617 lines
No EOL
22 KiB
C++
617 lines
No EOL
22 KiB
C++
/*
|
|
* Vulkan Example - Instanced mesh rendering, uses a separate vertex buffer for instanced data
|
|
*
|
|
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
|
|
*
|
|
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <time.h>
|
|
#include <vector>
|
|
#include <random>
|
|
|
|
#define GLM_FORCE_RADIANS
|
|
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
|
|
#include <glm/glm.hpp>
|
|
#include <glm/gtc/matrix_transform.hpp>
|
|
|
|
#include <vulkan/vulkan.h>
|
|
#include "vulkanexamplebase.h"
|
|
#include "VulkanBuffer.hpp"
|
|
#include "VulkanTexture.hpp"
|
|
#include "VulkanModel.hpp"
|
|
|
|
#define VERTEX_BUFFER_BIND_ID 0
|
|
#define INSTANCE_BUFFER_BIND_ID 1
|
|
#define ENABLE_VALIDATION false
|
|
#define INSTANCE_COUNT 8192
|
|
|
|
class VulkanExample : public VulkanExampleBase
|
|
{
|
|
public:
|
|
struct {
|
|
vks::Texture2DArray rocks;
|
|
vks::Texture2D planet;
|
|
} textures;
|
|
|
|
// Vertex layout for the models
|
|
vks::VertexLayout vertexLayout = vks::VertexLayout({
|
|
vks::VERTEX_COMPONENT_POSITION,
|
|
vks::VERTEX_COMPONENT_NORMAL,
|
|
vks::VERTEX_COMPONENT_UV,
|
|
vks::VERTEX_COMPONENT_COLOR,
|
|
});
|
|
|
|
struct {
|
|
vks::Model rock;
|
|
vks::Model planet;
|
|
} models;
|
|
|
|
// Per-instance data block
|
|
struct InstanceData {
|
|
glm::vec3 pos;
|
|
glm::vec3 rot;
|
|
float scale;
|
|
uint32_t texIndex;
|
|
};
|
|
// Contains the instanced data
|
|
struct InstanceBuffer {
|
|
VkBuffer buffer = VK_NULL_HANDLE;
|
|
VkDeviceMemory memory = VK_NULL_HANDLE;
|
|
size_t size = 0;
|
|
VkDescriptorBufferInfo descriptor;
|
|
} instanceBuffer;
|
|
|
|
struct UBOVS {
|
|
glm::mat4 projection;
|
|
glm::mat4 view;
|
|
glm::vec4 lightPos = glm::vec4(0.0f, -5.0f, 0.0f, 1.0f);
|
|
float locSpeed = 0.0f;
|
|
float globSpeed = 0.0f;
|
|
} uboVS;
|
|
|
|
struct {
|
|
vks::Buffer scene;
|
|
} uniformBuffers;
|
|
|
|
VkPipelineLayout pipelineLayout;
|
|
struct {
|
|
VkPipeline instancedRocks;
|
|
VkPipeline planet;
|
|
VkPipeline starfield;
|
|
} pipelines;
|
|
|
|
VkDescriptorSetLayout descriptorSetLayout;
|
|
struct {
|
|
VkDescriptorSet instancedRocks;
|
|
VkDescriptorSet planet;
|
|
} descriptorSets;
|
|
|
|
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
|
|
{
|
|
title = "Instanced mesh rendering";
|
|
srand(time(NULL));
|
|
zoom = -18.5f;
|
|
rotation = { -17.2f, -4.7f, 0.0f };
|
|
cameraPos = { 5.5f, -1.85f, 0.0f };
|
|
rotationSpeed = 0.25f;
|
|
settings.overlay = true;
|
|
}
|
|
|
|
~VulkanExample()
|
|
{
|
|
vkDestroyPipeline(device, pipelines.instancedRocks, nullptr);
|
|
vkDestroyPipeline(device, pipelines.planet, nullptr);
|
|
vkDestroyPipeline(device, pipelines.starfield, nullptr);
|
|
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
|
|
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
|
|
vkDestroyBuffer(device, instanceBuffer.buffer, nullptr);
|
|
vkFreeMemory(device, instanceBuffer.memory, nullptr);
|
|
models.rock.destroy();
|
|
models.planet.destroy();
|
|
textures.rocks.destroy();
|
|
textures.planet.destroy();
|
|
uniformBuffers.scene.destroy();
|
|
}
|
|
|
|
// Enable physical device features required for this example
|
|
virtual void getEnabledFeatures()
|
|
{
|
|
// Enable anisotropic filtering if supported
|
|
if (deviceFeatures.samplerAnisotropy) {
|
|
enabledFeatures.samplerAnisotropy = VK_TRUE;
|
|
}
|
|
// Enable texture compression
|
|
if (deviceFeatures.textureCompressionBC) {
|
|
enabledFeatures.textureCompressionBC = VK_TRUE;
|
|
}
|
|
else if (deviceFeatures.textureCompressionASTC_LDR) {
|
|
enabledFeatures.textureCompressionASTC_LDR = VK_TRUE;
|
|
}
|
|
else if (deviceFeatures.textureCompressionETC2) {
|
|
enabledFeatures.textureCompressionETC2 = VK_TRUE;
