389 lines
No EOL
15 KiB
C++
389 lines
No EOL
15 KiB
C++
/*
|
|
* Vulkan Example - Physical based shading basics
|
|
*
|
|
* See http://graphicrants.blogspot.de/2013/08/specular-brdf-reference.html for a good reference to the different functions that make up a specular BRDF
|
|
*
|
|
* Copyright (C) 2017 by Sascha Willems - www.saschawillems.de
|
|
*
|
|
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
|
*/
|
|
|
|
#include "vulkanexamplebase.h"
|
|
#include "VulkanglTFModel.h"
|
|
|
|
#define VERTEX_BUFFER_BIND_ID 0
|
|
#define ENABLE_VALIDATION false
|
|
#define GRID_DIM 7
|
|
#define OBJ_DIM 0.05f
|
|
|
|
struct Material {
|
|
// Parameter block used as push constant block
|
|
struct PushBlock {
|
|
float roughness;
|
|
float metallic;
|
|
float r, g, b;
|
|
} params;
|
|
std::string name;
|
|
Material() {};
|
|
Material(std::string n, glm::vec3 c, float r, float m) : name(n) {
|
|
params.roughness = r;
|
|
params.metallic = m;
|
|
params.r = c.r;
|
|
params.g = c.g;
|
|
params.b = c.b;
|
|
};
|
|
};
|
|
|
|
class VulkanExample : public VulkanExampleBase
|
|
{
|
|
public:
|
|
struct Meshes {
|
|
std::vector<vkglTF::Model> objects;
|
|
int32_t objectIndex = 0;
|
|
} models;
|
|
|
|
struct {
|
|
vks::Buffer object;
|
|
vks::Buffer params;
|
|
} uniformBuffers;
|
|
|
|
struct UBOMatrices {
|
|
glm::mat4 projection;
|
|
glm::mat4 model;
|
|
glm::mat4 view;
|
|
glm::vec3 camPos;
|
|
} uboMatrices;
|
|
|
|
struct UBOParams {
|
|
glm::vec4 lights[4];
|
|
} uboParams;
|
|
|
|
VkPipelineLayout pipelineLayout;
|
|
VkPipeline pipeline;
|
|
VkDescriptorSetLayout descriptorSetLayout;
|
|
VkDescriptorSet descriptorSet;
|
|
|
|
// Default materials to select from
|
|
std::vector<Material> materials;
|
|
int32_t materialIndex = 0;
|
|
|
|
std::vector<std::string> materialNames;
|
|
std::vector<std::string> objectNames;
|
|
|
|
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
|
|
{
|
|
title = "Physical based shading basics";
|
|
camera.type = Camera::CameraType::firstperson;
|
|
camera.setPosition(glm::vec3(10.0f, 13.0f, 1.8f));
|
|
camera.setRotation(glm::vec3(-62.5f, 90.0f, 0.0f));
|
|
camera.movementSpeed = 4.0f;
|
|
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
|
|
camera.rotationSpeed = 0.25f;
|
|
paused = true;
|
|
timerSpeed *= 0.25f;
|
|
|
|
// Setup some default materials (source: https://seblagarde.wordpress.com/2011/08/17/feeding-a-physical-based-lighting-mode/)
|
|
materials.push_back(Material("Gold", glm::vec3(1.0f, 0.765557f, 0.336057f), 0.1f, 1.0f));
|
|
materials.push_back(Material("Copper", glm::vec3(0.955008f, 0.637427f, 0.538163f), 0.1f, 1.0f));
|
|
materials.push_back(Material("Chromium", glm::vec3(0.549585f, 0.556114f, 0.554256f), 0.1f, 1.0f));
|
|
materials.push_back(Material("Nickel", glm::vec3(0.659777f, 0.608679f, 0.525649f), 0.1f, 1.0f));
|
|
materials.push_back(Material("Titanium", glm::vec3(0.541931f, 0.496791f, 0.449419f), 0.1f, 1.0f));
|
|
materials.push_back(Material("Cobalt", glm::vec3(0.662124f, 0.654864f, 0.633732f), 0.1f, 1.0f));
|
|
materials.push_back(Material("Platinum", glm::vec3(0.672411f, 0.637331f, 0.585456f), 0.1f, 1.0f));
|
|
// Testing materials
|
|
materials.push_back(Material("White", glm::vec3(1.0f), 0.1f, 1.0f));
|
|
materials.push_back(Material("Red", glm::vec3(1.0f, 0.0f, 0.0f), 0.1f, 1.0f));
|
|
materials.push_back(Material("Blue", glm::vec3(0.0f, 0.0f, 1.0f), 0.1f, 1.0f));
|
|
materials.push_back(Material("Black", glm::vec3(0.0f), 0.1f, 1.0f));
|
|
|
|
for (auto material : materials) {
|
|
materialNames.push_back(material.name);
|
|
}
|
|
objectNames = { "Sphere", "Teapot", "Torusknot", "Venus" };
|
|
|
|
materialIndex = 0;
|
|
}
|
|
|
|
~VulkanExample()
|
|
{
|
|
vkDestroyPipeline(device, pipeline, nullptr);
|
|
|
|
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
|
|
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
|
|
|
|
uniformBuffers.object.destroy();
|
|
uniformBuffers.params.destroy();
|
|
}
|
|
|
|
void buildCommandBuffers()
|
|
{
|
|
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
|
|
|
VkClearValue clearValues[2];
|
|
clearValues[0].color = defaultClearColor;
|
|
clearValues[1].depthStencil = { 1.0f, 0 };
|
|
|
|
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
|
|
renderPassBeginInfo.renderPass = renderPass;
|
|
renderPassBeginInfo.renderArea.offset.x = 0;
