procedural-3d-engine/android/base/vulkanandroidbase.hpp
2016-03-11 19:38:23 +01:00

881 lines
No EOL
29 KiB
C++

/*
* Shared android example base
*
* Will be replaced once the main examples get proper android support
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#pragma once
#include <stdlib.h>
#include <string>
#include <fstream>
#include <assert.h>
#include <stdio.h>
#include <vector>
#include <chrono>
#include <vulkan/vulkan.h>
#include "vulkanandroid.h"
#include "vulkanswapchain.hpp"
#include "vulkantools.h"
class VulkanAndroidExampleBase
{
private:
std::chrono::high_resolution_clock::time_point tStart;
VkShaderModule loadShaderModule(const char *fileName, VkShaderStageFlagBits stage)
{
// Load shader from compressed asset
AAsset* asset = AAssetManager_open(app->activity->assetManager, fileName, AASSET_MODE_STREAMING);
assert(asset);
size_t size = AAsset_getLength(asset);
assert(size > 0);
char *shaderCode = new char[size];
AAsset_read(asset, shaderCode, size);
AAsset_close(asset);
VkShaderModule shaderModule;
VkShaderModuleCreateInfo moduleCreateInfo;
VkResult err;
moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
moduleCreateInfo.pNext = NULL;
moduleCreateInfo.codeSize = size;
moduleCreateInfo.pCode = (uint32_t*)shaderCode;
moduleCreateInfo.flags = 0;
err = vkCreateShaderModule(device, &moduleCreateInfo, NULL, &shaderModule);
assert(!err);
return shaderModule;
}
public:
bool prepared = false;
struct android_app* app;
uint32_t width;
uint32_t height;
float frameTimer = 0;
struct Texture {
VkSampler sampler;
VkImage image;
VkImageLayout imageLayout;
VkDeviceMemory deviceMemory;
VkImageView view;
uint32_t width, height;
uint32_t mipLevels;
};
VkPhysicalDeviceMemoryProperties deviceMemoryProperties;
VkInstance instance;
VkPhysicalDevice physicalDevice;
VkDevice device;
VkQueue queue;
VkCommandPool cmdPool;
VkCommandBuffer setupCmdBuffer = VK_NULL_HANDLE;
VkCommandBuffer postPresentCmdBuffer = VK_NULL_HANDLE;
VkCommandBuffer prePresentCmdBuffer = VK_NULL_HANDLE;
std::vector<VkCommandBuffer> drawCmdBuffers;
VkPipelineCache pipelineCache;
VkDescriptorPool descriptorPool;
VulkanSwapChain swapChain;
std::vector<VkShaderModule> shaderModules;
uint32_t currentBuffer = 0;
struct
{
VkImage image;
VkDeviceMemory mem;
VkImageView view;
} depthStencil;
std::vector<VkFramebuffer>frameBuffers;
VkRenderPass renderPass;
struct {
VkSemaphore presentComplete;
VkSemaphore submitSignal;
} semaphores;
VkBool32 getMemoryType(uint32_t typeBits, VkFlags properties, uint32_t * typeIndex)
{
for (uint32_t i = 0; i < 32; i++)
{
if ((typeBits & 1) == 1)
{
if ((deviceMemoryProperties.memoryTypes[i].propertyFlags & properties) == properties)
{
*typeIndex = i;
return true;
}
}
typeBits >>= 1;
}
return false;
}
void initVulkan()
{
bool libLoaded = loadVulkanLibrary();
assert(libLoaded);
VkResult vkRes;
// Instance
VkApplicationInfo appInfo = {};
appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
appInfo.pApplicationName = "Vulkan Android Example";
appInfo.applicationVersion = 1;
appInfo.pEngineName = "VulkanAndroidExample";
appInfo.engineVersion = 1;
// todo : Workaround to support implementations that are not using the latest SDK
appInfo.apiVersion = VK_MAKE_VERSION(1, 0, 1);
VkInstanceCreateInfo instanceCreateInfo = {};
instanceCreateInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
instanceCreateInfo.pApplicationInfo = &appInfo;
vkRes = vkCreateInstance(&instanceCreateInfo, NULL, &instance);
assert(vkRes == VK_SUCCESS);
loadVulkanFunctions(instance);
// Device
// Always use first physical device
uint32_t gpuCount;
vkRes = vkEnumeratePhysicalDevices(instance, &gpuCount, &physicalDevice);
assert(vkRes == VK_SUCCESS);
// Find a queue that supports graphics operations
uint32_t graphicsQueueIndex = 0;
uint32_t queueCount;
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueCount, NULL);
assert(queueCount >= 1);
std::vector<VkQueueFamilyProperties> queueProps;
queueProps.resize(queueCount);
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueCount, queueProps.data());
for (graphicsQueueIndex = 0; graphicsQueueIndex < queueCount; graphicsQueueIndex++)
{
if (queueProps[graphicsQueueIndex].queueFlags & VK_QUEUE_GRAPHICS_BIT)
break;
}
assert(graphicsQueueIndex < queueCount);
// Request the queue
float queuePriorities = 0.0f;
