_t *pData;
VkResult err = vkMapMemory(device, uniformDataVS.memory, 0, sizeof(uboVS), 0, (void **)&pData);
assert(!err);
memcpy(pData, &uboVS, sizeof(uboVS));
vkUnmapMemory(device, uniformDataVS.memory);
assert(!err);
}
void prepareUniformBuffers()
{
// Prepare and initialize uniform buffer containing shader uniforms
VkMemoryRequirements memReqs;
// Vertex shader uniform buffer block
VkBufferCreateInfo bufferInfo = {};
VkMemoryAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
allocInfo.pNext = NULL;
allocInfo.allocationSize = 0;
allocInfo.memoryTypeIndex = 0;
VkResult err;
bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferInfo.size = sizeof(uboVS);
bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
// Create a new buffer
err = vkCreateBuffer(device, &bufferInfo, nullptr, &uniformDataVS.buffer);
assert(!err);
// Get memory requirements including size, alignment and memory type
vkGetBufferMemoryRequirements(device, uniformDataVS.buffer, &memReqs);
allocInfo.allocationSize = memReqs.size;
// Gets the appropriate memory type for this type of buffer allocation
// Only memory types that are visible to the host
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &allocInfo.memoryTypeIndex);
// Allocate memory for the uniform buffer
err = vkAllocateMemory(device, &allocInfo, nullptr, &(uniformDataVS.memory));
assert(!err);
// Bind memory to buffer
err = vkBindBufferMemory(device, uniformDataVS.buffer, uniformDataVS.memory, 0);
assert(!err);
// Store information in the uniform's descriptor
uniformDataVS.descriptor.buffer = uniformDataVS.buffer;
uniformDataVS.descriptor.offset = 0;
uniformDataVS.descriptor.range = sizeof(uboVS);
updateUniformBuffers();
}
void preparePipelines()
{
VkResult err;
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vkTools::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_NONE,
VK_FRONT_FACE_COUNTER_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vkTools::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vkTools::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vkTools::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables;
dynamicStateEnables.push_back(VK_DYNAMIC_STATE_VIEWPORT);
dynamicStateEnables.push_back(VK_DYNAMIC_STATE_SCISSOR);
VkPipelineDynamicStateCreateInfo dynamicState =
vkTools::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
dynamicStateEnables.size(),
0);
// Rendering pipeline
// Load shaders
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
shaderStages[0] = loadShader("shaders/mesh.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader("shaders/mesh.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vkTools::initializers::pipelineCreateInfo(
pipelineLayout,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data();
pipelineCreateInfo.renderPass = renderPass;
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid);
assert(!err);
}
void setupDescriptorPool()
{
std::vector<VkDescriptorPoolSize> poolSizes;
poolSizes.push_back(vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1));
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vkTools::initializers::descriptorPoolCreateInfo(
poolSizes.size(),
poolSizes.data(),
2);
VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool);
assert(!vkRes);
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings;
setLayoutBindings.push_back(
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT,
0));
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vkTools::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
setLayoutBindings.size());
VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout);
assert(!err);
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vkTools::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout);
assert(!err);
}
void setupDescriptorSet()
{
VkDescriptorSetAllocateInfo allocInfo =
vkTools::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet);
assert(!vkRes);
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
writeDescriptorSets.push_back(
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformDataVS.descriptor));
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = {};
cmdBufInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
cmdBufInfo.pNext = NULL;
VkClearValue clearValues[2];
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 1.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = {};
renderPassBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
renderPassBeginInfo.pNext = NULL;
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
VkResult err;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo);
assert(!err);
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
// Update dynamic viewport state
VkViewport viewport = {};
viewport.height = (float)height;
viewport.width = (float)width;
viewport.minDepth = (float) 0.0f;
viewport.maxDepth = (float) 1.0f;