|
|
}
|
|
};
|
|
|
|
void buildCommandBuffers()
|
|
{
|
|
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
|
|
|
VkClearValue clearValues[2];
|
|
clearValues[0].color = { { 0.0f, 0.0f, 0.2f, 0.0f } };
|
|
clearValues[1].depthStencil = { 1.0f, 0 };
|
|
|
|
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
|
|
renderPassBeginInfo.renderPass = renderPass;
|
|
renderPassBeginInfo.renderArea.extent.width = width;
|
|
renderPassBeginInfo.renderArea.extent.height = height;
|
|
renderPassBeginInfo.clearValueCount = 2;
|
|
renderPassBeginInfo.pClearValues = clearValues;
|
|
|
|
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
|
|
{
|
|
// Set target frame buffer
|
|
renderPassBeginInfo.framebuffer = frameBuffers[i];
|
|
|
|
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
|
|
|
|
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
|
|
|
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
|
|
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
|
|
|
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
|
|
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
|
|
|
VkDeviceSize offsets[1] = { 0 };
|
|
|
|
// Star field
|
|
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.planet, 0, NULL);
|
|
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.starfield);
|
|
vkCmdDraw(drawCmdBuffers[i], 4, 1, 0, 0);
|
|
|
|
// Planet
|
|
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.planet, 0, NULL);
|
|
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.planet);
|
|
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &models.planet.vertices.buffer, offsets);
|
|
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.planet.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
|
|
vkCmdDrawIndexed(drawCmdBuffers[i], models.planet.indexCount, 1, 0, 0, 0);
|
|
|
|
// Instanced rocks
|
|
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.instancedRocks, 0, NULL);
|
|
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.instancedRocks);
|
|
// Binding point 0 : Mesh vertex buffer
|
|
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &models.rock.vertices.buffer, offsets);
|
|
// Binding point 1 : Instance data buffer
|
|
vkCmdBindVertexBuffers(drawCmdBuffers[i], INSTANCE_BUFFER_BIND_ID, 1, &instanceBuffer.buffer, offsets);
|
|
|
|
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.rock.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
|
|
|
|
// Render instances
|
|
vkCmdDrawIndexed(drawCmdBuffers[i], models.rock.indexCount, INSTANCE_COUNT, 0, 0, 0);
|
|
|
|
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
|
|
|
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
|
|
}
|
|
}
|
|
|
|
void loadAssets()
|
|
{
|
|
models.rock.loadFromFile(getAssetPath() + "models/rock01.dae", vertexLayout, 0.1f, vulkanDevice, queue);
|
|
models.planet.loadFromFile(getAssetPath() + "models/sphere.obj", vertexLayout, 0.2f, vulkanDevice, queue);
|
|
|
|
// Textures
|
|
std::string texFormatSuffix;
|
|
VkFormat texFormat;
|
|
// Get supported compressed texture format
|
|
if (vulkanDevice->features.textureCompressionBC) {
|
|
texFormatSuffix = "_bc3_unorm";
|
|
texFormat = VK_FORMAT_BC3_UNORM_BLOCK;
|
|
}
|
|
else if (vulkanDevice->features.textureCompressionASTC_LDR) {
|
|
texFormatSuffix = "_astc_8x8_unorm";
|
|
texFormat = VK_FORMAT_ASTC_8x8_UNORM_BLOCK;
|
|
}
|
|
else if (vulkanDevice->features.textureCompressionETC2) {
|
|
texFormatSuffix = "_etc2_unorm";
|
|
texFormat = VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK;
|
|
}
|
|
else {
|
|
vks::tools::exitFatal("Device does not support any compressed texture format!", "Error");
|
|
}
|
|
|
|
textures.rocks.loadFromFile(getAssetPath() + "textures/texturearray_rocks" + texFormatSuffix + ".ktx", texFormat, vulkanDevice, queue);
