procedural-3d-engine/examples/graphicspipelinelibrary/graphicspipelinelibrary.cpp
2022-04-04 10:22:54 +02:00

568 lines
No EOL
22 KiB
C++

/*
* Vulkan Example - Using VK_EXT_graphics_pipeline_library
*
* Important note: Work-in-progress, sample is not finished yet
*
* Copyright (C) 2022 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkanexamplebase.h"
#include "VulkanglTFModel.h"
#define ENABLE_VALIDATION false
class VulkanExample: public VulkanExampleBase
{
public:
vkglTF::Model scene;
vks::Buffer uniformBuffer;
// Same uniform buffer layout as shader
struct UBOVS {
glm::mat4 projection;
glm::mat4 modelView;
glm::vec4 lightPos = glm::vec4(0.0f, 2.0f, 1.0f, 0.0f);
} uboVS;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
VkPhysicalDeviceGraphicsPipelineLibraryFeaturesEXT graphicsPipelineLibraryFeatures{};
struct {
VkPipeline phong;
VkPipeline wireframe;
VkPipeline toon;
} pipelines;
struct ShaderInfo {
uint32_t* code;
size_t size;
};
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "Graphics pipeline library";
camera.type = Camera::CameraType::lookat;
camera.setPosition(glm::vec3(0.0f, 0.0f, -10.5f));
camera.setRotation(glm::vec3(-25.0f, 15.0f, 0.0f));
camera.setRotationSpeed(0.5f);
camera.setPerspective(60.0f, (float)(width / 3.0f) / (float)height, 0.1f, 256.0f);
// Enable required extensions
enabledInstanceExtensions.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_KHR_PIPELINE_LIBRARY_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_EXT_GRAPHICS_PIPELINE_LIBRARY_EXTENSION_NAME);
// Enable required extension features
graphicsPipelineLibraryFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GRAPHICS_PIPELINE_LIBRARY_FEATURES_EXT;
graphicsPipelineLibraryFeatures.graphicsPipelineLibrary = VK_TRUE;
deviceCreatepNextChain = &graphicsPipelineLibraryFeatures;
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
vkDestroyPipeline(device, pipelines.phong, nullptr);
if (deviceFeatures.fillModeNonSolid)
{
vkDestroyPipeline(device, pipelines.wireframe, nullptr);
}
vkDestroyPipeline(device, pipelines.toon, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
uniformBuffer.destroy();
}
// Enable physical device features required for this example
virtual void getEnabledFeatures()
{
// Fill mode non solid is required for wireframe display
if (deviceFeatures.fillModeNonSolid) {
enabledFeatures.fillModeNonSolid = VK_TRUE;
// Wide lines must be present for line width > 1.0f
if (deviceFeatures.wideLines) {
enabledFeatures.wideLines = VK_TRUE;
}
};
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
scene.bindBuffers(drawCmdBuffers[i]);
// Left : Solid colored
viewport.width = (float)width / 3.0;
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.phong);
scene.draw(drawCmdBuffers[i]);
// Center : Toon
viewport.x = (float)width / 3.0;
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.toon);
// Line width > 1.0f only if wide lines feature is supported
if (deviceFeatures.wideLines) {
vkCmdSetLineWidth(drawCmdBuffers[i], 2.0f);
}
scene.draw(drawCmdBuffers[i]);
if (deviceFeatures.fillModeNonSolid)
{
// Right : Wireframe
viewport.x = (float)width / 3.0 + (float)width / 3.0;
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.wireframe);
scene.draw(drawCmdBuffers[i]);
}
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void loadAssets()
{
const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY;
scene.loadFromFile(getAssetPath() + "models/treasure_smooth.gltf", vulkanDevice, queue, glTFLoadingFlags);
}
void setupDescriptorPool()
{
std::vector<VkDescriptorPoolSize> poolSizes =
{
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vks::initializers::descriptorPoolCreateInfo(
poolSizes.size(),
poolSizes.data(),
2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0 : Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT,
0)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vks::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
setLayoutBindings.size());
