656 lines
No EOL
18 KiB
C++
656 lines
No EOL
18 KiB
C++
/*
|
|
* Simple wrapper for getting an index buffer and vertices out of an assimp mesh
|
|
*
|
|
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
|
|
*
|
|
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <stdlib.h>
|
|
#include <string>
|
|
#include <fstream>
|
|
#include <assert.h>
|
|
#include <stdio.h>
|
|
#include <vector>
|
|
#include <map>
|
|
#ifdef _WIN32
|
|
#include <windows.h>
|
|
#include <fcntl.h>
|
|
#include <io.h>
|
|
#else
|
|
#endif
|
|
|
|
#include "vulkan/vulkan.h"
|
|
|
|
#include <assimp/Importer.hpp>
|
|
#include <assimp/scene.h>
|
|
#include <assimp/postprocess.h>
|
|
#include <assimp/cimport.h>
|
|
|
|
#include <glm/glm.hpp>
|
|
#include <glm/gtc/matrix_transform.hpp>
|
|
|
|
#if defined(__ANDROID__)
|
|
#include <android/asset_manager.h>
|
|
#endif
|
|
|
|
namespace vkMeshLoader
|
|
{
|
|
typedef enum VertexLayout {
|
|
VERTEX_LAYOUT_POSITION = 0x0,
|
|
VERTEX_LAYOUT_NORMAL = 0x1,
|
|
VERTEX_LAYOUT_COLOR = 0x2,
|
|
VERTEX_LAYOUT_UV = 0x3,
|
|
VERTEX_LAYOUT_TANGENT = 0x4,
|
|
VERTEX_LAYOUT_BITANGENT = 0x5,
|
|
VERTEX_LAYOUT_DUMMY_FLOAT = 0x6,
|
|
VERTEX_LAYOUT_DUMMY_VEC4 = 0x7
|
|
} VertexLayout;
|
|
|
|
struct MeshBufferInfo
|
|
{
|
|
VkBuffer buf = VK_NULL_HANDLE;
|
|
VkDeviceMemory mem = VK_NULL_HANDLE;
|
|
size_t size = 0;
|
|
};
|
|
|
|
struct MeshBuffer
|
|
{
|
|
MeshBufferInfo vertices;
|
|
MeshBufferInfo indices;
|
|
uint32_t indexCount;
|
|
glm::vec3 dim;
|
|
};
|
|
|
|
// Get vertex size from vertex layout
|
|
static uint32_t vertexSize(std::vector<vkMeshLoader::VertexLayout> layout)
|
|
{
|
|
uint32_t vSize = 0;
|
|
for (auto& layoutDetail : layout)
|
|
{
|
|
switch (layoutDetail)
|
|
{
|
|
// UV only has two components
|
|
case VERTEX_LAYOUT_UV:
|
|
vSize += 2 * sizeof(float);
|
|
break;
|
|
default:
|
|
vSize += 3 * sizeof(float);
|
|
}
|
|
}
|
|
return vSize;
|
|
}
|
|
|
|
// Stores some additonal info and functions for
|
|
// specifying pipelines, vertex bindings, etc.
|
|
class Mesh
|
|
{
|
|
public:
|
|
MeshBuffer buffers;
|
|
|
|
VkPipelineLayout pipelineLayout = VK_NULL_HANDLE;
|
|
VkPipeline pipeline = VK_NULL_HANDLE;
|
|
VkDescriptorSet descriptorSet = VK_NULL_HANDLE;
|
|
|
|
uint32_t vertexBufferBinding = 0;
|
|
|
|
VkPipelineVertexInputStateCreateInfo vertexInputState;
|
|
VkVertexInputBindingDescription bindingDescription;
|
|
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
|
|
|
|
void setupVertexInputState(std::vector<vkMeshLoader::VertexLayout> layout)
|
|
{
|
|
bindingDescription = vkTools::initializers::vertexInputBindingDescription(
|
|
vertexBufferBinding,
|
|
vertexSize(layout),
|
|
VK_VERTEX_INPUT_RATE_VERTEX);
|
|
|
|
attributeDescriptions.clear();
|
|
uint32_t offset = 0;
|
|
uint32_t binding = 0;
|
|
for (auto& layoutDetail : layout)
|
|
{
|
|
// Format (layout)
|
|
VkFormat format = (layoutDetail == VERTEX_LAYOUT_UV) ? VK_FORMAT_R32G32_SFLOAT : VK_FORMAT_R32G32B32_SFLOAT;
|
|
|
|
attributeDescriptions.push_back(
|
|
vkTools::initializers::vertexInputAttributeDescription(
|
|
vertexBufferBinding,
|
|
binding,
|
|
format,
|
|
offset));
|
|
|
|
// Offset
|
|
offset += (layoutDetail == VERTEX_LAYOUT_UV) ? (2 * sizeof(float)) : (3 * sizeof(float));
|
|
binding++;
|
|
}
|
|
|
|
vertexInputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
|
|
vertexInputState.vertexBindingDescriptionCount = 1;
|
|
vertexInputState.pVertexBindingDescriptions = &bindingDescription;
|
|
vertexInputState.vertexAttributeDescriptionCount = attributeDescriptions.size();
|
|
vertexInputState.pVertexAttributeDescriptions = attributeDescriptions.data();
|
|
}
|
|
|
|
void drawIndexed(VkCommandBuffer cmdBuffer)
|
|
{
|
|
VkDeviceSize offsets[1] = { 0 };
|
|
if (pipeline != VK_NULL_HANDLE)
|
|
{
|
|
vkCmdBindPipeline(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
|
|
}
|
|
if ((pipelineLayout != VK_NULL_HANDLE) && (descriptorSet != VK_NULL_HANDLE))
|
|
{
|
|
vkCmdBindDescriptorSets(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
|
|
}
|
|
vkCmdBindVertexBuffers(cmdBuffer, vertexBufferBinding, 1, &buffers.vertices.buf, offsets);
|
|
vkCmdBindIndexBuffer(cmdBuffer, buffers.indices.buf, 0, VK_INDEX_TYPE_UINT32);
|
|
vkCmdDrawIndexed(cmdBuffer, buffers.indexCount, 1, 0, 0, 0);
|
|
}
|
|
};
|
|
|
|
static void freeMeshBufferResources(VkDevice device, vkMeshLoader::MeshBuffer *meshBuffer)
|
|
{
|
|
vkDestroyBuffer(device, meshBuffer->vertices.buf, nullptr);
|
|
vkFreeMemory(device, meshBuffer->vertices.mem, nullptr);
|
|
if (meshBuffer->indices.buf != VK_NULL_HANDLE)
|
|
{
|
|
vkDestroyBuffer(device, meshBuffer->indices.buf, nullptr);
|
|
vkFreeMemory(device, meshBuffer->indices.mem, nullptr);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Simple mesh class for getting all the necessary stuff from models loaded via ASSIMP
|
|
class VulkanMeshLoader {
|
|
private:
|
|
|
|
struct Vertex
|
|
{
|
|
glm::vec3 m_pos;
|
|
glm::vec2 m_tex;
|
|
glm::vec3 m_normal;
|
|
glm::vec3 m_color;
|
|
glm::vec3 m_tangent;
|
|
glm::vec3 m_binormal;
|
|
|
|
Vertex() {}
|
|
|
|
Vertex(const glm::vec3& pos, const glm::vec2& tex, const glm::vec3& normal, const glm::vec3& tangent, const glm::vec3& bitangent, const glm::vec3& color)
|
|
{
|
|
m_pos = pos;
|
|
m_tex = tex;
|
|
m_normal = normal;
|
|
m_color = color;
|
|
m_tangent = tangent;
|
|
m_binormal = bitangent;
|
|
}
|
|
};
|
|
|
|
struct MeshEntry {
|
|
uint32_t NumIndices;
|
|
uint32_t MaterialIndex;
|
|
uint32_t vertexBase;
|
|
std::vector<Vertex> Vertices;
|
|
std::vector<unsigned int> Indices;
|
|
};
|
|
|
|
VkBool32 getMemoryType(VkPhysicalDeviceMemoryProperties deviceMemoryProperties, uint32_t typeBits, VkMemoryPropertyFlags properties)
|
|
{
|
|
for (uint32_t i = 0; i < 32; i++)
|
|
{
|
|
if ((typeBits & 1) == 1)
|
|
{
|
|
if ((deviceMemoryProperties.memoryTypes[i].propertyFlags & properties) == properties)
|
|
{
|
|
return i;
|
|
}
|
|
}
|
|
typeBits >>= 1;
|
|
}
|
|
|
|
// todo : throw error
|
|
return 0;
|
|
}
|
|
|
|
public:
|
|
#if defined(__ANDROID__)
|
|
AAssetManager* assetManager = nullptr;
|
|
#endif
|
|
|
|
std::vector<MeshEntry> m_Entries;
|
|
|
|
struct Dimension
|
|
{
|
|
glm::vec3 min = glm::vec3(FLT_MAX);
|
|
glm::vec3 max = glm::vec3(-FLT_MAX);
|
|
glm::vec3 size;
|
|
} dim;
|
|
|
|
uint32_t numVertices = 0;
|
|
|
|
// Optional
|
|
struct
|
|
{
|
|
VkBuffer buf;
|
|
VkDeviceMemory mem;
|
|
} vertexBuffer;
|
|
|
|
struct {
|
|
VkBuffer buf;
|
|
VkDeviceMemory mem;
|
|
uint32_t count;
|
|
} indexBuffer;
|
|
|
|
VkPipelineVertexInputStateCreateInfo vi;
|
|
