procedural-3d-engine/parallaxmapping/parallaxmapping.cpp

596 lines
No EOL
18 KiB
C++

/*
* Vulkan Example - Parallax Mapping
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/matrix_inverse.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#include "vulkanbuffer.hpp"
#define VERTEX_BUFFER_BIND_ID 0
#define ENABLE_VALIDATION false
// Vertex layout for this example
std::vector<vkMeshLoader::VertexLayout> vertexLayout =
{
vkMeshLoader::VERTEX_LAYOUT_POSITION,
vkMeshLoader::VERTEX_LAYOUT_UV,
vkMeshLoader::VERTEX_LAYOUT_NORMAL,
vkMeshLoader::VERTEX_LAYOUT_TANGENT,
vkMeshLoader::VERTEX_LAYOUT_BITANGENT
};
class VulkanExample : public VulkanExampleBase
{
public:
bool splitScreen = false;
struct {
vkTools::VulkanTexture colorMap;
// Normals and height are combined in one texture (height = alpha channel)
vkTools::VulkanTexture normalHeightMap;
} textures;
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
struct {
vkMeshLoader::MeshBuffer quad;
} meshes;
struct {
vk::Buffer vertexShader;
vk::Buffer fragmentShader;
} uniformBuffers;
struct {
struct {
glm::mat4 projection;
glm::mat4 model;
glm::mat4 normal;
glm::vec4 lightPos = glm::vec4(0.0f);
glm::vec4 cameraPos;
} vertexShader;
struct {
// Scale and bias control the parallax offset effect
// They need to be tweaked for each material
// Getting them wrong destroys the depth effect
float scale = 0.06f;
float bias = -0.04f;
float lightRadius = 1.0f;
int32_t usePom = 1;
int32_t displayNormalMap = 0;
} fragmentShader;
} ubos;
struct {
VkPipeline parallaxMapping;
VkPipeline normalMapping;
} pipelines;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
zoom = -2.7f;
rotation = glm::vec3(56.0f, 0.0f, 0.0f);
rotationSpeed = 0.25f;
enableTextOverlay = true;
timerSpeed *= 0.25f;
paused = true;
title = "Vulkan Example - Parallax Mapping";
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
vkDestroyPipeline(device, pipelines.parallaxMapping, nullptr);
vkDestroyPipeline(device, pipelines.normalMapping, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vkMeshLoader::freeMeshBufferResources(device, &meshes.quad);
uniformBuffers.vertexShader.destroy();
uniformBuffers.fragmentShader.destroy();
textureLoader->destroyTexture(textures.colorMap);
textureLoader->destroyTexture(textures.normalHeightMap);
}
void loadTextures()
{
textureLoader->loadTexture(
getAssetPath() + "textures/rocks_color_bc3.dds",
VK_FORMAT_BC3_UNORM_BLOCK,
&textures.colorMap);
textureLoader->loadTexture(
getAssetPath() + "textures/rocks_normal_height_rgba.dds",
VK_FORMAT_R8G8B8A8_UNORM,
&textures.normalHeightMap);
}
void reBuildCommandBuffers()
{
if (!checkCommandBuffers())
{
destroyCommandBuffers();
createCommandBuffers();
}
buildCommandBuffers();
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vkTools::initializers::viewport((splitScreen) ? (float)width / 2.0f : (float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.quad.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.quad.indices.buf, 0, VK_INDEX_TYPE_UINT32);
// Parallax enabled
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.parallaxMapping);
vkCmdDrawIndexed(drawCmdBuffers[i], meshes.quad.indexCount, 1, 0, 0, 1);
// Normal mapping
if (splitScreen)
{
viewport.x = (float)width / 2.0f;
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.normalMapping);
vkCmdDrawIndexed(drawCmdBuffers[i], meshes.quad.indexCount, 1, 0, 0, 1);
}
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void loadMeshes()
{
loadMesh(getAssetPath() + "models/plane_z.obj", &meshes.quad, vertexLayout, 0.1f);
}
void setupVertexDescriptions()
{
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vkTools::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
vkMeshLoader::vertexSize(vertexLayout),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
// Describes memory layout and shader positions
vertices.attributeDescriptions.resize(5);
// Location 0 : Position
vertices.attributeDescriptions[0] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32_SFLOAT,
0);
// Location 1 : Texture coordinates
vertices.attributeDescriptions[1] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32_SFLOAT,
sizeof(float) * 3);
// Location 2 : Normal
vertices.attributeDescriptions[2] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
2,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 5);
// Location 3 : Tangent
vertices.attributeDescriptions[3] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
3,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 8);
// Location 4 : Bitangent
vertices.attributeDescriptions[4] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
4,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 11);
vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupDescriptorPool()
{
// Example uses two ubos and two image sampler
std::vector<VkDescriptorPoolSize> poolSizes =
{
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2),
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vkTools::initializers::descriptorPoolCreateInfo(
poolSizes.size(),
poolSizes.data(),
4);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT,
0),
// Binding 1 : Fragment shader color map image sampler
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
1),
// Binding 2 : Fragment combined normal and heightmap
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
2),
// Binding 3 : Fragment shader uniform buffer
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_FRAGMENT_BIT,
3)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vkTools::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