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vks::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
}
void setupDescriptorSet()
{
VkDescriptorSetAllocateInfo allocInfo =
vks::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformBuffer.descriptor)
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
}
// With VK_EXT_graphics_pipeline_library we don't need to create the shader module when loading it, but instead have the driver create it at linking time
// So we use a custom function that only loads the required shader information without actually creating the shader module
#if defined(__ANDROID__)
// Android shaders are stored as assets in the apk so they need to be loaded via the asset manager
bool loadShader(AAssetManager* assetManager, std::string fileName, const uint32_t** pShaderCode, size_t& shaderSize)
{
// Load shader from compressed asset
AAsset* asset = AAssetManager_open(assetManager, fileName, AASSET_MODE_STREAMING);
assert(asset);
size_t size = AAsset_getLength(asset);
assert(size > 0);
char* shaderCode = new char[size];
AAsset_read(asset, shaderCode, size);
AAsset_close(asset);
VkShaderModule shaderModule;
VkShaderModuleCreateInfo moduleCreateInfo;
moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
moduleCreateInfo.pNext = NULL;
moduleCreateInfo.codeSize = size;
moduleCreateInfo.pCode = (uint32_t*)shaderCode;
moduleCreateInfo.flags = 0;
VK_CHECK_RESULT(vkCreateShaderModule(device, &moduleCreateInfo, NULL, &shaderModule));
delete[] shaderCode;
return shaderModule;
}
#else
bool loadShaderFile(std::string fileName, ShaderInfo &shaderInfo)
{
std::ifstream is(fileName, std::ios::binary | std::ios::in | std::ios::ate);
if (is.is_open())
{
shaderInfo.size = is.tellg();
is.seekg(0, std::ios::beg);
shaderInfo.code = new uint32_t[shaderInfo.size];
is.read(reinterpret_cast<char*>(shaderInfo.code), shaderInfo.size);
is.close();
return true;
} else {
std::cerr << "Error: Could not open shader file \"" << fileName << "\"" << "\n";
return false;
}
}
#endif
VkPipeline createVertexInputState(VkDevice device, VkPipelineCache vertexShaderCache, VkPipelineLayout layout)
{
VkGraphicsPipelineLibraryCreateInfoEXT libraryInfo{};
libraryInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_LIBRARY_CREATE_INFO_EXT;
libraryInfo.flags = VK_GRAPHICS_PIPELINE_LIBRARY_VERTEX_INPUT_INTERFACE_BIT_EXT;
VkPipelineVertexInputStateCreateInfo vertexInputState = *vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position, vkglTF::VertexComponent::Normal, vkglTF::VertexComponent::Color });
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkGraphicsPipelineCreateInfo pipelineCI{};
pipelineCI.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
pipelineCI.pNext = &libraryInfo;
pipelineCI.pInputAssemblyState = &inputAssemblyState;
pipelineCI.pVertexInputState = &vertexInputState;
VkPipeline library = VK_NULL_HANDLE;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, vertexShaderCache, 1, &pipelineCI, nullptr, &library));
return library;
}
VkPipeline createVertexShader(VkDevice device, const ShaderInfo shaderInfo, VkPipelineCache vertexShaderCache, VkPipelineLayout layout)
{
VkGraphicsPipelineLibraryCreateInfoEXT libraryInfo{};
libraryInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_LIBRARY_CREATE_INFO_EXT;
libraryInfo.flags = VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT;
VkDynamicState vertexDynamicStates[2] = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicInfo{};
dynamicInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dynamicInfo.dynamicStateCount = 2;
dynamicInfo.pDynamicStates = vertexDynamicStates;
VkPipelineViewportStateCreateInfo viewportState = {};
viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
viewportState.viewportCount = 1;
viewportState.scissorCount = 1;
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkShaderModuleCreateInfo shaderModuleCreateInfo{};
shaderModuleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
shaderModuleCreateInfo.codeSize = shaderInfo.size;