|
|
renderPassBeginInfo.renderArea.offset.y = 0;
|
|
renderPassBeginInfo.renderArea.extent.width = width;
|
|
renderPassBeginInfo.renderArea.extent.height = height;
|
|
renderPassBeginInfo.clearValueCount = 2;
|
|
renderPassBeginInfo.pClearValues = clearValues;
|
|
|
|
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
|
|
{
|
|
// Set target frame buffer
|
|
renderPassBeginInfo.framebuffer = frameBuffers[i];
|
|
|
|
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
|
|
|
|
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
|
|
|
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
|
|
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
|
|
|
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
|
|
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
|
|
|
// Objects
|
|
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
|
|
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
|
|
|
|
Material mat = materials[materialIndex];
|
|
|
|
//#define SINGLE_ROW 1
|
|
#ifdef SINGLE_ROW
|
|
mat.params.metallic = 1.0;
|
|
|
|
uint32_t objcount = 10;
|
|
for (uint32_t x = 0; x < objcount; x++) {
|
|
glm::vec3 pos = glm::vec3(float(x - (objcount / 2.0f)) * 2.5f, 0.0f, 0.0f);
|
|
mat.params.roughness = glm::clamp((float)x / (float)objcount, 0.005f, 1.0f);
|
|
vkCmdPushConstants(drawCmdBuffers[i], pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(glm::vec3), &pos);
|
|
vkCmdPushConstants(drawCmdBuffers[i], pipelineLayout, VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(glm::vec3), sizeof(Material::PushBlock), &mat);
|
|
models.objects[models.objectIndex].draw(drawCmdBuffers[i]);
|
|
}
|
|
#else
|
|
for (uint32_t y = 0; y < GRID_DIM; y++) {
|
|
for (uint32_t x = 0; x < GRID_DIM; x++) {
|
|
glm::vec3 pos = glm::vec3(float(x - (GRID_DIM / 2.0f)) * 2.5f, 0.0f, float(y - (GRID_DIM / 2.0f)) * 2.5f);
|
|
vkCmdPushConstants(drawCmdBuffers[i], pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(glm::vec3), &pos);
|
|
mat.params.metallic = glm::clamp((float)x / (float)(GRID_DIM - 1), 0.1f, 1.0f);
|
|
mat.params.roughness = glm::clamp((float)y / (float)(GRID_DIM - 1), 0.05f, 1.0f);
|
|
vkCmdPushConstants(drawCmdBuffers[i], pipelineLayout, VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(glm::vec3), sizeof(Material::PushBlock), &mat);
|
|
models.objects[models.objectIndex].draw(drawCmdBuffers[i]);
|
|
}
|
|
}
|
|
#endif
|
|
drawUI(drawCmdBuffers[i]);
|
|
|
|
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
|
|
|
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
|
|
}
|
|
}
|
|
|
|
void loadAssets()
|
|
{
|
|
std::vector<std::string> filenames = { "sphere.gltf", "teapot.gltf", "torusknot.gltf", "venus.gltf" };
|
|
models.objects.resize(filenames.size());
|
|
for (size_t i = 0; i < filenames.size(); i++) {
|
|
models.objects[i].loadFromFile(getAssetPath() + "models/" + filenames[i], vulkanDevice, queue, vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::FlipY);
|
|
}
|
|
}
|
|
|
|
void setupDescriptorSetLayout()
|
|
{
|
|
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
|
|
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0),
|
|
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_FRAGMENT_BIT, 1),
|
|
};
|
|
|
|
VkDescriptorSetLayoutCreateInfo descriptorLayout =
|
|
vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
|
|
|
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
|
|
|
|
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo =
|
|
vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
|
|
|
|
std::vector<VkPushConstantRange> pushConstantRanges = {
|
|
vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT, sizeof(glm::vec3), 0),
|
|
vks::initializers::pushConstantRange(VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(Material::PushBlock), sizeof(glm::vec3)),
|
|
};
|
|
|
|
pipelineLayoutCreateInfo.pushConstantRangeCount = 2;
|
|
pipelineLayoutCreateInfo.pPushConstantRanges = pushConstantRanges.data();
|
|
|
|
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout));
|
|
}
|
|
|
|
void setupDescriptorSets()
|
|
{
|
|
// Descriptor Pool
|
|
std::vector<VkDescriptorPoolSize> poolSizes = {
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 4),
|
|
};
|
|
|
|
VkDescriptorPoolCreateInfo descriptorPoolInfo =
|
|
vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
|
