procedural-3d-engine/examples/pbrbasic/pbrbasic.cpp
2024-05-01 18:29:52 +02:00

346 lines
No EOL
14 KiB
C++

/*
* Vulkan Example - Physical based shading basics
*
* See http://graphicrants.blogspot.de/2013/08/specular-brdf-reference.html for a good reference to the different functions that make up a specular BRDF
*
* Copyright (C) 2017-2024 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkanexamplebase.h"
#include "VulkanglTFModel.h"
struct Material {
// Parameter block used as push constant block
struct PushBlock {
float roughness;
float metallic;
float r, g, b;
} params{};
std::string name;
Material() {};
Material(std::string n, glm::vec3 c, float r, float m) : name(n) {
params.roughness = r;
params.metallic = m;
params.r = c.r;
params.g = c.g;
params.b = c.b;
};
};
class VulkanExample : public VulkanExampleBase
{
public:
struct Meshes {
std::vector<vkglTF::Model> objects;
int32_t objectIndex = 0;
} models;
struct {
vks::Buffer object;
vks::Buffer params;
} uniformBuffers;
struct UBOMatrices {
glm::mat4 projection;
glm::mat4 model;
glm::mat4 view;
glm::vec3 camPos;
} uboMatrices;
struct UBOParams {
glm::vec4 lights[4];
} uboParams;
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
VkPipeline pipeline{ VK_NULL_HANDLE };
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
VkDescriptorSet descriptorSet{ VK_NULL_HANDLE };
// Default materials to select from
std::vector<Material> materials;
int32_t materialIndex = 0;
std::vector<std::string> materialNames;
std::vector<std::string> objectNames;
VulkanExample() : VulkanExampleBase()
{
title = "Physical based shading basics";
camera.type = Camera::CameraType::firstperson;
camera.setPosition(glm::vec3(10.0f, 13.0f, 1.8f));
camera.setRotation(glm::vec3(-62.5f, 90.0f, 0.0f));
camera.movementSpeed = 4.0f;
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
camera.rotationSpeed = 0.25f;
timerSpeed *= 0.25f;
// Setup some default materials (source: https://seblagarde.wordpress.com/2011/08/17/feeding-a-physical-based-lighting-mode/)
materials.push_back(Material("Gold", glm::vec3(1.0f, 0.765557f, 0.336057f), 0.1f, 1.0f));
materials.push_back(Material("Copper", glm::vec3(0.955008f, 0.637427f, 0.538163f), 0.1f, 1.0f));
materials.push_back(Material("Chromium", glm::vec3(0.549585f, 0.556114f, 0.554256f), 0.1f, 1.0f));
materials.push_back(Material("Nickel", glm::vec3(0.659777f, 0.608679f, 0.525649f), 0.1f, 1.0f));
materials.push_back(Material("Titanium", glm::vec3(0.541931f, 0.496791f, 0.449419f), 0.1f, 1.0f));
materials.push_back(Material("Cobalt", glm::vec3(0.662124f, 0.654864f, 0.633732f), 0.1f, 1.0f));
materials.push_back(Material("Platinum", glm::vec3(0.672411f, 0.637331f, 0.585456f), 0.1f, 1.0f));
// Testing materials
materials.push_back(Material("White", glm::vec3(1.0f), 0.1f, 1.0f));
materials.push_back(Material("Red", glm::vec3(1.0f, 0.0f, 0.0f), 0.1f, 1.0f));
materials.push_back(Material("Blue", glm::vec3(0.0f, 0.0f, 1.0f), 0.1f, 1.0f));
materials.push_back(Material("Black", glm::vec3(0.0f), 0.1f, 1.0f));
for (auto material : materials) {
materialNames.push_back(material.name);
}
objectNames = { "Sphere", "Teapot", "Torusknot", "Venus" };
materialIndex = 0;
}
~VulkanExample()
{
if (device) {
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
uniformBuffers.object.destroy();
uniformBuffers.params.destroy();
}
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
// Draw a grid of spheres using varying material parameters
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
Material mat = materials[materialIndex];
const uint32_t gridSize = 7;
// Render a 2D grid of objects with varying PBR parameters
for (uint32_t y = 0; y < gridSize; y++) {
for (uint32_t x = 0; x < gridSize; x++) {
glm::vec3 pos = glm::vec3(float(x - (gridSize / 2.0f)) * 2.5f, 0.0f, float(y - (gridSize / 2.0f)) * 2.5f);
vkCmdPushConstants(drawCmdBuffers[i], pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(glm::vec3), &pos);
// Vary metallic and roughness, two important PBR parameters
mat.params.metallic = glm::clamp((float)x / (float)(gridSize - 1), 0.1f, 1.0f);
mat.params.roughness = glm::clamp((float)y / (float)(gridSize - 1), 0.05f, 1.0f);
vkCmdPushConstants(drawCmdBuffers[i], pipelineLayout, VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(glm::vec3), sizeof(Material::PushBlock), &mat);
models.objects[models.objectIndex].draw(drawCmdBuffers[i]);
}
}