VkDeviceQueueCreateInfo queueCreateInfo = {};
queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueCreateInfo.queueFamilyIndex = graphicsQueueIndex;
queueCreateInfo.queueCount = 1;
queueCreateInfo.pQueuePriorities = &queuePriorities;
// Create device
VkDeviceCreateInfo deviceCreateInfo = {};
deviceCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
deviceCreateInfo.queueCreateInfoCount = 1;
deviceCreateInfo.pQueueCreateInfos = &queueCreateInfo;
vkRes = vkCreateDevice(physicalDevice, &deviceCreateInfo, nullptr, &device);
assert(vkRes == VK_SUCCESS);
// Get graphics queue
vkGetDeviceQueue(device, graphicsQueueIndex, 0, &queue);
// Device memory properties (for finding appropriate memory types)
vkGetPhysicalDeviceMemoryProperties(physicalDevice, &deviceMemoryProperties);
// Swap chain
swapChain.connect(instance, physicalDevice, device);
swapChain.initSurface(app->window);
// Command buffer pool
VkCommandPoolCreateInfo cmdPoolInfo = {};
cmdPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
cmdPoolInfo.queueFamilyIndex = swapChain.queueNodeIndex;
cmdPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
vkRes = vkCreateCommandPool(device, &cmdPoolInfo, nullptr, &cmdPool);
assert(!vkRes);
// Pipeline cache
VkPipelineCacheCreateInfo pipelineCacheCreateInfo = {};
pipelineCacheCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
VkResult err = vkCreatePipelineCache(device, &pipelineCacheCreateInfo, nullptr, &pipelineCache);
assert(!err);
// Create semaphores for synchronization
VkSemaphoreCreateInfo semaphoreCreateInfo = vkTools::initializers::semaphoreCreateInfo();
err = vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &semaphores.presentComplete);
assert(!err);
err = vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &semaphores.submitSignal);
assert(!err);
createSetupCommandBuffer();
startSetupCommandBuffer();
swapChain.create(setupCmdBuffer, &width, &height);
setupDepthStencil();
setupRenderPass();
setupFrameBuffer();
flushSetupCommandBuffer();
createCommandBuffers();
}
void cleanUpVulkan()
{
swapChain.cleanup();
vkDestroyDescriptorPool(device, descriptorPool, nullptr);
if (setupCmdBuffer != VK_NULL_HANDLE)
{
vkFreeCommandBuffers(device, cmdPool, 1, &setupCmdBuffer);
}
vkFreeCommandBuffers(device, cmdPool, drawCmdBuffers.size(), drawCmdBuffers.data());
vkFreeCommandBuffers(device, cmdPool, 1, &prePresentCmdBuffer);
vkFreeCommandBuffers(device, cmdPool, 1, &postPresentCmdBuffer);
vkDestroyRenderPass(device, renderPass, nullptr);
for (uint32_t i = 0; i < frameBuffers.size(); i++)
{
vkDestroyFramebuffer(device, frameBuffers[i], nullptr);
}
for (auto& shaderModule : shaderModules)
{
vkDestroyShaderModule(device, shaderModule, nullptr);
}
vkDestroyImageView(device, depthStencil.view, nullptr);
vkDestroyImage(device, depthStencil.image, nullptr);
vkFreeMemory(device, depthStencil.mem, nullptr);
vkDestroySemaphore(device, semaphores.presentComplete, nullptr);
vkDestroySemaphore(device, semaphores.submitSignal, nullptr);
vkDestroyPipelineCache(device, pipelineCache, nullptr);
vkDestroyDevice(device, nullptr);
vkDestroyInstance(instance, nullptr);
freeVulkanLibrary();
}
VkPipelineShaderStageCreateInfo loadShader(const char * fileName, VkShaderStageFlagBits stage)
{
VkPipelineShaderStageCreateInfo shaderStage = {};
shaderStage.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
shaderStage.stage = stage;
shaderStage.module = loadShaderModule(fileName, stage);
shaderStage.pName = "main";
assert(shaderStage.module != NULL);
shaderModules.push_back(shaderStage.module);
return shaderStage;
}
void createSetupCommandBuffer()
{
VkCommandBufferAllocateInfo cmdBufAllocateInfo =
vkTools::initializers::commandBufferAllocateInfo(
cmdPool,
VK_COMMAND_BUFFER_LEVEL_PRIMARY,
1);
VkResult vkRes = vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &setupCmdBuffer);
assert(!vkRes);
}
void startSetupCommandBuffer()
{
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
vkBeginCommandBuffer(setupCmdBuffer, &cmdBufInfo);
}
void flushSetupCommandBuffer()
{
VkResult err;
if (setupCmdBuffer == VK_NULL_HANDLE)
return;
err = vkEndCommandBuffer(setupCmdBuffer);
assert(!err);
VkSubmitInfo submitInfo = {};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &setupCmdBuffer;
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
assert(!err);
err = vkQueueWaitIdle(queue);
