627 lines
26 KiB
C++
627 lines
26 KiB
C++
/*
|
|
* Vulkan Example - Shadow mapping for directional light sources
|
|
*
|
|
* Copyright (C) 2016-2022 by Sascha Willems - www.saschawillems.de
|
|
*
|
|
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
|
*/
|
|
|
|
#include "vulkanexamplebase.h"
|
|
#include "VulkanglTFModel.h"
|
|
|
|
#define ENABLE_VALIDATION false
|
|
|
|
// 16 bits of depth is enough for such a small scene
|
|
#define DEPTH_FORMAT VK_FORMAT_D16_UNORM
|
|
|
|
// Shadowmap properties
|
|
#if defined(__ANDROID__)
|
|
#define SHADOWMAP_DIM 1024
|
|
#else
|
|
#define SHADOWMAP_DIM 2048
|
|
#endif
|
|
#define DEFAULT_SHADOWMAP_FILTER VK_FILTER_LINEAR
|
|
|
|
class VulkanExample : public VulkanExampleBase
|
|
{
|
|
public:
|
|
bool displayShadowMap = false;
|
|
bool filterPCF = true;
|
|
|
|
// Keep depth range as small as possible
|
|
// for better shadow map precision
|
|
float zNear = 1.0f;
|
|
float zFar = 96.0f;
|
|
|
|
// Depth bias (and slope) are used to avoid shadowing artifacts
|
|
// Constant depth bias factor (always applied)
|
|
float depthBiasConstant = 1.25f;
|
|
// Slope depth bias factor, applied depending on polygon's slope
|
|
float depthBiasSlope = 1.75f;
|
|
|
|
glm::vec3 lightPos = glm::vec3();
|
|
float lightFOV = 45.0f;
|
|
|
|
std::vector<vkglTF::Model> scenes;
|
|
std::vector<std::string> sceneNames;
|
|
int32_t sceneIndex = 0;
|
|
|
|
struct {
|
|
vks::Buffer scene;
|
|
vks::Buffer offscreen;
|
|
} uniformBuffers;
|
|
|
|
struct {
|
|
glm::mat4 projection;
|
|
glm::mat4 view;
|
|
glm::mat4 model;
|
|
glm::mat4 depthBiasMVP;
|
|
glm::vec4 lightPos;
|
|
// Used for depth map visualization
|
|
float zNear;
|
|
float zFar;
|
|
} uboVSscene;
|
|
|
|
struct {
|
|
glm::mat4 depthMVP;
|
|
} uboOffscreenVS;
|
|
|
|
struct {
|
|
VkPipeline offscreen;
|
|
VkPipeline sceneShadow;
|
|
VkPipeline sceneShadowPCF;
|
|
VkPipeline debug;
|
|
} pipelines;
|
|
VkPipelineLayout pipelineLayout;
|
|
|
|
struct {
|
|
VkDescriptorSet offscreen;
|
|
VkDescriptorSet scene;
|
|
VkDescriptorSet debug;
|
|
} descriptorSets;
|
|
|
|
VkDescriptorSetLayout descriptorSetLayout;
|
|
|
|
// Framebuffer for offscreen rendering
|
|
struct FrameBufferAttachment {
|
|
VkImage image;
|
|
VkDeviceMemory mem;
|
|
VkImageView view;
|
|
};
|
|
struct OffscreenPass {
|
|
int32_t width, height;
|
|
VkFramebuffer frameBuffer;
|
|
FrameBufferAttachment depth;
|
|
VkRenderPass renderPass;
|
|
VkSampler depthSampler;
|
|
VkDescriptorImageInfo descriptor;
|
|
} offscreenPass;
|
|
|
|
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
|
|
{
|
|
title = "Projected shadow mapping";
|
|
camera.type = Camera::CameraType::lookat;
|
|
camera.setPosition(glm::vec3(0.0f, -0.0f, -20.0f));
|
|
camera.setRotation(glm::vec3(-15.0f, -390.0f, 0.0f));
|
|
camera.setPerspective(60.0f, (float)width / (float)height, 1.0f, 256.0f);
|
|
timerSpeed *= 0.5f;
|
|
}
|
|
|
|
~VulkanExample()
|
|
{
|
|
// Clean up used Vulkan resources
|
|
// Note : Inherited destructor cleans up resources stored in base class
|
|
|
|
// Frame buffer
|
|
vkDestroySampler(device, offscreenPass.depthSampler, nullptr);
|
|
|
|
// Depth attachment
|
|
vkDestroyImageView(device, offscreenPass.depth.view, nullptr);
|
|
vkDestroyImage(device, offscreenPass.depth.image, nullptr);
|
|
vkFreeMemory(device, offscreenPass.depth.mem, nullptr);
|
|
|
|
vkDestroyFramebuffer(device, offscreenPass.frameBuffer, nullptr);
|
|
|
|
vkDestroyRenderPass(device, offscreenPass.renderPass, nullptr);
|
|
|
|
vkDestroyPipeline(device, pipelines.debug, nullptr);
|
|
vkDestroyPipeline(device, pipelines.offscreen, nullptr);
|
|
vkDestroyPipeline(device, pipelines.sceneShadow, nullptr);
|
|
vkDestroyPipeline(device, pipelines.sceneShadowPCF, nullptr);
|
|
|
|
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
|
|
|
|
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
|
|
|
|
// Uniform buffers
|
|
uniformBuffers.offscreen.destroy();
|
|
uniformBuffers.scene.destroy();
|
|
}
|
|
|
|
// Set up a separate render pass for the offscreen frame buffer
|
|
// This is necessary as the offscreen frame buffer attachments use formats different to those from the example render pass