shaderModuleCreateInfo.pCode = shaderInfo.code;
VkPipelineShaderStageCreateInfo shaderStageCreateInfo{};
shaderStageCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
shaderStageCreateInfo.pNext = &shaderModuleCreateInfo;
shaderStageCreateInfo.stage = VK_SHADER_STAGE_VERTEX_BIT;
shaderStageCreateInfo.pName = "main";
VkGraphicsPipelineCreateInfo pipelineCI{};
pipelineCI.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
pipelineCI.pNext = &libraryInfo;
pipelineCI.renderPass = renderPass;
pipelineCI.flags = VK_PIPELINE_CREATE_LIBRARY_BIT_KHR | VK_PIPELINE_CREATE_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT;
pipelineCI.stageCount = 1;
pipelineCI.pStages = &shaderStageCreateInfo;
pipelineCI.layout = layout;
pipelineCI.pDynamicState = &dynamicInfo;
pipelineCI.pViewportState = &viewportState;
pipelineCI.pRasterizationState = &rasterizationState;
VkPipeline library = VK_NULL_HANDLE;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, vertexShaderCache, 1, &pipelineCI, nullptr, &library));
return library;
}
VkPipeline createFragmentShader(VkDevice device, const ShaderInfo shaderInfo, VkPipelineCache vertexShaderCache, VkPipelineLayout layout)
{
VkGraphicsPipelineLibraryCreateInfoEXT libraryInfo{};
libraryInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_LIBRARY_CREATE_INFO_EXT;
libraryInfo.flags = VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT;
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT);
VkShaderModuleCreateInfo shaderModuleCreateInfo{};
shaderModuleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
shaderModuleCreateInfo.codeSize = shaderInfo.size;
shaderModuleCreateInfo.pCode = shaderInfo.code;
VkPipelineShaderStageCreateInfo shaderStageCreateInfo{};
shaderStageCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
shaderStageCreateInfo.pNext = &shaderModuleCreateInfo;
shaderStageCreateInfo.stage = VK_SHADER_STAGE_FRAGMENT_BIT;
shaderStageCreateInfo.pName = "main";
VkGraphicsPipelineCreateInfo pipelineCI{};
pipelineCI.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
pipelineCI.pNext = &libraryInfo;
pipelineCI.flags = VK_PIPELINE_CREATE_LIBRARY_BIT_KHR | VK_PIPELINE_CREATE_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT;
pipelineCI.stageCount = 1;
pipelineCI.pStages = &shaderStageCreateInfo;
pipelineCI.layout = layout;
pipelineCI.renderPass = renderPass;
pipelineCI.pDepthStencilState = &depthStencilState;
pipelineCI.pMultisampleState = &multisampleState;
VkPipeline library = VK_NULL_HANDLE;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, vertexShaderCache, 1, &pipelineCI, nullptr, &library));
return library;
}
VkPipeline createFragmentOutputState(VkDevice device, VkPipelineCache vertexShaderCache, VkPipelineLayout layout)
{
VkGraphicsPipelineLibraryCreateInfoEXT libraryInfo{};
libraryInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_LIBRARY_CREATE_INFO_EXT;
libraryInfo.flags = VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT;
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT);
VkGraphicsPipelineCreateInfo pipelineCI{};
pipelineCI.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
pipelineCI.pNext = &libraryInfo;
pipelineCI.flags = VK_PIPELINE_CREATE_LIBRARY_BIT_KHR | VK_PIPELINE_CREATE_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT;
pipelineCI.layout = layout;
pipelineCI.renderPass = renderPass;
pipelineCI.pColorBlendState = &colorBlendState;
pipelineCI.pMultisampleState = &multisampleState;
VkPipeline library = VK_NULL_HANDLE;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, vertexShaderCache, 1, &pipelineCI, nullptr, &library));
return library;
}
VkPipeline linkExecutable(VkDevice device, const std::vector<VkPipeline> libraries, VkPipelineCache executableCache, bool optimized)
{
VkPipelineLibraryCreateInfoKHR linkingInfo{};
linkingInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LIBRARY_CREATE_INFO_KHR;
linkingInfo.libraryCount = static_cast<uint32_t>(libraries.size());
linkingInfo.pLibraries = libraries.data();