assert(!err);
}
void setupDepthStencil()
{
VkImageCreateInfo image = {};
image.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
image.pNext = NULL;
image.imageType = VK_IMAGE_TYPE_2D;
image.format = VK_FORMAT_D24_UNORM_S8_UINT;
image.extent = { width, height, 1 };
image.mipLevels = 1;
image.arrayLayers = 1;
image.samples = VK_SAMPLE_COUNT_1_BIT;
image.tiling = VK_IMAGE_TILING_OPTIMAL;
image.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
image.flags = 0;
VkMemoryAllocateInfo mem_alloc = {};
mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
mem_alloc.pNext = NULL;
mem_alloc.allocationSize = 0;
mem_alloc.memoryTypeIndex = 0;
VkImageViewCreateInfo depthStencilView = {};
depthStencilView.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
depthStencilView.pNext = NULL;
depthStencilView.viewType = VK_IMAGE_VIEW_TYPE_2D;
depthStencilView.format = VK_FORMAT_D24_UNORM_S8_UINT;
depthStencilView.flags = 0;
depthStencilView.subresourceRange = {};
depthStencilView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
depthStencilView.subresourceRange.baseMipLevel = 0;
depthStencilView.subresourceRange.levelCount = 1;
depthStencilView.subresourceRange.baseArrayLayer = 0;
depthStencilView.subresourceRange.layerCount = 1;
VkMemoryRequirements memReqs;
VkResult err;
err = vkCreateImage(device, &image, nullptr, &depthStencil.image);
assert(!err);
vkGetImageMemoryRequirements(device, depthStencil.image, &memReqs);
mem_alloc.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &mem_alloc.memoryTypeIndex);
err = vkAllocateMemory(device, &mem_alloc, nullptr, &depthStencil.mem);
assert(!err);
err = vkBindImageMemory(device, depthStencil.image, depthStencil.mem, 0);
assert(!err);
vkTools::setImageLayout(setupCmdBuffer, depthStencil.image, VK_IMAGE_ASPECT_DEPTH_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
depthStencilView.image = depthStencil.image;
err = vkCreateImageView(device, &depthStencilView, nullptr, &depthStencil.view);
assert(!err);
}
void setupFrameBuffer()
{
VkImageView attachments[2];
// Depth/Stencil attachment is the same for all frame buffers
attachments[1] = depthStencil.view;
VkFramebufferCreateInfo frameBufferCreateInfo = {};
frameBufferCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
frameBufferCreateInfo.pNext = NULL;
frameBufferCreateInfo.renderPass = renderPass;
frameBufferCreateInfo.attachmentCount = 2;
frameBufferCreateInfo.pAttachments = attachments;
frameBufferCreateInfo.width = width;
frameBufferCreateInfo.height = height;
frameBufferCreateInfo.layers = 1;
// Create frame buffers for every swap chain image
frameBuffers.resize(swapChain.imageCount);
for (uint32_t i = 0; i < frameBuffers.size(); i++)
{
attachments[0] = swapChain.buffers[i].view;
VkResult err = vkCreateFramebuffer(device, &frameBufferCreateInfo, nullptr, &frameBuffers[i]);
assert(!err);
}
}
void setupRenderPass()
{
VkAttachmentDescription attachments[2];
attachments[0].format = VK_FORMAT_R8G8B8A8_UNORM;
attachments[0].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[0].initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
attachments[0].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
attachments[1].format = VK_FORMAT_D24_UNORM_S8_UINT;
attachments[1].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[1].initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
attachments[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkAttachmentReference colorReference = {};
colorReference.attachment = 0;
colorReference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkAttachmentReference depthReference = {};
depthReference.attachment = 1;
depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.flags = 0;
subpass.inputAttachmentCount = 0;
subpass.pInputAttachments = NULL;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &colorReference;
subpass.pResolveAttachments = NULL;
subpass.pDepthStencilAttachment = &depthReference;
subpass.preserveAttachmentCount = 0;
subpass.pPreserveAttachments = NULL;
VkRenderPassCreateInfo renderPassInfo = {};
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
renderPassInfo.pNext = NULL;
renderPassInfo.attachmentCount = 2;
renderPassInfo.pAttachments = attachments;
renderPassInfo.subpassCount = 1;
renderPassInfo.pSubpasses = &subpass;
renderPassInfo.dependencyCount = 0;