|
|
void prepareOffscreenRenderpass()
|
|
{
|
|
VkAttachmentDescription attachmentDescription{};
|
|
attachmentDescription.format = DEPTH_FORMAT;
|
|
attachmentDescription.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
attachmentDescription.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; // Clear depth at beginning of the render pass
|
|
attachmentDescription.storeOp = VK_ATTACHMENT_STORE_OP_STORE; // We will read from depth, so it's important to store the depth attachment results
|
|
attachmentDescription.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
|
|
attachmentDescription.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
|
|
attachmentDescription.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; // We don't care about initial layout of the attachment
|
|
attachmentDescription.finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL;// Attachment will be transitioned to shader read at render pass end
|
|
|
|
VkAttachmentReference depthReference = {};
|
|
depthReference.attachment = 0;
|
|
depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; // Attachment will be used as depth/stencil during render pass
|
|
|
|
VkSubpassDescription subpass = {};
|
|
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
|
|
subpass.colorAttachmentCount = 0; // No color attachments
|
|
subpass.pDepthStencilAttachment = &depthReference; // Reference to our depth attachment
|
|
|
|
// Use subpass dependencies for layout transitions
|
|
std::array<VkSubpassDependency, 2> dependencies;
|
|
|
|
dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL;
|
|
dependencies[0].dstSubpass = 0;
|
|
dependencies[0].srcStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
|
|
dependencies[0].dstStageMask = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT;
|
|
dependencies[0].srcAccessMask = VK_ACCESS_SHADER_READ_BIT;
|
|
dependencies[0].dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
|
|
dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
|
|
|
|
dependencies[1].srcSubpass = 0;
|
|
dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL;
|
|
dependencies[1].srcStageMask = VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
|
|
dependencies[1].dstStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
|
|
dependencies[1].srcAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
|
|
dependencies[1].dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
|
|
dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
|
|
|
|
VkRenderPassCreateInfo renderPassCreateInfo = vks::initializers::renderPassCreateInfo();
|
|
renderPassCreateInfo.attachmentCount = 1;
|
|
renderPassCreateInfo.pAttachments = &attachmentDescription;
|
|
renderPassCreateInfo.subpassCount = 1;
|
|
renderPassCreateInfo.pSubpasses = &subpass;
|
|
renderPassCreateInfo.dependencyCount = static_cast<uint32_t>(dependencies.size());
|
|
renderPassCreateInfo.pDependencies = dependencies.data();
|
|
|
|
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCreateInfo, nullptr, &offscreenPass.renderPass));
|
|
}
|
|
|
|
// Setup the offscreen framebuffer for rendering the scene from light's point-of-view to
|
|
// The depth attachment of this framebuffer will then be used to sample from in the fragment shader of the shadowing pass
|
|
void prepareOffscreenFramebuffer()
|
|
{
|
|
offscreenPass.width = SHADOWMAP_DIM;
|
|
offscreenPass.height = SHADOWMAP_DIM;
|
|
|
|
// For shadow mapping we only need a depth attachment
|
|
VkImageCreateInfo image = vks::initializers::imageCreateInfo();
|
|
image.imageType = VK_IMAGE_TYPE_2D;
|
|
image.extent.width = offscreenPass.width;
|
|
image.extent.height = offscreenPass.height;
|
|
image.extent.depth = 1;
|
|
image.mipLevels = 1;
|
|
image.arrayLayers = 1;
|
|
image.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
image.tiling = VK_IMAGE_TILING_OPTIMAL;
|
|
image.format = DEPTH_FORMAT; // Depth stencil attachment
|
|
image.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; // We will sample directly from the depth attachment for the shadow mapping
|
|
VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &offscreenPass.depth.image));
