445 lines
No EOL
17 KiB
C++
445 lines
No EOL
17 KiB
C++
/*
|
|
* Vulkan Example - Taking screenshots
|
|
*
|
|
* Copyright (C) 2016-2023 by Sascha Willems - www.saschawillems.de
|
|
*
|
|
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
|
*/
|
|
|
|
#include "vulkanexamplebase.h"
|
|
#include "VulkanglTFModel.h"
|
|
|
|
#define ENABLE_VALIDATION false
|
|
|
|
class VulkanExample : public VulkanExampleBase
|
|
{
|
|
public:
|
|
vkglTF::Model model;
|
|
vks::Buffer uniformBuffer;
|
|
|
|
struct {
|
|
glm::mat4 projection;
|
|
glm::mat4 model;
|
|
glm::mat4 view;
|
|
int32_t texIndex = 0;
|
|
} uboVS;
|
|
|
|
VkPipelineLayout pipelineLayout;
|
|
VkPipeline pipeline;
|
|
VkDescriptorSetLayout descriptorSetLayout;
|
|
VkDescriptorSet descriptorSet;
|
|
|
|
bool screenshotSaved = false;
|
|
|
|
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
|
|
{
|
|
title = "Saving framebuffer to screenshot";
|
|
camera.type = Camera::CameraType::lookat;
|
|
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
|
|
camera.setRotation(glm::vec3(-25.0f, 23.75f, 0.0f));
|
|
camera.setTranslation(glm::vec3(0.0f, 0.0f, -3.0f));
|
|
}
|
|
|
|
~VulkanExample()
|
|
{
|
|
vkDestroyPipeline(device, pipeline, nullptr);
|
|
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
|
|
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
|
|
uniformBuffer.destroy();
|
|
}
|
|
|
|
void loadAssets()
|
|
{
|
|
model.loadFromFile(getAssetPath() + "models/chinesedragon.gltf", vulkanDevice, queue, vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY);
|
|
}
|
|
|
|
void buildCommandBuffers()
|
|
{
|
|
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
|
|
|
VkClearValue clearValues[2];
|
|
clearValues[0].color = defaultClearColor;
|
|
clearValues[1].depthStencil = { 1.0f, 0 };
|
|
|
|
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
|
|
renderPassBeginInfo.renderPass = renderPass;
|
|
renderPassBeginInfo.renderArea.offset.x = 0;
|
|
renderPassBeginInfo.renderArea.offset.y = 0;
|
|
renderPassBeginInfo.renderArea.extent.width = width;
|
|
renderPassBeginInfo.renderArea.extent.height = height;
|
|
renderPassBeginInfo.clearValueCount = 2;
|
|
renderPassBeginInfo.pClearValues = clearValues;
|
|
|
|
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
|
|
{
|
|
// Set target frame buffer
|
|
renderPassBeginInfo.framebuffer = frameBuffers[i];
|
|
|
|
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
|
|
|
|
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
|
|
|
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
|
|
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
|
|
|
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
|
|
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
|
|
|
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
|
|
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
|
|
model.draw(drawCmdBuffers[i]);
|
|
|
|
drawUI(drawCmdBuffers[i]);
|
|
|
|
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
|
|
|
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
|
|
}
|
|
}
|
|
|
|
void setupDescriptorPool()
|
|
{
|
|
std::vector<VkDescriptorPoolSize> poolSizes = {
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
|
|
};
|
|
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
|
|
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
|
|
}
|
|
|
|
void setupDescriptorSetLayout()
|
|
{
|
|
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
|
|
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 0: Vertex shader uniform buffer
|
|
};
|
|
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
|
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
|
|
|
|
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
|
|
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
|
|
}
|
|
|
|
void setupDescriptorSet()
|
|
{
|
|
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
|
|
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
|
|
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffer.descriptor), // Binding 0: Vertex shader uniform buffer
|
|
};
|
|