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void loadAssets()
{
std::vector<std::string> filenames = { "sphere.gltf", "teapot.gltf", "torusknot.gltf", "venus.gltf" };
models.objects.resize(filenames.size());
for (size_t i = 0; i < filenames.size(); i++) {
models.objects[i].loadFromFile(getAssetPath() + "models/" + filenames[i], vulkanDevice, queue, vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::FlipY);
}
}
void setupDescriptors()
{
// Pool
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 4),
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
// Layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_FRAGMENT_BIT, 1),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
// Set
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.object.descriptor),
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, &uniformBuffers.params.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
// Layout
// We use push constant to pass material information
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
std::vector<VkPushConstantRange> pushConstantRanges = {
vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT, sizeof(glm::vec3), 0),
vks::initializers::pushConstantRange(VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(Material::PushBlock), sizeof(glm::vec3)),
};
pipelineLayoutCreateInfo.pushConstantRangeCount = 2;
pipelineLayoutCreateInfo.pPushConstantRanges = pushConstantRanges.data();
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout));
// Pipeline
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
pipelineCI.pInputAssemblyState = &inputAssemblyState;
pipelineCI.pRasterizationState = &rasterizationState;
pipelineCI.pColorBlendState = &colorBlendState;
pipelineCI.pMultisampleState = &multisampleState;
pipelineCI.pViewportState = &viewportState;
pipelineCI.pDepthStencilState = &depthStencilState;
pipelineCI.pDynamicState = &dynamicState;
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCI.pStages = shaderStages.data();
pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position, vkglTF::VertexComponent::Normal });
// PBR pipeline
shaderStages[0] = loadShader(getShadersPath() + "pbrbasic/pbr.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "pbrbasic/pbr.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// Enable depth test and write
depthStencilState.depthWriteEnable = VK_TRUE;
depthStencilState.depthTestEnable = VK_TRUE;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline));
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Object vertex shader uniform buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.object, sizeof(uboMatrices)));
// Shared parameter uniform buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.params, sizeof(uboParams)));
// Map persistent
VK_CHECK_RESULT(uniformBuffers.object.map());
VK_CHECK_RESULT(uniformBuffers.params.map());
}
void updateUniformBuffers()
{
// 3D object
uboMatrices.projection = camera.matrices.perspective;
uboMatrices.view = camera.matrices.view;
uboMatrices.model = glm::rotate(glm::mat4(1.0f), glm::radians(-90.0f + (models.objectIndex == 1 ? 45.0f : 0.0f)), glm::vec3(0.0f, 1.0f, 0.0f));
uboMatrices.camPos = camera.position * -1.0f;
memcpy(uniformBuffers.object.mapped, &uboMatrices, sizeof(uboMatrices));
}
void updateLights()
{
const float p = 15.0f;
uboParams.lights[0] = glm::vec4(-p, -p*0.5f, -p, 1.0f);
uboParams.lights[1] = glm::vec4(-p, -p*0.5f, p, 1.0f);
uboParams.lights[2] = glm::vec4( p, -p*0.5f, p, 1.0f);
uboParams.lights[3] = glm::vec4( p, -p*0.5f, -p, 1.0f);
if (!paused)
{
uboParams.lights[0].x = sin(glm::radians(timer * 360.0f)) * 20.0f;
uboParams.lights[0].z = cos(glm::radians(timer * 360.0f)) * 20.0f;
uboParams.lights[1].x = cos(glm::radians(timer * 360.0f)) * 20.0f;
uboParams.lights[1].y = sin(glm::radians(timer * 360.0f)) * 20.0f;
}
memcpy(uniformBuffers.params.mapped, &uboParams, sizeof(uboParams));
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
prepareUniformBuffers();
setupDescriptors();
preparePipelines();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
updateUniformBuffers();
if (!paused) {
updateLights();
}
draw();
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Settings")) {
if (overlay->comboBox("Material", &materialIndex, materialNames)) {
buildCommandBuffers();
}
if (overlay->comboBox("Object type", &models.objectIndex, objectNames)) {
updateUniformBuffers();
buildCommandBuffers();
}
}
}
};
VULKAN_EXAMPLE_MAIN()