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
|
|
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
|
|
VkPipeline pipeline;
|
|
|
|
Assimp::Importer Importer;
|
|
const aiScene* pScene;
|
|
|
|
~VulkanMeshLoader()
|
|
{
|
|
m_Entries.clear();
|
|
}
|
|
|
|
// Loads the mesh with some default flags
|
|
bool LoadMesh(const std::string& filename)
|
|
{
|
|
int flags = aiProcess_FlipWindingOrder | aiProcess_Triangulate | aiProcess_PreTransformVertices | aiProcess_CalcTangentSpace | aiProcess_GenSmoothNormals;
|
|
|
|
return LoadMesh(filename, flags);
|
|
}
|
|
|
|
// Load the mesh with custom flags
|
|
bool LoadMesh(const std::string& filename, int flags)
|
|
{
|
|
#if defined(__ANDROID__)
|
|
// Meshes are stored inside the apk on Android (compressed)
|
|
// So they need to be loaded via the asset manager
|
|
|
|
AAsset* asset = AAssetManager_open(assetManager, filename.c_str(), AASSET_MODE_STREAMING);
|
|
assert(asset);
|
|
size_t size = AAsset_getLength(asset);
|
|
|
|
assert(size > 0);
|
|
|
|
void *meshData = malloc(size);
|
|
AAsset_read(asset, meshData, size);
|
|
AAsset_close(asset);
|
|
|
|
pScene = Importer.ReadFileFromMemory(meshData, size, flags);
|
|
|
|
free(meshData);
|
|
#else
|
|
pScene = Importer.ReadFile(filename.c_str(), flags);
|
|
#endif
|
|
|
|
if (pScene)
|
|
{
|
|
return InitFromScene(pScene, filename);
|
|
}
|
|
else
|
|
{
|
|
printf("Error parsing '%s': '%s'\n", filename.c_str(), Importer.GetErrorString());
|
|
#if defined(__ANDROID__)
|
|
LOGE("Error parsing '%s': '%s'", filename.c_str(), Importer.GetErrorString());
|
|
#endif
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool InitFromScene(const aiScene* pScene, const std::string& Filename)
|
|
{
|
|
m_Entries.resize(pScene->mNumMeshes);
|
|
|
|
// Counters
|
|
for (unsigned int i = 0; i < m_Entries.size(); i++)
|
|
{
|
|
m_Entries[i].vertexBase = numVertices;
|
|
numVertices += pScene->mMeshes[i]->mNumVertices;
|
|
}
|
|
|
|
// Initialize the meshes in the scene one by one
|
|
for (unsigned int i = 0; i < m_Entries.size(); i++)
|
|
{
|
|
const aiMesh* paiMesh = pScene->mMeshes[i];
|
|
InitMesh(i, paiMesh, pScene);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void InitMesh(unsigned int index, const aiMesh* paiMesh, const aiScene* pScene)
|
|
{
|
|
m_Entries[index].MaterialIndex = paiMesh->mMaterialIndex;
|
|
|
|
aiColor3D pColor(0.f, 0.f, 0.f);
|
|
pScene->mMaterials[paiMesh->mMaterialIndex]->Get(AI_MATKEY_COLOR_DIFFUSE, pColor);
|
|
|
|
aiVector3D Zero3D(0.0f, 0.0f, 0.0f);
|
|
|
|
for (unsigned int i = 0; i < paiMesh->mNumVertices; i++) {
|
|
aiVector3D* pPos = &(paiMesh->mVertices[i]);
|
|
aiVector3D* pNormal = &(paiMesh->mNormals[i]);
|
|
aiVector3D *pTexCoord;
|
|
if (paiMesh->HasTextureCoords(0))
|
|
{
|
|
pTexCoord = &(paiMesh->mTextureCoords[0][i]);
|
|
}
|
|
else {
|
|
pTexCoord = &Zero3D;
|
|
}
|
|
aiVector3D* pTangent = (paiMesh->HasTangentsAndBitangents()) ? &(paiMesh->mTangents[i]) : &Zero3D;
|
|
aiVector3D* pBiTangent = (paiMesh->HasTangentsAndBitangents()) ? &(paiMesh->mBitangents[i]) : &Zero3D;
|
|
|
|
Vertex v(glm::vec3(pPos->x, -pPos->y, pPos->z),
|
|
glm::vec2(pTexCoord->x , pTexCoord->y),
|
|
glm::vec3(pNormal->x, pNormal->y, pNormal->z),
|
|
glm::vec3(pTangent->x, pTangent->y, pTangent->z),
|
|