|
|
textures.planet.loadFromFile(getAssetPath() + "textures/lavaplanet" + texFormatSuffix + ".ktx", texFormat, vulkanDevice, queue);
|
|
}
|
|
|
|
void setupDescriptorPool()
|
|
{
|
|
// Example uses one ubo
|
|
std::vector<VkDescriptorPoolSize> poolSizes =
|
|
{
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2),
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2),
|
|
};
|
|
|
|
VkDescriptorPoolCreateInfo descriptorPoolInfo =
|
|
vks::initializers::descriptorPoolCreateInfo(
|
|
poolSizes.size(),
|
|
poolSizes.data(),
|
|
2);
|
|
|
|
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
|
|
}
|
|
|
|
void setupDescriptorSetLayout()
|
|
{
|
|
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
|
|
{
|
|
// Binding 0 : Vertex shader uniform buffer
|
|
vks::initializers::descriptorSetLayoutBinding(
|
|
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
|
|
VK_SHADER_STAGE_VERTEX_BIT,
|
|
0),
|
|
// Binding 1 : Fragment shader combined sampler
|
|
vks::initializers::descriptorSetLayoutBinding(
|
|
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
|
|
VK_SHADER_STAGE_FRAGMENT_BIT,
|
|
1),
|
|
};
|
|
|
|
VkDescriptorSetLayoutCreateInfo descriptorLayout =
|
|
vks::initializers::descriptorSetLayoutCreateInfo(
|
|
setLayoutBindings.data(),
|
|
setLayoutBindings.size());
|
|
|
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
|
|
|
|
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
|
|
vks::initializers::pipelineLayoutCreateInfo(
|
|
&descriptorSetLayout,
|
|
1);
|
|
|
|
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
|
|
}
|
|
|
|
void setupDescriptorSet()
|
|
{
|
|
VkDescriptorSetAllocateInfo descripotrSetAllocInfo;
|
|
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
|
|
|
|
descripotrSetAllocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);;
|
|
|
|
// Instanced rocks
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &descripotrSetAllocInfo, &descriptorSets.instancedRocks));
|
|
writeDescriptorSets = {
|
|
vks::initializers::writeDescriptorSet(descriptorSets.instancedRocks, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.scene.descriptor), // Binding 0 : Vertex shader uniform buffer
|
|
vks::initializers::writeDescriptorSet(descriptorSets.instancedRocks, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textures.rocks.descriptor) // Binding 1 : Color map
|
|
};
|
|
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
|
|
|
|
// Planet
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &descripotrSetAllocInfo, &descriptorSets.planet));
|
|
writeDescriptorSets = {
|
|
vks::initializers::writeDescriptorSet(descriptorSets.planet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.scene.descriptor), // Binding 0 : Vertex shader uniform buffer
|
|
vks::initializers::writeDescriptorSet(descriptorSets.planet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textures.planet.descriptor) // Binding 1 : Color map
|
|
};
|
|
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
|
|
|
|
}
|
|
|
|
void preparePipelines()
|
|
{
|
|
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
|
|
vks::initializers::pipelineInputAssemblyStateCreateInfo(
|
|
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
|
|
0,
|
|
VK_FALSE);
|
|
|
|
VkPipelineRasterizationStateCreateInfo rasterizationState =
|
|
vks::initializers::pipelineRasterizationStateCreateInfo(
|
|
VK_POLYGON_MODE_FILL,
|
|
VK_CULL_MODE_BACK_BIT,
|
|
VK_FRONT_FACE_CLOCKWISE,
|
|
0);
|
|
|
|
VkPipelineColorBlendAttachmentState blendAttachmentState =
|
|
vks::initializers::pipelineColorBlendAttachmentState(
|
|
0xf,
|
|
VK_FALSE);
|
|
|
|
VkPipelineColorBlendStateCreateInfo colorBlendState =
|
|
vks::initializers::pipelineColorBlendStateCreateInfo(
|
|
1,
|
|
&blendAttachmentState);