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
|
|
}
|
|
|
|
void preparePipelines()
|
|
{
|
|
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
|
|
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
|
|
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
|
|
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
|
|
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
|
|
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
|
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
|
|
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
|
|
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
|
|
|
|
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages = {
|
|
loadShader(getShadersPath() + "screenshot/mesh.vert.spv", VK_SHADER_STAGE_VERTEX_BIT),
|
|
loadShader(getShadersPath() + "screenshot/mesh.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT),
|
|
};
|
|
|
|
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
|
|
pipelineCI.pInputAssemblyState = &inputAssemblyState;
|
|
pipelineCI.pRasterizationState = &rasterizationState;
|
|
pipelineCI.pColorBlendState = &colorBlendState;
|
|
pipelineCI.pMultisampleState = &multisampleState;
|
|
pipelineCI.pViewportState = &viewportState;
|
|
pipelineCI.pDepthStencilState = &depthStencilState;
|
|
pipelineCI.pDynamicState = &dynamicState;
|
|
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
|
|
pipelineCI.pStages = shaderStages.data();
|
|
pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({vkglTF::VertexComponent::Position, vkglTF::VertexComponent::Normal, vkglTF::VertexComponent::Color});
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline));
|
|
}
|
|
|
|
void prepareUniformBuffers()
|
|
{
|
|
// Vertex shader uniform buffer block
|
|
vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&uniformBuffer,
|
|
sizeof(uboVS));
|
|
VK_CHECK_RESULT(uniformBuffer.map());
|
|
updateUniformBuffers();
|
|
}
|
|
|
|
void updateUniformBuffers()
|
|
{
|
|
uboVS.projection = camera.matrices.perspective;
|
|
uboVS.view = camera.matrices.view;
|
|
uboVS.model = glm::mat4(1.0f);
|
|
uniformBuffer.copyTo(&uboVS, sizeof(uboVS));
|
|
}
|
|
|
|
// Take a screenshot from the current swapchain image
|
|
// This is done using a blit from the swapchain image to a linear image whose memory content is then saved as a ppm image
|
|
// Getting the image date directly from a swapchain image wouldn't work as they're usually stored in an implementation dependent optimal tiling format
|
|
// Note: This requires the swapchain images to be created with the VK_IMAGE_USAGE_TRANSFER_SRC_BIT flag (see VulkanSwapChain::create)
|
|
void saveScreenshot(const char *filename)
|
|
{
|
|
screenshotSaved = false;
|
|
bool supportsBlit = true;
|
|
|
|
// Check blit support for source and destination
|
|
VkFormatProperties formatProps;
|
|
|
|
// Check if the device supports blitting from optimal images (the swapchain images are in optimal format)
|
|
vkGetPhysicalDeviceFormatProperties(physicalDevice, swapChain.colorFormat, &formatProps);
|
|
if (!(formatProps.optimalTilingFeatures & VK_FORMAT_FEATURE_BLIT_SRC_BIT)) {
|
|
std::cerr << "Device does not support blitting from optimal tiled images, using copy instead of blit!" << std::endl;
|
|
supportsBlit = false;
|
|
}
|
|
|
|
// Check if the device supports blitting to linear images
|
|
vkGetPhysicalDeviceFormatProperties(physicalDevice, VK_FORMAT_R8G8B8A8_UNORM, &formatProps);
|
|
if (!(formatProps.linearTilingFeatures & VK_FORMAT_FEATURE_BLIT_DST_BIT)) {
|
|
std::cerr << "Device does not support blitting to linear tiled images, using copy instead of blit!" << std::endl;
|
|
supportsBlit = false;
|
|
}
|
|
|
|
// Source for the copy is the last rendered swapchain image
|
|
VkImage srcImage = swapChain.images[currentBuffer];
|
|
|
|
// Create the linear tiled destination image to copy to and to read the memory from
|
|
VkImageCreateInfo imageCreateCI(vks::initializers::imageCreateInfo());
|
|
imageCreateCI.imageType = VK_IMAGE_TYPE_2D;
|
|