|
|
|
|
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
|
|
VkMemoryRequirements memReqs;
|
|
vkGetImageMemoryRequirements(device, offscreenPass.depth.image, &memReqs);
|
|
memAlloc.allocationSize = memReqs.size;
|
|
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
|
|
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &offscreenPass.depth.mem));
|
|
VK_CHECK_RESULT(vkBindImageMemory(device, offscreenPass.depth.image, offscreenPass.depth.mem, 0));
|
|
|
|
VkImageViewCreateInfo depthStencilView = vks::initializers::imageViewCreateInfo();
|
|
depthStencilView.viewType = VK_IMAGE_VIEW_TYPE_2D;
|
|
depthStencilView.format = DEPTH_FORMAT;
|
|
depthStencilView.subresourceRange = {};
|
|
depthStencilView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
|
|
depthStencilView.subresourceRange.baseMipLevel = 0;
|
|
depthStencilView.subresourceRange.levelCount = 1;
|
|
depthStencilView.subresourceRange.baseArrayLayer = 0;
|
|
depthStencilView.subresourceRange.layerCount = 1;
|
|
depthStencilView.image = offscreenPass.depth.image;
|
|
VK_CHECK_RESULT(vkCreateImageView(device, &depthStencilView, nullptr, &offscreenPass.depth.view));
|
|
|
|
// Create sampler to sample from to depth attachment
|
|
// Used to sample in the fragment shader for shadowed rendering
|
|
VkFilter shadowmap_filter = vks::tools::formatIsFilterable(physicalDevice, DEPTH_FORMAT, VK_IMAGE_TILING_OPTIMAL) ?
|
|
DEFAULT_SHADOWMAP_FILTER :
|
|
VK_FILTER_NEAREST;
|
|
VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo();
|
|
sampler.magFilter = shadowmap_filter;
|
|
sampler.minFilter = shadowmap_filter;
|
|
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
|
|
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
|
|
sampler.addressModeV = sampler.addressModeU;
|
|
sampler.addressModeW = sampler.addressModeU;
|
|
sampler.mipLodBias = 0.0f;
|
|
sampler.maxAnisotropy = 1.0f;
|
|
sampler.minLod = 0.0f;
|
|
sampler.maxLod = 1.0f;
|
|
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
|
|
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &offscreenPass.depthSampler));
|
|
|
|
prepareOffscreenRenderpass();
|
|
|
|
// Create frame buffer
|
|
VkFramebufferCreateInfo fbufCreateInfo = vks::initializers::framebufferCreateInfo();
|
|
fbufCreateInfo.renderPass = offscreenPass.renderPass;
|
|
fbufCreateInfo.attachmentCount = 1;
|
|
fbufCreateInfo.pAttachments = &offscreenPass.depth.view;
|
|
fbufCreateInfo.width = offscreenPass.width;
|
|
fbufCreateInfo.height = offscreenPass.height;
|
|
fbufCreateInfo.layers = 1;
|
|
|
|
VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offscreenPass.frameBuffer));
|
|
}
|
|
|
|
void buildCommandBuffers()
|
|
{
|
|
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
|
|
|
VkClearValue clearValues[2];
|
|
VkViewport viewport;
|
|
VkRect2D scissor;
|
|
|
|
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
|
|
{
|
|
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
|
|
|
|
/*
|
|
First render pass: Generate shadow map by rendering the scene from light's POV
|
|
*/
|
|
{
|
|
clearValues[0].depthStencil = { 1.0f, 0 };
|
|
|
|
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
|
|
renderPassBeginInfo.renderPass = offscreenPass.renderPass;
|
|
renderPassBeginInfo.framebuffer = offscreenPass.frameBuffer;
|
|
renderPassBeginInfo.renderArea.extent.width = offscreenPass.width;
|
|
renderPassBeginInfo.renderArea.extent.height = offscreenPass.height;
|
|
renderPassBeginInfo.clearValueCount = 1;
|
|
renderPassBeginInfo.pClearValues = clearValues;
|
|
|
|
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
|
|
|
viewport = vks::initializers::viewport((float)offscreenPass.width, (float)offscreenPass.height, 0.0f, 1.0f);
|
|
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
|
|
|
scissor = vks::initializers::rect2D(offscreenPass.width, offscreenPass.height, 0, 0);
|
|
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
|
|
|
// Set depth bias (aka "Polygon offset")
|
|
// Required to avoid shadow mapping artifacts
|
|
vkCmdSetDepthBias(
|
|
drawCmdBuffers[i],
|
|
depthBiasConstant,
|
|
0.0f,
|
|
depthBiasSlope);
|
|
|
|
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.offscreen);