|
|
|
|
VkPipelineDepthStencilStateCreateInfo depthStencilState =
|
|
vks::initializers::pipelineDepthStencilStateCreateInfo(
|
|
VK_TRUE,
|
|
VK_TRUE,
|
|
VK_COMPARE_OP_LESS_OR_EQUAL);
|
|
|
|
VkPipelineViewportStateCreateInfo viewportState =
|
|
vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
|
|
|
VkPipelineMultisampleStateCreateInfo multisampleState =
|
|
vks::initializers::pipelineMultisampleStateCreateInfo(
|
|
VK_SAMPLE_COUNT_1_BIT,
|
|
0);
|
|
|
|
std::vector<VkDynamicState> dynamicStateEnables = {
|
|
VK_DYNAMIC_STATE_VIEWPORT,
|
|
VK_DYNAMIC_STATE_SCISSOR
|
|
};
|
|
VkPipelineDynamicStateCreateInfo dynamicState =
|
|
vks::initializers::pipelineDynamicStateCreateInfo(
|
|
dynamicStateEnables.data(),
|
|
dynamicStateEnables.size(),
|
|
0);
|
|
|
|
// Load shaders
|
|
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
|
|
|
|
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
|
|
vks::initializers::pipelineCreateInfo(
|
|
pipelineLayout,
|
|
renderPass,
|
|
0);
|
|
|
|
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
|
|
pipelineCreateInfo.pRasterizationState = &rasterizationState;
|
|
pipelineCreateInfo.pColorBlendState = &colorBlendState;
|
|
pipelineCreateInfo.pMultisampleState = &multisampleState;
|
|
pipelineCreateInfo.pViewportState = &viewportState;
|
|
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
|
|
pipelineCreateInfo.pDynamicState = &dynamicState;
|
|
pipelineCreateInfo.stageCount = shaderStages.size();
|
|
pipelineCreateInfo.pStages = shaderStages.data();
|
|
|
|
// This example uses two different input states, one for the instanced part and one for non-instanced rendering
|
|
VkPipelineVertexInputStateCreateInfo inputState = vks::initializers::pipelineVertexInputStateCreateInfo();
|
|
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
|
|
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
|
|
|
|
// Vertex input bindings
|
|
// The instancing pipeline uses a vertex input state with two bindings
|
|
bindingDescriptions = {
|
|
// Binding point 0: Mesh vertex layout description at per-vertex rate
|
|
vks::initializers::vertexInputBindingDescription(VERTEX_BUFFER_BIND_ID, vertexLayout.stride(), VK_VERTEX_INPUT_RATE_VERTEX),
|
|
// Binding point 1: Instanced data at per-instance rate
|
|
vks::initializers::vertexInputBindingDescription(INSTANCE_BUFFER_BIND_ID, sizeof(InstanceData), VK_VERTEX_INPUT_RATE_INSTANCE)
|
|
};
|
|
|
|
// Vertex attribute bindings
|
|
// Note that the shader declaration for per-vertex and per-instance attributes is the same, the different input rates are only stored in the bindings:
|
|
// instanced.vert:
|
|
// layout (location = 0) in vec3 inPos; Per-Vertex
|
|
// ...
|
|
// layout (location = 4) in vec3 instancePos; Per-Instance
|
|
attributeDescriptions = {
|
|
// Per-vertex attributees
|
|
// These are advanced for each vertex fetched by the vertex shader
|
|
vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0), // Location 0: Position
|
|
vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3), // Location 1: Normal
|
|
vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 6), // Location 2: Texture coordinates
|
|
vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 3, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 8), // Location 3: Color
|
|
// Per-Instance attributes
|
|
// These are fetched for each instance rendered
|
|
vks::initializers::vertexInputAttributeDescription(INSTANCE_BUFFER_BIND_ID, 5, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3), // Location 4: Position
|
|
vks::initializers::vertexInputAttributeDescription(INSTANCE_BUFFER_BIND_ID, 4, VK_FORMAT_R32G32B32_SFLOAT, 0), // Location 5: Rotation
|
|