glm::vec3(pBiTangent->x, pBiTangent->y, pBiTangent->z),
|
|
glm::vec3(pColor.r, pColor.g, pColor.b)
|
|
);
|
|
|
|
dim.max.x = fmax(pPos->x, dim.max.x);
|
|
dim.max.y = fmax(pPos->y, dim.max.y);
|
|
dim.max.z = fmax(pPos->z, dim.max.z);
|
|
|
|
dim.min.x = fmin(pPos->x, dim.min.x);
|
|
dim.min.y = fmin(pPos->y, dim.min.y);
|
|
dim.min.z = fmin(pPos->z, dim.min.z);
|
|
|
|
m_Entries[index].Vertices.push_back(v);
|
|
}
|
|
|
|
dim.size = dim.max - dim.min;
|
|
|
|
for (unsigned int i = 0; i < paiMesh->mNumFaces; i++)
|
|
{
|
|
const aiFace& Face = paiMesh->mFaces[i];
|
|
if (Face.mNumIndices != 3)
|
|
continue;
|
|
m_Entries[index].Indices.push_back(Face.mIndices[0]);
|
|
m_Entries[index].Indices.push_back(Face.mIndices[1]);
|
|
m_Entries[index].Indices.push_back(Face.mIndices[2]);
|
|
}
|
|
}
|
|
|
|
// Clean up vulkan resources used by a mesh
|
|
static void freeVulkanResources(VkDevice device, VulkanMeshLoader *mesh)
|
|
{
|
|
vkDestroyBuffer(device, mesh->vertexBuffer.buf, nullptr);
|
|
vkFreeMemory(device, mesh->vertexBuffer.mem, nullptr);
|
|
vkDestroyBuffer(device, mesh->indexBuffer.buf, nullptr);
|
|
vkFreeMemory(device, mesh->indexBuffer.mem, nullptr);
|
|
}
|
|
|
|
VkResult createBuffer(
|
|
VkDevice device,
|
|
VkPhysicalDeviceMemoryProperties deviceMemoryProperties,
|
|
VkBufferUsageFlags usageFlags,
|
|
VkMemoryPropertyFlags memoryPropertyFlags,
|
|
VkDeviceSize size,
|
|
VkBuffer *buffer,
|
|
VkDeviceMemory *memory)
|
|
{
|
|
VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo();
|
|
VkMemoryRequirements memReqs;
|
|
|
|
VkBufferCreateInfo bufferInfo = vkTools::initializers::bufferCreateInfo(usageFlags, size);
|
|
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferInfo, nullptr, buffer));
|
|
vkGetBufferMemoryRequirements(device, *buffer, &memReqs);
|
|
memAllocInfo.allocationSize = memReqs.size;
|
|
memAllocInfo.memoryTypeIndex = getMemoryType(deviceMemoryProperties, memReqs.memoryTypeBits, memoryPropertyFlags);
|
|
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, memory));
|
|
VK_CHECK_RESULT(vkBindBufferMemory(device, *buffer, *memory, 0));
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
// Create vertex and index buffer with given layout
|
|
// Note : Only does staging if a valid command buffer and transfer queue are passed
|
|
void createBuffers(
|
|
VkDevice device,
|
|
VkPhysicalDeviceMemoryProperties deviceMemoryProperties,
|
|
vkMeshLoader::MeshBuffer *meshBuffer,
|
|
std::vector<vkMeshLoader::VertexLayout> layout,
|
|
float scale,
|
|
bool useStaging,
|
|
VkCommandBuffer copyCmd,
|
|
VkQueue copyQueue)
|
|
{
|
|
std::vector<float> vertexBuffer;
|
|
for (int m = 0; m < m_Entries.size(); m++)
|
|
{
|
|
for (int i = 0; i < m_Entries[m].Vertices.size(); i++)
|
|
{
|
|
// Push vertex data depending on layout
|
|
for (auto& layoutDetail : layout)
|
|
{
|
|
// Position
|
|
if (layoutDetail == vkMeshLoader::VERTEX_LAYOUT_POSITION)
|
|
{
|
|
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_pos.x * scale);
|
|
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_pos.y * scale);
|
|
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_pos.z * scale);
|
|
}
|
|
// Normal
|
|
if (layoutDetail == vkMeshLoader::VERTEX_LAYOUT_NORMAL)
|
|
{
|
|
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_normal.x);