renderPassInfo.pDependencies = NULL;
VkResult err;
err = vkCreateRenderPass(device, &renderPassInfo, nullptr, &renderPass);
assert(!err);
}
void createCommandBuffers()
{
drawCmdBuffers.resize(swapChain.imageCount);
VkCommandBufferAllocateInfo cmdBufAllocateInfo =
vkTools::initializers::commandBufferAllocateInfo(
cmdPool,
VK_COMMAND_BUFFER_LEVEL_PRIMARY,
drawCmdBuffers.size());
VkResult vkRes = vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, drawCmdBuffers.data());
assert(!vkRes);
cmdBufAllocateInfo.commandBufferCount = 1;
// Pre present
vkRes = vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &prePresentCmdBuffer);
assert(!vkRes);
// Post present
vkRes = vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &postPresentCmdBuffer);
assert(!vkRes);
}
void submitPrePresentBarrier(VkImage image)
{
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkResult vkRes = vkBeginCommandBuffer(prePresentCmdBuffer, &cmdBufInfo);
assert(!vkRes);
VkImageMemoryBarrier prePresentBarrier = vkTools::initializers::imageMemoryBarrier();
prePresentBarrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
prePresentBarrier.dstAccessMask = 0;
prePresentBarrier.oldLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
prePresentBarrier.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
prePresentBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
prePresentBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
prePresentBarrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
prePresentBarrier.image = image;
vkCmdPipelineBarrier(
prePresentCmdBuffer,
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_FLAGS_NONE,
0, nullptr, // No memory barriers,
0, nullptr, // No buffer barriers,
1, &prePresentBarrier);
vkRes = vkEndCommandBuffer(prePresentCmdBuffer);
assert(!vkRes);
VkSubmitInfo submitInfo = vkTools::initializers::submitInfo();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &prePresentCmdBuffer;
vkRes = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
assert(!vkRes);
}
void submitPostPresentBarrier(VkImage image)
{
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkResult vkRes = vkBeginCommandBuffer(postPresentCmdBuffer, &cmdBufInfo);
assert(!vkRes);
VkImageMemoryBarrier postPresentBarrier = vkTools::initializers::imageMemoryBarrier();
postPresentBarrier.srcAccessMask = 0;
postPresentBarrier.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
postPresentBarrier.oldLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
postPresentBarrier.newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
postPresentBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
postPresentBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
postPresentBarrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
postPresentBarrier.image = image;
vkCmdPipelineBarrier(
postPresentCmdBuffer,
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
0,
0, nullptr, // No memory barriers,
0, nullptr, // No buffer barriers,
1, &postPresentBarrier);
vkRes = vkEndCommandBuffer(postPresentCmdBuffer);
assert(!vkRes);
VkSubmitInfo submitInfo = vkTools::initializers::submitInfo();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &postPresentCmdBuffer;
vkRes = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
assert(!vkRes);
}
void loadTexture(const char* fileName, VkFormat format, Texture *texture, bool forceLinearTiling)
{
VkFormatProperties formatProperties;
VkResult err;
AAsset* asset = AAssetManager_open(app->activity->assetManager, fileName, AASSET_MODE_STREAMING);
assert(asset);
size_t size = AAsset_getLength(asset);
assert(size > 0);
void *textureData = malloc(size);
AAsset_read(asset, textureData, size);
AAsset_close(asset);
gli::texture2D tex2D(gli::load((const char*)textureData, size));
assert(!tex2D.empty());
texture->width = tex2D[0].dimensions().x;
texture->height = tex2D[0].dimensions().y;
texture->mipLevels = tex2D.levels();
// Get device properites for the requested texture format
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
// Only use linear tiling if requested (and supported by the device)
// Support for linear tiling is mostly limited, so prefer to use
// optimal tiling instead
// On most implementations linear tiling will only support a very
// limited amount of formats and features (mip maps, cubemaps, arrays, etc.)