vks::initializers::vertexInputAttributeDescription(INSTANCE_BUFFER_BIND_ID, 6, VK_FORMAT_R32_SFLOAT,sizeof(float) * 6), // Location 6: Scale
|
|
vks::initializers::vertexInputAttributeDescription(INSTANCE_BUFFER_BIND_ID, 7, VK_FORMAT_R32_SINT, sizeof(float) * 7), // Location 7: Texture array layer index
|
|
};
|
|
inputState.pVertexBindingDescriptions = bindingDescriptions.data();
|
|
inputState.pVertexAttributeDescriptions = attributeDescriptions.data();
|
|
|
|
pipelineCreateInfo.pVertexInputState = &inputState;
|
|
|
|
// Instancing pipeline
|
|
shaderStages[0] = loadShader(getAssetPath() + "shaders/instancing/instancing.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
|
shaderStages[1] = loadShader(getAssetPath() + "shaders/instancing/instancing.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
|
// Use all input bindings and attribute descriptions
|
|
inputState.vertexBindingDescriptionCount = static_cast<uint32_t>(bindingDescriptions.size());
|
|
inputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(attributeDescriptions.size());
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.instancedRocks));
|
|
|
|
// Planet rendering pipeline
|
|
shaderStages[0] = loadShader(getAssetPath() + "shaders/instancing/planet.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
|
shaderStages[1] = loadShader(getAssetPath() + "shaders/instancing/planet.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
|
// Only use the non-instanced input bindings and attribute descriptions
|
|
inputState.vertexBindingDescriptionCount = 1;
|
|
inputState.vertexAttributeDescriptionCount = 4;
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.planet));
|
|
|
|
// Star field pipeline
|
|
rasterizationState.cullMode = VK_CULL_MODE_NONE;
|
|
depthStencilState.depthWriteEnable = VK_FALSE;
|
|
shaderStages[0] = loadShader(getAssetPath() + "shaders/instancing/starfield.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
|
shaderStages[1] = loadShader(getAssetPath() + "shaders/instancing/starfield.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
|
// Vertices are generated in the vertex shader
|
|
inputState.vertexBindingDescriptionCount = 0;
|
|
inputState.vertexAttributeDescriptionCount = 0;
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.starfield));
|
|
}
|
|
|
|
float rnd(float range)
|
|
{
|
|
return range * (rand() / double(RAND_MAX));
|
|
}
|
|
|
|
void prepareInstanceData()
|
|
{
|
|
std::vector<InstanceData> instanceData;
|
|
instanceData.resize(INSTANCE_COUNT);
|
|
|
|
std::mt19937 rndGenerator(time(NULL));
|
|
std::uniform_real_distribution<float> uniformDist(0.0, 1.0);
|
|
|
|
// Distribute rocks randomly on two different rings
|
|
for (auto i = 0; i < INSTANCE_COUNT / 2; i++)
|
|
{
|
|
glm::vec2 ring0 { 7.0f, 11.0f };
|
|
glm::vec2 ring1 { 14.0f, 18.0f };
|
|
|
|
float rho, theta;
|
|
|
|
// Inner ring
|
|
rho = sqrt((pow(ring0[1], 2.0f) - pow(ring0[0], 2.0f)) * uniformDist(rndGenerator) + pow(ring0[0], 2.0f));
|
|
theta = 2.0 * M_PI * uniformDist(rndGenerator);
|
|
instanceData[i].pos = glm::vec3(rho*cos(theta), uniformDist(rndGenerator) * 0.5f - 0.25f, rho*sin(theta));
|
|
instanceData[i].rot = glm::vec3(M_PI * uniformDist(rndGenerator), M_PI * uniformDist(rndGenerator), M_PI * uniformDist(rndGenerator));
|
|
instanceData[i].scale = 1.5f + uniformDist(rndGenerator) - uniformDist(rndGenerator);
|
|
instanceData[i].texIndex = rnd(textures.rocks.layerCount);
|
|
instanceData[i].scale *= 0.75f;
|
|
|
|
// Outer ring
|
|
rho = sqrt((pow(ring1[1], 2.0f) - pow(ring1[0], 2.0f)) * uniformDist(rndGenerator) + pow(ring1[0], 2.0f));
|
|
theta = 2.0 * M_PI * uniformDist(rndGenerator);
|
|
instanceData[i + INSTANCE_COUNT / 2].pos = glm::vec3(rho*cos(theta), uniformDist(rndGenerator) * 0.5f - 0.25f, rho*sin(theta));
|
|