setLayoutBindings.size());
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vkTools::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
}
void setupDescriptorSet()
{
VkDescriptorSetAllocateInfo allocInfo =
vkTools::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformBuffers.vertexShader.descriptor),
// Binding 1 : Fragment shader image sampler
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&textures.colorMap.descriptor),
// Binding 2 : Combined normal and heightmap
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
2,
&textures.normalHeightMap.descriptor),
// Binding 3 : Fragment shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
3,
&uniformBuffers.fragmentShader.descriptor)
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vkTools::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_NONE,
VK_FRONT_FACE_COUNTER_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vkTools::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vkTools::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vkTools::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vkTools::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
dynamicStateEnables.size(),
0);
// Parallax mapping pipeline
// Load shaders
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
shaderStages[0] = loadShader(getAssetPath() + "shaders/parallax/parallax.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/parallax/parallax.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vkTools::initializers::pipelineCreateInfo(
pipelineLayout,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data();
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.parallaxMapping));
// Normal mapping (no parallax effect)
shaderStages[0] = loadShader(getAssetPath() + "shaders/parallax/normalmap.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/parallax/normalmap.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.normalMapping));
}
void prepareUniformBuffers()
{
// Vertex shader uniform buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.vertexShader,
sizeof(ubos.vertexShader)));
// Fragment shader uniform buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.fragmentShader,
sizeof(ubos.fragmentShader)));
// Map persistent
VK_CHECK_RESULT(uniformBuffers.vertexShader.map());
VK_CHECK_RESULT(uniformBuffers.fragmentShader.map());
updateUniformBuffers();
}
void updateUniformBuffers()
{
// Vertex shader
glm::mat4 viewMatrix = glm::mat4();
ubos.vertexShader.projection = glm::perspective(glm::radians(45.0f), (float)(width* ((splitScreen) ? 0.5f : 1.0f)) / (float)height, 0.001f, 256.0f);
viewMatrix = glm::translate(viewMatrix, glm::vec3(0.0f, 0.0f, zoom));
ubos.vertexShader.model = glm::mat4();
ubos.vertexShader.model = viewMatrix * glm::translate(ubos.vertexShader.model, cameraPos);
ubos.vertexShader.model = glm::rotate(ubos.vertexShader.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
ubos.vertexShader.model = glm::rotate(ubos.vertexShader.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
ubos.vertexShader.model = glm::rotate(ubos.vertexShader.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
ubos.vertexShader.normal = glm::inverseTranspose(ubos.vertexShader.model);
if (!paused)
{
ubos.vertexShader.lightPos.x = sin(glm::radians(timer * 360.0f)) * 0.5f;
ubos.vertexShader.lightPos.y = cos(glm::radians(timer * 360.0f)) * 0.5f;
}
ubos.vertexShader.cameraPos = glm::vec4(0.0, 0.0, zoom, 0.0);
memcpy(uniformBuffers.vertexShader.mapped, &ubos.vertexShader, sizeof(ubos.vertexShader));
// Fragment shader
memcpy(uniformBuffers.fragmentShader.mapped, &ubos.fragmentShader, sizeof(ubos.fragmentShader));
}
void draw()
{
VulkanExampleBase::prepareFrame();
// Command buffer to be sumitted to the queue
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
// Submit to queue
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
loadTextures();
loadMeshes();
setupVertexDescriptions();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
if (!paused)
{
updateUniformBuffers();
}
}
virtual void viewChanged()
{
updateUniformBuffers();
}
void toggleParallaxOffset()
{
ubos.fragmentShader.usePom = !ubos.fragmentShader.usePom;
updateUniformBuffers();
}
void toggleNormalMapDisplay()
{
ubos.fragmentShader.displayNormalMap = !ubos.fragmentShader.displayNormalMap;
updateUniformBuffers();
}
void toggleSplitScreen()
{
splitScreen = !splitScreen;
updateUniformBuffers();
reBuildCommandBuffers();
}
virtual void keyPressed(uint32_t keyCode)
{
switch (keyCode)
{
case KEY_O:
case GAMEPAD_BUTTON_A:
toggleParallaxOffset();
break;
case KEY_N:
case GAMEPAD_BUTTON_X:
toggleNormalMapDisplay();
break;
case KEY_S:
case GAMEPAD_BUTTON_Y:
toggleSplitScreen();
break;
}
}
virtual void getOverlayText(VulkanTextOverlay *textOverlay)
{
#if defined(__ANDROID__)
textOverlay->addText("Press \"Button A\" to toggle parallax", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
textOverlay->addText("Press \"Button X\" to toggle normals", 5.0f, 100.0f, VulkanTextOverlay::alignLeft);
textOverlay->addText("Press \"Button Y\" to toggle splitscreen", 5.0f, 115.0f, VulkanTextOverlay::alignLeft);
#else
textOverlay->addText("Press \"o\" to toggle parallax", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
textOverlay->addText("Press \"n\" to toggle normals", 5.0f, 100.0f, VulkanTextOverlay::alignLeft);
textOverlay->addText("Press \"s\" to toggle splitscreen", 5.0f, 115.0f, VulkanTextOverlay::alignLeft);
#endif
}
};
VULKAN_EXAMPLE_MAIN()