VkBool32 useStaging = true;
// Only use linear tiling if forced
if (forceLinearTiling)
{
// Don't use linear if format is not supported for (linear) shader sampling
useStaging = !(formatProperties.linearTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT);
}
VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_LINEAR;
imageCreateInfo.usage = (useStaging) ? VK_IMAGE_USAGE_TRANSFER_SRC_BIT : VK_IMAGE_USAGE_SAMPLED_BIT;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.flags = 0;
imageCreateInfo.extent = { texture->width, texture->height, 1 };
VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
startSetupCommandBuffer();
if (useStaging)
{
// Load all available mip levels into linear textures
// and copy to optimal tiling target
struct MipLevel {
VkImage image;
VkDeviceMemory memory;
};
std::vector<MipLevel> mipLevels;
mipLevels.resize(texture->mipLevels);
// Copy mip levels
for (uint32_t level = 0; level < texture->mipLevels; ++level)
{
imageCreateInfo.extent.width = tex2D[level].dimensions().x;
imageCreateInfo.extent.height = tex2D[level].dimensions().y;
imageCreateInfo.extent.depth = 1;
err = vkCreateImage(device, &imageCreateInfo, nullptr, &mipLevels[level].image);
assert(!err);
vkGetImageMemoryRequirements(device, mipLevels[level].image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAllocInfo.memoryTypeIndex);
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &mipLevels[level].memory);
assert(!err);
err = vkBindImageMemory(device, mipLevels[level].image, mipLevels[level].memory, 0);
assert(!err);
VkImageSubresource subRes = {};
subRes.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
VkSubresourceLayout subResLayout;
void *data;
vkGetImageSubresourceLayout(device, mipLevels[level].image, &subRes, &subResLayout);
assert(!err);
err = vkMapMemory(device, mipLevels[level].memory, 0, memReqs.size, 0, &data);
assert(!err);
size_t levelSize = tex2D[level].size();
memcpy(data, tex2D[level].data(), levelSize);
vkUnmapMemory(device, mipLevels[level].memory);
// Image barrier for linear image (base)
// Linear image will be used as a source for the copy
vkTools::setImageLayout(
setupCmdBuffer,
mipLevels[level].image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
}
// Setup texture as blit target with optimal tiling
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
imageCreateInfo.mipLevels = texture->mipLevels;
imageCreateInfo.extent = { texture->width, texture->height, 1 };
err = vkCreateImage(device, &imageCreateInfo, nullptr, &texture->image);
assert(!err);
vkGetImageMemoryRequirements(device, texture->image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAllocInfo.memoryTypeIndex);
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &texture->deviceMemory);
assert(!err);
err = vkBindImageMemory(device, texture->image, texture->deviceMemory, 0);
assert(!err);
// Image barrier for optimal image (target)
// Optimal image will be used as destination for the copy
vkTools::setImageLayout(
setupCmdBuffer,
texture->image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
// Copy mip levels one by one
for (uint32_t level = 0; level < texture->mipLevels; ++level)
{
// Copy region for image blit
VkImageCopy copyRegion = {};
copyRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.srcSubresource.baseArrayLayer = 0;
copyRegion.srcSubresource.mipLevel = 0;
copyRegion.srcSubresource.layerCount = 1;
copyRegion.srcOffset = { 0, 0, 0 };
copyRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.dstSubresource.baseArrayLayer = 0;
// Set mip level to copy the linear image to
copyRegion.dstSubresource.mipLevel = level;
copyRegion.dstSubresource.layerCount = 1;
copyRegion.dstOffset = { 0, 0, 0 };
copyRegion.extent.width = tex2D[level].dimensions().x;
copyRegion.extent.height = tex2D[level].dimensions().y;
copyRegion.extent.depth = 1;
// Put image copy into command buffer
vkCmdCopyImage(
setupCmdBuffer,
mipLevels[level].image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
texture->image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1, &copyRegion);
// Change texture image layout to shader read after the copy
texture->imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
vkTools::setImageLayout(
setupCmdBuffer,
texture->image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
texture->imageLayout);
}
flushSetupCommandBuffer();
// Clean up linear images
// No longer required after mip levels
// have been transformed over to optimal tiling
for (auto& level : mipLevels)
{
vkDestroyImage(device, level.image, nullptr);
vkFreeMemory(device, level.memory, nullptr);
}
}
else
{
// Prefer using optimal tiling, as linear tiling
// may support only a small set of features
// depending on implementation (e.g. no mip maps, only one layer, etc.)