|
|
vertexBuffer.push_back(-m_Entries[m].Vertices[i].m_normal.y);
|
|
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_normal.z);
|
|
}
|
|
// Texture coordinates
|
|
if (layoutDetail == vkMeshLoader::VERTEX_LAYOUT_UV)
|
|
{
|
|
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_tex.s);
|
|
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_tex.t);
|
|
}
|
|
// Color
|
|
if (layoutDetail == vkMeshLoader::VERTEX_LAYOUT_COLOR)
|
|
{
|
|
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_color.r);
|
|
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_color.g);
|
|
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_color.b);
|
|
}
|
|
// Tangent
|
|
if (layoutDetail == vkMeshLoader::VERTEX_LAYOUT_TANGENT)
|
|
{
|
|
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_tangent.x);
|
|
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_tangent.y);
|
|
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_tangent.z);
|
|
}
|
|
// Bitangent
|
|
if (layoutDetail == vkMeshLoader::VERTEX_LAYOUT_BITANGENT)
|
|
{
|
|
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_binormal.x);
|
|
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_binormal.y);
|
|
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_binormal.z);
|
|
}
|
|
// Dummy layout components for padding
|
|
if (layoutDetail == vkMeshLoader::VERTEX_LAYOUT_DUMMY_FLOAT)
|
|
{
|
|
vertexBuffer.push_back(0.0f);
|
|
}
|
|
if (layoutDetail == vkMeshLoader::VERTEX_LAYOUT_DUMMY_VEC4)
|
|
{
|
|
vertexBuffer.push_back(0.0f);
|
|
vertexBuffer.push_back(0.0f);
|
|
vertexBuffer.push_back(0.0f);
|
|
vertexBuffer.push_back(0.0f);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
meshBuffer->vertices.size = vertexBuffer.size() * sizeof(float);
|
|
|
|
dim.min *= scale;
|
|
dim.max *= scale;
|
|
dim.size *= scale;
|
|
|
|
std::vector<uint32_t> indexBuffer;
|
|
for (uint32_t m = 0; m < m_Entries.size(); m++)
|
|
{
|
|
uint32_t indexBase = (uint32_t)indexBuffer.size();
|
|
for (uint32_t i = 0; i < m_Entries[m].Indices.size(); i++)
|
|
{
|
|
indexBuffer.push_back(m_Entries[m].Indices[i] + indexBase);
|
|
}
|
|
}
|
|
meshBuffer->indices.size = indexBuffer.size() * sizeof(uint32_t);
|
|
|
|
meshBuffer->indexCount = (uint32_t)indexBuffer.size();
|
|
|
|
void* data;
|
|
|
|
// Use staging buffer to move vertex and index buffer to device local memory
|
|
if (useStaging && copyQueue != VK_NULL_HANDLE && copyCmd != VK_NULL_HANDLE)
|
|
{
|
|
// Create staging buffers
|
|
struct {
|
|
VkBuffer buffer;
|
|
VkDeviceMemory memory;
|
|
} vertexStaging, indexStaging;
|
|
|
|
// Vertex buffer
|
|
createBuffer(
|
|
device,
|
|
deviceMemoryProperties,
|
|
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
|
|
meshBuffer->vertices.size,
|
|
&vertexStaging.buffer,
|
|
&vertexStaging.memory);
|
|
|
|
VK_CHECK_RESULT(vkMapMemory(device, vertexStaging.memory, 0, VK_WHOLE_SIZE, 0, &data));
|
|
memcpy(data, vertexBuffer.data(), meshBuffer->vertices.size);
|
|
vkUnmapMemory(device, vertexStaging.memory);
|
|
|
|
// Index buffer
|
|
createBuffer(
|
|
device,
|
|
deviceMemoryProperties,
|
|
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
|
|
meshBuffer->indices.size,
|
|
&indexStaging.buffer,
|
|
&indexStaging.memory);
|
|
|
|