// Note that vkCmdBlitImage (if supported) will also do format conversions if the swapchain color format would differ
|
|
imageCreateCI.format = VK_FORMAT_R8G8B8A8_UNORM;
|
|
imageCreateCI.extent.width = width;
|
|
imageCreateCI.extent.height = height;
|
|
imageCreateCI.extent.depth = 1;
|
|
imageCreateCI.arrayLayers = 1;
|
|
imageCreateCI.mipLevels = 1;
|
|
imageCreateCI.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
|
imageCreateCI.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
imageCreateCI.tiling = VK_IMAGE_TILING_LINEAR;
|
|
imageCreateCI.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT;
|
|
// Create the image
|
|
VkImage dstImage;
|
|
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateCI, nullptr, &dstImage));
|
|
// Create memory to back up the image
|
|
VkMemoryRequirements memRequirements;
|
|
VkMemoryAllocateInfo memAllocInfo(vks::initializers::memoryAllocateInfo());
|
|
VkDeviceMemory dstImageMemory;
|
|
vkGetImageMemoryRequirements(device, dstImage, &memRequirements);
|
|
memAllocInfo.allocationSize = memRequirements.size;
|
|
// Memory must be host visible to copy from
|
|
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memRequirements.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
|
|
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &dstImageMemory));
|
|
VK_CHECK_RESULT(vkBindImageMemory(device, dstImage, dstImageMemory, 0));
|
|
|
|
// Do the actual blit from the swapchain image to our host visible destination image
|
|
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
|
|
|
// Transition destination image to transfer destination layout
|
|
vks::tools::insertImageMemoryBarrier(
|
|
copyCmd,
|
|
dstImage,
|
|
0,
|
|
VK_ACCESS_TRANSFER_WRITE_BIT,
|
|
VK_IMAGE_LAYOUT_UNDEFINED,
|
|
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
|
VK_PIPELINE_STAGE_TRANSFER_BIT,
|
|
VK_PIPELINE_STAGE_TRANSFER_BIT,
|
|
VkImageSubresourceRange{ VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 });
|
|
|
|
// Transition swapchain image from present to transfer source layout
|
|
vks::tools::insertImageMemoryBarrier(
|
|
copyCmd,
|
|
srcImage,
|
|
VK_ACCESS_MEMORY_READ_BIT,
|
|
VK_ACCESS_TRANSFER_READ_BIT,
|
|
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
|
|
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
|
|
VK_PIPELINE_STAGE_TRANSFER_BIT,
|
|
VK_PIPELINE_STAGE_TRANSFER_BIT,
|
|
VkImageSubresourceRange{ VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 });
|
|
|
|
// If source and destination support blit we'll blit as this also does automatic format conversion (e.g. from BGR to RGB)
|
|
if (supportsBlit)
|
|
{
|
|
// Define the region to blit (we will blit the whole swapchain image)
|
|
VkOffset3D blitSize;
|
|
blitSize.x = width;
|
|
blitSize.y = height;
|
|
blitSize.z = 1;
|
|
VkImageBlit imageBlitRegion{};
|
|
imageBlitRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
imageBlitRegion.srcSubresource.layerCount = 1;
|
|
imageBlitRegion.srcOffsets[1] = blitSize;
|
|
imageBlitRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
imageBlitRegion.dstSubresource.layerCount = 1;
|
|
imageBlitRegion.dstOffsets[1] = blitSize;
|
|
|
|
// Issue the blit command
|
|
vkCmdBlitImage(
|
|
copyCmd,
|
|
srcImage, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
|
|
dstImage, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
|
1,
|
|
&imageBlitRegion,
|
|
VK_FILTER_NEAREST);
|
|
}
|
|
else
|
|
{
|
|
// Otherwise use image copy (requires us to manually flip components)
|
|
VkImageCopy imageCopyRegion{};
|
|
imageCopyRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
imageCopyRegion.srcSubresource.layerCount = 1;
|
|
imageCopyRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
imageCopyRegion.dstSubresource.layerCount = 1;
|
|
imageCopyRegion.extent.width = width;
|
|
imageCopyRegion.extent.height = height;
|
|
imageCopyRegion.extent.depth = 1;
|
|
|
|
// Issue the copy command
|
|
vkCmdCopyImage(
|
|
copyCmd,
|
|
srcImage, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
|
|
dstImage, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
|
1,