VkGraphicsPipelineCreateInfo executablePipelineCreateInfo{};
executablePipelineCreateInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
executablePipelineCreateInfo.pNext = &linkingInfo;
executablePipelineCreateInfo.flags |= optimized ? VK_PIPELINE_CREATE_LINK_TIME_OPTIMIZATION_BIT_EXT : 0;
VkPipeline executable = VK_NULL_HANDLE;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, executableCache, 1, &executablePipelineCreateInfo, nullptr, &executable));
return executable;
}
void preparePipelines()
{
struct Shaders {
ShaderInfo phongVS;
ShaderInfo phongFS;
} shaders;
loadShaderFile(getShadersPath() + "pipelines/phong.vert.spv", shaders.phongVS);
loadShaderFile(getShadersPath() + "pipelines/phong.frag.spv", shaders.phongFS);
VkPipelineShaderStageCreateInfo vsShader = loadShader(getShadersPath() + "pipelines/phong.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
VkPipelineShaderStageCreateInfo fsShader = loadShader(getShadersPath() + "pipelines/phong.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
std::vector<VkPipeline> libraries = {
createVertexInputState(device, pipelineCache, pipelineLayout),
createVertexShader(device, shaders.phongVS, pipelineCache, pipelineLayout),
createFragmentShader(device, shaders.phongFS, pipelineCache, pipelineLayout),
createFragmentOutputState(device, pipelineCache, pipelineLayout),
};
VkPipeline compiledPipeline = linkExecutable(device, libraries, pipelineCache, true);
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, VK_DYNAMIC_STATE_LINE_WIDTH, };
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass);
pipelineCI.pInputAssemblyState = &inputAssemblyState;
pipelineCI.pRasterizationState = &rasterizationState;
pipelineCI.pColorBlendState = &colorBlendState;
pipelineCI.pMultisampleState = &multisampleState;
pipelineCI.pViewportState = &viewportState;
pipelineCI.pDepthStencilState = &depthStencilState;
pipelineCI.pDynamicState = &dynamicState;
pipelineCI.stageCount = shaderStages.size();
pipelineCI.pStages = shaderStages.data();
pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({vkglTF::VertexComponent::Position, vkglTF::VertexComponent::Normal, vkglTF::VertexComponent::Color});
// Create the graphics pipeline state objects
// Textured pipeline
// Phong shading pipeline
//shaderStages[0] = loadShader(getShadersPath() + "pipelines/phong.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
//shaderStages[1] = loadShader(getShadersPath() + "pipelines/phong.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
//VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.phong));
pipelines.phong = compiledPipeline;
// Toon shading pipeline
shaderStages[0] = loadShader(getShadersPath() + "pipelines/toon.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "pipelines/toon.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.toon));
// Pipeline for wire frame rendering
// Non solid rendering is not a mandatory Vulkan feature
if (deviceFeatures.fillModeNonSolid)
{
rasterizationState.polygonMode = VK_POLYGON_MODE_LINE;
shaderStages[0] = loadShader(getShadersPath() + "pipelines/wireframe.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "pipelines/wireframe.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.wireframe));
}
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Create the vertex shader uniform buffer block
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffer,
sizeof(uboVS)));
// Map persistent
VK_CHECK_RESULT(uniformBuffer.map());
updateUniformBuffers();
}
void updateUniformBuffers()
{
uboVS.projection = camera.matrices.perspective;
uboVS.modelView = camera.matrices.view;
memcpy(uniformBuffer.mapped, &uboVS, sizeof(uboVS));
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
if (camera.updated) {
updateUniformBuffers();
}
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (!deviceFeatures.fillModeNonSolid) {
if (overlay->header("Info")) {
overlay->text("Non solid fill modes not supported!");
}
}
}
};
VULKAN_EXAMPLE_MAIN()