instanceData[i + INSTANCE_COUNT / 2].rot = glm::vec3(M_PI * uniformDist(rndGenerator), M_PI * uniformDist(rndGenerator), M_PI * uniformDist(rndGenerator));
|
|
instanceData[i + INSTANCE_COUNT / 2].scale = 1.5f + uniformDist(rndGenerator) - uniformDist(rndGenerator);
|
|
instanceData[i + INSTANCE_COUNT / 2].texIndex = rnd(textures.rocks.layerCount);
|
|
instanceData[i + INSTANCE_COUNT / 2].scale *= 0.75f;
|
|
}
|
|
|
|
instanceBuffer.size = instanceData.size() * sizeof(InstanceData);
|
|
|
|
// Staging
|
|
// Instanced data is static, copy to device local memory
|
|
// This results in better performance
|
|
|
|
struct {
|
|
VkDeviceMemory memory;
|
|
VkBuffer buffer;
|
|
} stagingBuffer;
|
|
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
instanceBuffer.size,
|
|
&stagingBuffer.buffer,
|
|
&stagingBuffer.memory,
|
|
instanceData.data()));
|
|
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
|
|
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
|
|
instanceBuffer.size,
|
|
&instanceBuffer.buffer,
|
|
&instanceBuffer.memory));
|
|
|
|
// Copy to staging buffer
|
|
VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
|
|
|
VkBufferCopy copyRegion = { };
|
|
copyRegion.size = instanceBuffer.size;
|
|
vkCmdCopyBuffer(
|
|
copyCmd,
|
|
stagingBuffer.buffer,
|
|
instanceBuffer.buffer,
|
|
1,
|
|
©Region);
|
|
|
|
VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true);
|
|
|
|
instanceBuffer.descriptor.range = instanceBuffer.size;
|
|
instanceBuffer.descriptor.buffer = instanceBuffer.buffer;
|
|
instanceBuffer.descriptor.offset = 0;
|
|
|
|
// Destroy staging resources
|
|
vkDestroyBuffer(device, stagingBuffer.buffer, nullptr);
|
|
vkFreeMemory(device, stagingBuffer.memory, nullptr);
|
|
}
|
|
|
|
void prepareUniformBuffers()
|
|
{
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&uniformBuffers.scene,
|
|
sizeof(uboVS)));
|
|
|
|
// Map persistent
|
|
VK_CHECK_RESULT(uniformBuffers.scene.map());
|
|
|
|
updateUniformBuffer(true);
|
|
}
|
|
|
|
void updateUniformBuffer(bool viewChanged)
|
|
{
|
|
if (viewChanged)
|
|
{
|
|
uboVS.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.1f, 256.0f);
|
|
uboVS.view = glm::translate(glm::mat4(1.0f), cameraPos + glm::vec3(0.0f, 0.0f, zoom));
|
|
uboVS.view = glm::rotate(uboVS.view, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
|
|
uboVS.view = glm::rotate(uboVS.view, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
|
|
uboVS.view = glm::rotate(uboVS.view, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
|
|
}
|
|
|
|
if (!paused)
|
|
{
|
|
uboVS.locSpeed += frameTimer * 0.35f;
|
|
uboVS.globSpeed += frameTimer * 0.01f;
|
|
}
|
|
|
|
memcpy(uniformBuffers.scene.mapped, &uboVS, sizeof(uboVS));
|
|
}
|
|
|
|
void draw()
|
|
{
|
|
VulkanExampleBase::prepareFrame();
|
|
|
|
// Command buffer to be sumitted to the queue
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
|
|
|
|
// Submit to queue
|
|
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
|
|
|
|
VulkanExampleBase::submitFrame();
|
|
}
|
|
|
|
void prepare()
|
|
{
|
|
VulkanExampleBase::prepare();
|
|
loadAssets();
|
|
prepareInstanceData();
|
|
prepareUniformBuffers();
|
|
setupDescriptorSetLayout();
|
|
preparePipelines();
|
|
setupDescriptorPool();
|
|
setupDescriptorSet();
|
|
buildCommandBuffers();
|
|
prepared = true;
|
|
}
|
|
|
|
virtual void render()
|
|
{
|
|
if (!prepared)
|
|
{
|
|
return;
|
|
}
|
|
draw();
|
|
if (!paused)
|
|
{
|
|
updateUniformBuffer(false);
|
|
}
|
|
}
|
|
|
|
virtual void viewChanged()
|
|
{
|
|
updateUniformBuffer(true);
|
|
}
|
|
|
|
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
|
|
{
|
|
if (overlay->header("Statistics")) {
|
|
overlay->text("Instances: %d", INSTANCE_COUNT);
|
|
}
|
|
}
|
|
};
|
|
|
|
VULKAN_EXAMPLE_MAIN() |