|
|
&imageCopyRegion);
|
|
}
|
|
|
|
// Transition destination image to general layout, which is the required layout for mapping the image memory later on
|
|
vks::tools::insertImageMemoryBarrier(
|
|
copyCmd,
|
|
dstImage,
|
|
VK_ACCESS_TRANSFER_WRITE_BIT,
|
|
VK_ACCESS_MEMORY_READ_BIT,
|
|
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
|
VK_IMAGE_LAYOUT_GENERAL,
|
|
VK_PIPELINE_STAGE_TRANSFER_BIT,
|
|
VK_PIPELINE_STAGE_TRANSFER_BIT,
|
|
VkImageSubresourceRange{ VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 });
|
|
|
|
// Transition back the swap chain image after the blit is done
|
|
vks::tools::insertImageMemoryBarrier(
|
|
copyCmd,
|
|
srcImage,
|
|
VK_ACCESS_TRANSFER_READ_BIT,
|
|
VK_ACCESS_MEMORY_READ_BIT,
|
|
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
|
|
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
|
|
VK_PIPELINE_STAGE_TRANSFER_BIT,
|
|
VK_PIPELINE_STAGE_TRANSFER_BIT,
|
|
VkImageSubresourceRange{ VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 });
|
|
|
|
vulkanDevice->flushCommandBuffer(copyCmd, queue);
|
|
|
|
// Get layout of the image (including row pitch)
|
|
VkImageSubresource subResource { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0 };
|
|
VkSubresourceLayout subResourceLayout;
|
|
vkGetImageSubresourceLayout(device, dstImage, &subResource, &subResourceLayout);
|
|
|
|
// Map image memory so we can start copying from it
|
|
const char* data;
|
|
vkMapMemory(device, dstImageMemory, 0, VK_WHOLE_SIZE, 0, (void**)&data);
|
|
data += subResourceLayout.offset;
|
|
|
|
std::ofstream file(filename, std::ios::out | std::ios::binary);
|
|
|
|
// ppm header
|
|
file << "P6\n" << width << "\n" << height << "\n" << 255 << "\n";
|
|
|
|
// If source is BGR (destination is always RGB) and we can't use blit (which does automatic conversion), we'll have to manually swizzle color components
|
|
bool colorSwizzle = false;
|
|
// Check if source is BGR
|
|
// Note: Not complete, only contains most common and basic BGR surface formats for demonstration purposes
|
|
if (!supportsBlit)
|
|
{
|
|
std::vector<VkFormat> formatsBGR = { VK_FORMAT_B8G8R8A8_SRGB, VK_FORMAT_B8G8R8A8_UNORM, VK_FORMAT_B8G8R8A8_SNORM };
|
|
colorSwizzle = (std::find(formatsBGR.begin(), formatsBGR.end(), swapChain.colorFormat) != formatsBGR.end());
|
|
}
|
|
|
|
// ppm binary pixel data
|
|
for (uint32_t y = 0; y < height; y++)
|
|
{
|
|
unsigned int *row = (unsigned int*)data;
|
|
for (uint32_t x = 0; x < width; x++)
|
|
{
|
|
if (colorSwizzle)
|
|
{
|
|
file.write((char*)row+2, 1);
|
|
file.write((char*)row+1, 1);
|
|
file.write((char*)row, 1);
|
|
}
|
|
else
|
|
{
|
|
file.write((char*)row, 3);
|
|
}
|
|
row++;
|
|
}
|
|
data += subResourceLayout.rowPitch;
|
|
}
|
|
file.close();
|
|
|
|
std::cout << "Screenshot saved to disk" << std::endl;
|
|
|
|
// Clean up resources
|
|
vkUnmapMemory(device, dstImageMemory);
|
|
vkFreeMemory(device, dstImageMemory, nullptr);
|
|
vkDestroyImage(device, dstImage, nullptr);
|
|
|
|
screenshotSaved = true;
|
|
}
|
|
|
|
void draw()
|
|
{
|
|
VulkanExampleBase::prepareFrame();
|
|
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
|
|
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
|
|
|
|
VulkanExampleBase::submitFrame();
|
|
}
|
|
|
|
void prepare()
|
|
{
|
|
VulkanExampleBase::prepare();
|
|
loadAssets();
|
|
prepareUniformBuffers();
|
|
setupDescriptorSetLayout();
|
|
preparePipelines();
|
|
setupDescriptorPool();
|
|
setupDescriptorSet();
|
|
buildCommandBuffers();
|
|
prepared = true;
|
|
}
|
|
|
|
virtual void render()
|
|
{
|
|
if (!prepared)
|
|
return;
|
|
draw();
|
|
}
|
|
|
|
virtual void viewChanged()
|
|
{
|
|
updateUniformBuffers();
|
|
}
|
|
|
|
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
|
|
{
|
|
if (overlay->header("Functions")) {
|
|
if (overlay->button("Take screenshot")) {
|
|
saveScreenshot("screenshot.ppm");
|
|
}
|
|
if (screenshotSaved) {
|
|
overlay->text("Screenshot saved as screenshot.ppm");
|
|
}
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
VULKAN_EXAMPLE_MAIN() |