|
|
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.offscreen, 0, nullptr);
|
|
scenes[sceneIndex].draw(drawCmdBuffers[i]);
|
|
|
|
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
|
}
|
|
|
|
/*
|
|
Note: Explicit synchronization is not required between the render pass, as this is done implicit via sub pass dependencies
|
|
*/
|
|
|
|
/*
|
|
Second pass: Scene rendering with applied shadow map
|
|
*/
|
|
|
|
{
|
|
clearValues[0].color = defaultClearColor;
|
|
clearValues[1].depthStencil = { 1.0f, 0 };
|
|
|
|
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
|
|
renderPassBeginInfo.renderPass = renderPass;
|
|
renderPassBeginInfo.framebuffer = frameBuffers[i];
|
|
renderPassBeginInfo.renderArea.extent.width = width;
|
|
renderPassBeginInfo.renderArea.extent.height = height;
|
|
renderPassBeginInfo.clearValueCount = 2;
|
|
renderPassBeginInfo.pClearValues = clearValues;
|
|
|
|
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
|
|
|
viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
|
|
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
|
|
|
scissor = vks::initializers::rect2D(width, height, 0, 0);
|
|
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
|
|
|
// Visualize shadow map
|
|
if (displayShadowMap) {
|
|
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.debug, 0, nullptr);
|
|
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.debug);
|
|
vkCmdDraw(drawCmdBuffers[i], 3, 1, 0, 0);
|
|
} else {
|
|
// Render the shadows scene
|
|
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.scene, 0, nullptr);
|
|
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, (filterPCF) ? pipelines.sceneShadowPCF : pipelines.sceneShadow);
|
|
scenes[sceneIndex].draw(drawCmdBuffers[i]);
|
|
}
|
|
|
|
drawUI(drawCmdBuffers[i]);
|
|
|
|
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
|
}
|
|
|
|
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
|
|
}
|
|
}
|
|
|
|
void loadAssets()
|
|
{
|
|
const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY;
|
|
scenes.resize(2);
|
|
scenes[0].loadFromFile(getAssetPath() + "models/vulkanscene_shadow.gltf", vulkanDevice, queue, glTFLoadingFlags);
|
|
scenes[1].loadFromFile(getAssetPath() + "models/samplescene.gltf", vulkanDevice, queue, glTFLoadingFlags);
|
|
sceneNames = {"Vulkan scene", "Teapots and pillars" };
|
|
}
|
|
|
|
void setupDescriptorPool()
|
|
{
|
|
std::vector<VkDescriptorPoolSize> poolSizes = {
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3),
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 3)
|
|
};
|
|
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 3);
|
|
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
|
|
}
|
|
|
|
void setupDescriptorSetLayout()
|
|
{
|
|
// Shared pipeline layout for all pipelines used in this sample
|
|
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
|
|
// Binding 0 : Vertex shader uniform buffer
|
|
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0),
|
|
// Binding 1 : Fragment shader image sampler (shadow map)
|
|
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1)
|
|
};
|
|
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
|
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
|
|
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
|
|
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
|
|
}
|
|
|
|
void setupDescriptorSets()
|
|
{
|
|
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
|
|
|
|
// Image descriptor for the shadow map attachment
|
|
VkDescriptorImageInfo shadowMapDescriptor =
|
|
vks::initializers::descriptorImageInfo(
|
|
offscreenPass.depthSampler,
|
|
offscreenPass.depth.view,
|
|
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL);
|
|
|
|
// Debug display
|
|
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.debug));
|
|
writeDescriptorSets = {
|
|
// Binding 0 : Parameters uniform buffer
|
|
vks::initializers::writeDescriptorSet(descriptorSets.debug, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.scene.descriptor),
|
|
// Binding 1 : Fragment shader texture sampler
|
|
vks::initializers::writeDescriptorSet(descriptorSets.debug, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &shadowMapDescriptor)