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
// Update dynamic scissor state
VkRect2D scissor = {};
scissor.extent.width = width;
scissor.extent.height = height;
scissor.offset.x = 0;
scissor.offset.y = 0;
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
// Bind descriptor sets describing shader binding points
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
// Bind the rendering pipeline (including the shaders)
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.solid);
// Bind triangle vertices
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &vertices.buf, offsets);
// Bind triangle indices
vkCmdBindIndexBuffer(drawCmdBuffers[i], indices.buf, 0, VK_INDEX_TYPE_UINT32);
// Draw indexed triangle
vkCmdDrawIndexed(drawCmdBuffers[i], indices.count, 1, 0, 0, 1);
vkCmdEndRenderPass(drawCmdBuffers[i]);
// Add a present memory barrier to the end of the command buffer
// This will transform the frame buffer color attachment to a
// new layout for presenting it to the windowing system integration
VkImageMemoryBarrier prePresentBarrier = {};
prePresentBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
prePresentBarrier.pNext = NULL;
prePresentBarrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
prePresentBarrier.dstAccessMask = 0;
prePresentBarrier.oldLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
prePresentBarrier.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
prePresentBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
prePresentBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
prePresentBarrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
prePresentBarrier.image = swapChain.buffers[i].image;
vkCmdPipelineBarrier(
drawCmdBuffers[i],
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_FLAGS_NONE,
0, nullptr,
0, nullptr,
1, &prePresentBarrier);
err = vkEndCommandBuffer(drawCmdBuffers[i]);
assert(!err);
}
}
void draw()
{
VkResult err;
// Get next image in the swap chain (back/front buffer)
err = swapChain.acquireNextImage(semaphores.presentComplete, &currentBuffer);
assert(!err);
submitPostPresentBarrier(swapChain.buffers[currentBuffer].image);
VkPipelineStageFlags pipelineStages = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
VkSubmitInfo submitInfo = vkTools::initializers::submitInfo();
submitInfo.waitSemaphoreCount = 1;
submitInfo.pWaitSemaphores = &semaphores.presentComplete;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
submitInfo.pWaitDstStageMask = &pipelineStages;
submitInfo.signalSemaphoreCount = 1;
submitInfo.pSignalSemaphores = &semaphores.submitSignal;
// Submit to the graphics queue
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
assert(!err);
submitPrePresentBarrier(swapChain.buffers[currentBuffer].image);
// Present the current buffer to the swap chain
// This will display the image
err = swapChain.queuePresent(queue, currentBuffer, semaphores.submitSignal);
assert(!err);
}
};
static int32_t handleInput(struct android_app* app, AInputEvent* event)
{
struct VulkanExample* vulkanExample = (struct VulkanExample*)app->userData;
if (AInputEvent_getType(event) == AINPUT_EVENT_TYPE_MOTION)
{
// todo
return 1;
}
return 0;
}
static void handleCommand(struct android_app* app, int32_t cmd)
{
VulkanExample* vulkanExample = (VulkanExample*)app->userData;
switch (cmd)
{
case APP_CMD_SAVE_STATE:
vulkanExample->app->savedState = malloc(sizeof(struct saved_state));
*((struct saved_state*)vulkanExample->app->savedState) = vulkanExample->state;
vulkanExample->app->savedStateSize = sizeof(struct saved_state);
break;
case APP_CMD_INIT_WINDOW:
if (vulkanExample->app->window != NULL)
{
vulkanExample->initVulkan();
assert(vulkanExample->prepared);
}
break;
case APP_CMD_LOST_FOCUS:
vulkanExample->animating = 0;
break;
}
}
/**
* This is the main entry point of a native application that is using
* android_native_app_glue. It runs in its own thread, with its own
* event loop for receiving input events and doing other things.
*/
void android_main(struct android_app* state)
{
VulkanExample *engine = new VulkanExample();
//memset(&engine, 0, sizeof(engine));
state->userData = engine;
state->onAppCmd = handleCommand;
state->onInputEvent = handleInput;
engine->app = state;
engine->animating = 1;
// loop waiting for stuff to do.
while (1)
{
// Read all pending events.
int ident;
int events;
struct android_poll_source* source;
while ((ident = ALooper_pollAll(engine->animating ? 0 : -1, NULL, &events, (void**)&source)) >= 0)
{
if (source != NULL)
{
source->process(state, source);
}
if (state->destroyRequested != 0)
{
engine->cleanupVulkan();
return;
}
}
// Render frame
if (engine->prepared)
{
if (engine->animating)
{
// Update rotation
engine->state.rotation.y += 0.25f;
if (engine->state.rotation.y > 360.0f)
{
engine->state.rotation.y -= 360.0f;
}
engine->updateUniformBuffers();
}
engine->draw();
}
}
}