VK_CHECK_RESULT(vkMapMemory(device, indexStaging.memory, 0, VK_WHOLE_SIZE, 0, &data));
|
|
memcpy(data, indexBuffer.data(), meshBuffer->indices.size);
|
|
vkUnmapMemory(device, indexStaging.memory);
|
|
|
|
// Create device local target buffers
|
|
// Vertex buffer
|
|
createBuffer(
|
|
device,
|
|
deviceMemoryProperties,
|
|
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
|
|
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
|
|
meshBuffer->vertices.size,
|
|
&meshBuffer->vertices.buf,
|
|
&meshBuffer->vertices.mem);
|
|
|
|
// Index buffer
|
|
createBuffer(
|
|
device,
|
|
deviceMemoryProperties,
|
|
VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
|
|
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
|
|
meshBuffer->indices.size,
|
|
&meshBuffer->indices.buf,
|
|
&meshBuffer->indices.mem);
|
|
|
|
// Copy from staging buffers
|
|
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
|
|
VK_CHECK_RESULT(vkBeginCommandBuffer(copyCmd, &cmdBufInfo));
|
|
|
|
VkBufferCopy copyRegion = {};
|
|
|
|
copyRegion.size = meshBuffer->vertices.size;
|
|
vkCmdCopyBuffer(
|
|
copyCmd,
|
|
vertexStaging.buffer,
|
|
meshBuffer->vertices.buf,
|
|
1,
|
|
©Region);
|
|
|
|
copyRegion.size = meshBuffer->indices.size;
|
|
vkCmdCopyBuffer(
|
|
copyCmd,
|
|
indexStaging.buffer,
|
|
meshBuffer->indices.buf,
|
|
1,
|
|
©Region);
|
|
|
|
VK_CHECK_RESULT(vkEndCommandBuffer(copyCmd));
|
|
|
|
VkSubmitInfo submitInfo = {};
|
|
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = ©Cmd;
|
|
|
|
VK_CHECK_RESULT(vkQueueSubmit(copyQueue, 1, &submitInfo, VK_NULL_HANDLE));
|
|
VK_CHECK_RESULT(vkQueueWaitIdle(copyQueue));
|
|
|
|
vkDestroyBuffer(device, vertexStaging.buffer, nullptr);
|
|
vkFreeMemory(device, vertexStaging.memory, nullptr);
|
|
vkDestroyBuffer(device, indexStaging.buffer, nullptr);
|
|
vkFreeMemory(device, indexStaging.memory, nullptr);
|
|
}
|
|
else
|
|
{
|
|
// Generate vertex buffer
|
|
createBuffer(
|
|
device,
|
|
deviceMemoryProperties,
|
|
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
|
|
meshBuffer->vertices.size,
|
|
&meshBuffer->vertices.buf,
|
|
&meshBuffer->vertices.mem);
|
|
|
|
VK_CHECK_RESULT(vkMapMemory(device, meshBuffer->vertices.mem, 0, meshBuffer->vertices.size, 0, &data));
|
|
memcpy(data, vertexBuffer.data(), meshBuffer->vertices.size);
|
|
vkUnmapMemory(device, meshBuffer->vertices.mem);
|
|
|
|
// Generate index buffer
|
|
createBuffer(
|
|
device,
|
|
deviceMemoryProperties,
|
|
VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
|
|
meshBuffer->indices.size,
|
|
&meshBuffer->indices.buf,
|
|
&meshBuffer->indices.mem);
|
|
|
|
VK_CHECK_RESULT(vkMapMemory(device, meshBuffer->indices.mem, 0, meshBuffer->indices.size, 0, &data));
|
|
memcpy(data, indexBuffer.data(), meshBuffer->indices.size);
|
|
vkUnmapMemory(device, meshBuffer->indices.mem);
|
|
}
|
|
}
|
|
|
|
// Create vertex and index buffer with given layout
|
|
void createVulkanBuffers(
|
|
VkDevice device,
|
|
VkPhysicalDeviceMemoryProperties deviceMemoryProperties,
|
|
vkMeshLoader::MeshBuffer *meshBuffer,
|
|
std::vector<vkMeshLoader::VertexLayout> layout,
|
|
float scale)
|
|
{
|
|
createBuffers(
|
|
device,
|
|
deviceMemoryProperties,
|
|
meshBuffer,
|
|
layout,
|
|
scale,
|
|
false,
|
|
VK_NULL_HANDLE,
|
|
VK_NULL_HANDLE);
|
|
}
|
|
}; |