|
|
};
|
|
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, nullptr);
|
|
|
|
// Offscreen shadow map generation
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.offscreen));
|
|
writeDescriptorSets = {
|
|
// Binding 0 : Vertex shader uniform buffer
|
|
vks::initializers::writeDescriptorSet(descriptorSets.offscreen, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.offscreen.descriptor),
|
|
};
|
|
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, nullptr);
|
|
|
|
// Scene rendering with shadow map applied
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.scene));
|
|
writeDescriptorSets = {
|
|
// Binding 0 : Vertex shader uniform buffer
|
|
vks::initializers::writeDescriptorSet(descriptorSets.scene, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.scene.descriptor),
|
|
// Binding 1 : Fragment shader shadow sampler
|
|
vks::initializers::writeDescriptorSet(descriptorSets.scene, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &shadowMapDescriptor)
|
|
};
|
|
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, nullptr);
|
|
}
|
|
|
|
void preparePipelines()
|
|
{
|
|
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
|
|
VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
|
|
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
|
|
VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
|
|
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
|
|
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
|
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
|
|
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
|
|
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), dynamicStateEnables.size(), 0);
|
|
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
|
|
|
|
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
|
|
pipelineCI.pInputAssemblyState = &inputAssemblyStateCI;
|
|
pipelineCI.pRasterizationState = &rasterizationStateCI;
|
|
pipelineCI.pColorBlendState = &colorBlendStateCI;
|
|
pipelineCI.pMultisampleState = &multisampleStateCI;
|
|
pipelineCI.pViewportState = &viewportStateCI;
|
|
pipelineCI.pDepthStencilState = &depthStencilStateCI;
|
|
pipelineCI.pDynamicState = &dynamicStateCI;
|
|
pipelineCI.stageCount = shaderStages.size();
|
|
pipelineCI.pStages = shaderStages.data();
|
|
|
|
// Shadow mapping debug quad display
|
|
rasterizationStateCI.cullMode = VK_CULL_MODE_NONE;
|
|
shaderStages[0] = loadShader(getShadersPath() + "shadowmapping/quad.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
|
shaderStages[1] = loadShader(getShadersPath() + "shadowmapping/quad.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
|
// Empty vertex input state
|
|
VkPipelineVertexInputStateCreateInfo emptyInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
|
|
pipelineCI.pVertexInputState = &emptyInputState;
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.debug));
|
|
|
|
// Scene rendering with shadows applied
|
|
pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({vkglTF::VertexComponent::Position, vkglTF::VertexComponent::UV, vkglTF::VertexComponent::Color, vkglTF::VertexComponent::Normal});
|
|
rasterizationStateCI.cullMode = VK_CULL_MODE_BACK_BIT;
|
|
shaderStages[0] = loadShader(getShadersPath() + "shadowmapping/scene.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
|
shaderStages[1] = loadShader(getShadersPath() + "shadowmapping/scene.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
|
// Use specialization constants to select between horizontal and vertical blur
|
|
uint32_t enablePCF = 0;
|
|
VkSpecializationMapEntry specializationMapEntry = vks::initializers::specializationMapEntry(0, 0, sizeof(uint32_t));
|
|
VkSpecializationInfo specializationInfo = vks::initializers::specializationInfo(1, &specializationMapEntry, sizeof(uint32_t), &enablePCF);
|
|
shaderStages[1].pSpecializationInfo = &specializationInfo;
|
|
// No filtering
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.sceneShadow));
|
|
// PCF filtering
|
|
enablePCF = 1;
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.sceneShadowPCF));
|
|
|
|
// Offscreen pipeline (vertex shader only)