VkImage mappableImage;
VkDeviceMemory mappableMemory;
// Load mip map level 0 to linear tiling image
err = vkCreateImage(device, &imageCreateInfo, nullptr, &mappableImage);
assert(!err);
// Get memory requirements for this image
// like size and alignment
vkGetImageMemoryRequirements(device, mappableImage, &memReqs);
// Set memory allocation size to required memory size
memAllocInfo.allocationSize = memReqs.size;
// Get memory type that can be mapped to host memory
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAllocInfo.memoryTypeIndex);
// Allocate host memory
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &mappableMemory);
assert(!err);
// Bind allocated image for use
err = vkBindImageMemory(device, mappableImage, mappableMemory, 0);
assert(!err);
// Get sub resource layout
// Mip map count, array layer, etc.
VkImageSubresource subRes = {};
subRes.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
VkSubresourceLayout subResLayout;
void *data;
// Get sub resources layout
// Includes row pitch, size offsets, etc.
vkGetImageSubresourceLayout(device, mappableImage, &subRes, &subResLayout);
assert(!err);
// Map image memory
err = vkMapMemory(device, mappableMemory, 0, memReqs.size, 0, &data);
assert(!err);
// Copy image data into memory
memcpy(data, tex2D[subRes.mipLevel].data(), tex2D[subRes.mipLevel].size());
vkUnmapMemory(device, mappableMemory);
// Linear tiled images don't need to be staged
// and can be directly used as textures
texture->image = mappableImage;
texture->deviceMemory = mappableMemory;
texture->imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
// Setup image memory barrier
vkTools::setImageLayout(
setupCmdBuffer,
texture->image,
VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED,
texture->imageLayout);
flushSetupCommandBuffer();
}
// Create sampler
// In Vulkan textures are accessed by samplers
// This separates all the sampling information from the
// texture data
// This means you could have multiple sampler objects
// for the same texture with different settings
// Similar to the samplers available with OpenGL 3.3
VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo();
sampler.magFilter = VK_FILTER_LINEAR;
sampler.minFilter = VK_FILTER_LINEAR;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
sampler.addressModeV = sampler.addressModeU;
sampler.addressModeW = sampler.addressModeU;
sampler.mipLodBias = 0.0f;
sampler.compareOp = VK_COMPARE_OP_NEVER;
sampler.minLod = 0.0f;
// Max level-of-detail should match mip level count
sampler.maxLod = (useStaging) ? (float)texture->mipLevels : 0.0f;
// Enable anisotropic filtering
sampler.maxAnisotropy = 8;
sampler.anisotropyEnable = VK_TRUE;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
err = vkCreateSampler(device, &sampler, nullptr, &texture->sampler);
assert(!err);
// Create image view
// Textures are not directly accessed by the shaders and
// are abstracted by image views containing additional
// information and sub resource ranges
VkImageViewCreateInfo view = vkTools::initializers::imageViewCreateInfo();
view.image = VK_NULL_HANDLE;
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
view.format = format;
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
view.subresourceRange.baseMipLevel = 0;
view.subresourceRange.baseArrayLayer = 0;
view.subresourceRange.layerCount = 1;
// Linear tiling usually won't support mip maps
// Only set mip map count if optimal tiling is used
view.subresourceRange.levelCount = (useStaging) ? texture->mipLevels : 1;
view.image = texture->image;
err = vkCreateImageView(device, &view, nullptr, &texture->view);
assert(!err);
}
// Free staging resources used while creating a texture
void destroyTextureImage(Texture *texture)
{
vkDestroyImage(device, texture->image, nullptr);
vkFreeMemory(device, texture->deviceMemory, nullptr);
}
void startTiming()
{
tStart = std::chrono::high_resolution_clock::now();
}
void endTiming()
{
auto tEnd = std::chrono::high_resolution_clock::now();
auto tDiff = std::chrono::duration<double, std::milli>(tEnd - tStart).count();
frameTimer = (float)tDiff;
}
};