|
|
shaderStages[0] = loadShader(getShadersPath() + "shadowmapping/offscreen.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
|
pipelineCI.stageCount = 1;
|
|
// No blend attachment states (no color attachments used)
|
|
colorBlendStateCI.attachmentCount = 0;
|
|
// Disable culling, so all faces contribute to shadows
|
|
rasterizationStateCI.cullMode = VK_CULL_MODE_NONE;
|
|
depthStencilStateCI.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL;
|
|
// Enable depth bias
|
|
rasterizationStateCI.depthBiasEnable = VK_TRUE;
|
|
// Add depth bias to dynamic state, so we can change it at runtime
|
|
dynamicStateEnables.push_back(VK_DYNAMIC_STATE_DEPTH_BIAS);
|
|
dynamicStateCI =
|
|
vks::initializers::pipelineDynamicStateCreateInfo(
|
|
dynamicStateEnables.data(),
|
|
dynamicStateEnables.size(),
|
|
0);
|
|
|
|
pipelineCI.renderPass = offscreenPass.renderPass;
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.offscreen));
|
|
}
|
|
|
|
// Prepare and initialize uniform buffer containing shader uniforms
|
|
void prepareUniformBuffers()
|
|
{
|
|
// Offscreen vertex shader uniform buffer block
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&uniformBuffers.offscreen,
|
|
sizeof(uboOffscreenVS)));
|
|
|
|
// Scene vertex shader uniform buffer block
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&uniformBuffers.scene,
|
|
sizeof(uboVSscene)));
|
|
|
|
// Map persistent
|
|
VK_CHECK_RESULT(uniformBuffers.offscreen.map());
|
|
VK_CHECK_RESULT(uniformBuffers.scene.map());
|
|
|
|
updateLight();
|
|
updateUniformBufferOffscreen();
|
|
updateUniformBuffers();
|
|
}
|
|
|
|
void updateLight()
|
|
{
|
|
// Animate the light source
|
|
lightPos.x = cos(glm::radians(timer * 360.0f)) * 40.0f;
|
|
lightPos.y = -50.0f + sin(glm::radians(timer * 360.0f)) * 20.0f;
|
|
lightPos.z = 25.0f + sin(glm::radians(timer * 360.0f)) * 5.0f;
|
|
}
|
|
|
|
void updateUniformBuffers()
|
|
{
|
|
uboVSscene.projection = camera.matrices.perspective;
|
|
uboVSscene.view = camera.matrices.view;
|
|
uboVSscene.model = glm::mat4(1.0f);
|
|
uboVSscene.lightPos = glm::vec4(lightPos, 1.0f);
|
|
uboVSscene.depthBiasMVP = uboOffscreenVS.depthMVP;
|
|
uboVSscene.zNear = zNear;
|
|
uboVSscene.zFar = zFar;
|
|
memcpy(uniformBuffers.scene.mapped, &uboVSscene, sizeof(uboVSscene));
|
|
}
|
|
|
|
void updateUniformBufferOffscreen()
|
|
{
|
|
// Matrix from light's point of view
|
|
glm::mat4 depthProjectionMatrix = glm::perspective(glm::radians(lightFOV), 1.0f, zNear, zFar);
|
|
glm::mat4 depthViewMatrix = glm::lookAt(lightPos, glm::vec3(0.0f), glm::vec3(0, 1, 0));
|
|
glm::mat4 depthModelMatrix = glm::mat4(1.0f);
|
|
|
|
uboOffscreenVS.depthMVP = depthProjectionMatrix * depthViewMatrix * depthModelMatrix;
|
|
|
|
memcpy(uniformBuffers.offscreen.mapped, &uboOffscreenVS, sizeof(uboOffscreenVS));
|
|
}
|
|
|
|
void draw()
|
|
{
|
|
VulkanExampleBase::prepareFrame();
|
|
|
|
// Command buffer to be submitted to the queue
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
|
|
|
|
// Submit to queue
|
|
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
|
|
|
|
VulkanExampleBase::submitFrame();
|
|
}
|
|
|
|
void prepare()
|
|
{
|
|
VulkanExampleBase::prepare();
|
|
loadAssets();
|
|
prepareOffscreenFramebuffer();
|
|
prepareUniformBuffers();
|
|
setupDescriptorSetLayout();
|
|
preparePipelines();
|
|
setupDescriptorPool();
|
|
setupDescriptorSets();
|
|
buildCommandBuffers();
|
|
prepared = true;
|
|
}
|
|
|
|
virtual void render()
|
|
{
|
|
if (!prepared)
|
|
return;
|
|
draw();
|
|
if (!paused || camera.updated)
|
|
{
|
|
updateLight();
|
|
updateUniformBufferOffscreen();
|
|
updateUniformBuffers();
|
|
}
|
|
}
|
|
|
|
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
|
|
{
|
|
if (overlay->header("Settings")) {
|
|
if (overlay->comboBox("Scenes", &sceneIndex, sceneNames)) {
|
|
buildCommandBuffers();
|
|
}
|
|
if (overlay->checkBox("Display shadow render target", &displayShadowMap)) {
|
|
buildCommandBuffers();
|
|
}
|
|
if (overlay->checkBox("PCF filtering", &filterPCF)) {
|
|
buildCommandBuffers();
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
VULKAN_EXAMPLE_MAIN()
|