|
|
|
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
|
|
|
|
// Descriptor sets
|
|
|
|
VkDescriptorSetAllocateInfo allocInfo =
|
|
vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
|
|
|
|
// 3D object descriptor set
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
|
|
|
|
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
|
|
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.object.descriptor),
|
|
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, &uniformBuffers.params.descriptor),
|
|
};
|
|
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
|
|
}
|
|
|
|
void preparePipelines()
|
|
{
|
|
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
|
|
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE);
|
|
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
|
|
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
|
|
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL);
|
|
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1);
|
|
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT);
|
|
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
|
|
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
|
|
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass);
|
|
|
|
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
|
|
pipelineCI.pInputAssemblyState = &inputAssemblyState;
|
|
pipelineCI.pRasterizationState = &rasterizationState;
|
|
pipelineCI.pColorBlendState = &colorBlendState;
|
|
pipelineCI.pMultisampleState = &multisampleState;
|
|
pipelineCI.pViewportState = &viewportState;
|
|
pipelineCI.pDepthStencilState = &depthStencilState;
|
|
pipelineCI.pDynamicState = &dynamicState;
|
|
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
|
|
pipelineCI.pStages = shaderStages.data();
|
|
pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position, vkglTF::VertexComponent::Normal });
|
|
|
|
// PBR pipeline
|
|
shaderStages[0] = loadShader(getShadersPath() + "pbrbasic/pbr.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
|
shaderStages[1] = loadShader(getShadersPath() + "pbrbasic/pbr.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
|
// Enable depth test and write
|
|
depthStencilState.depthWriteEnable = VK_TRUE;
|
|
depthStencilState.depthTestEnable = VK_TRUE;
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline));
|
|
}
|
|
|
|
// Prepare and initialize uniform buffer containing shader uniforms
|
|
void prepareUniformBuffers()
|
|
{
|
|
// Object vertex shader uniform buffer
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&uniformBuffers.object,
|
|
sizeof(uboMatrices)));
|
|
|
|
// Shared parameter uniform buffer
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&uniformBuffers.params,
|
|
sizeof(uboParams)));
|
|
|
|
// Map persistent
|
|
VK_CHECK_RESULT(uniformBuffers.object.map());
|
|
VK_CHECK_RESULT(uniformBuffers.params.map());
|
|
|
|
updateUniformBuffers();
|
|
updateLights();
|
|
}
|
|
|
|
void updateUniformBuffers()
|
|
{
|
|
// 3D object
|
|
uboMatrices.projection = camera.matrices.perspective;
|
|
uboMatrices.view = camera.matrices.view;
|
|
uboMatrices.model = glm::rotate(glm::mat4(1.0f), glm::radians(-90.0f + (models.objectIndex == 1 ? 45.0f : 0.0f)), glm::vec3(0.0f, 1.0f, 0.0f));
|
|
uboMatrices.camPos = camera.position * -1.0f;
|
|
memcpy(uniformBuffers.object.mapped, &uboMatrices, sizeof(uboMatrices));
|
|
}
|
|
|
|
void updateLights()
|
|
{
|
|
const float p = 15.0f;
|
|
uboParams.lights[0] = glm::vec4(-p, -p*0.5f, -p, 1.0f);
|
|
uboParams.lights[1] = glm::vec4(-p, -p*0.5f, p, 1.0f);
|
|
uboParams.lights[2] = glm::vec4( p, -p*0.5f, p, 1.0f);
|
|
uboParams.lights[3] = glm::vec4( p, -p*0.5f, -p, 1.0f);
|
|
|
|
if (!paused)
|
|
{
|
|
uboParams.lights[0].x = sin(glm::radians(timer * 360.0f)) * 20.0f;
|
|
uboParams.lights[0].z = cos(glm::radians(timer * 360.0f)) * 20.0f;
|
|
uboParams.lights[1].x = cos(glm::radians(timer * 360.0f)) * 20.0f;
|
|
uboParams.lights[1].y = sin(glm::radians(timer * 360.0f)) * 20.0f;
|
|
}
|
|
|
|
memcpy(uniformBuffers.params.mapped, &uboParams, sizeof(uboParams));
|
|
}
|
|
|
|
void draw()
|
|
{
|
|
VulkanExampleBase::prepareFrame();
|
|
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
|
|
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
|
|
|
|
VulkanExampleBase::submitFrame();
|
|
}
|
|
|
|
void prepare()
|
|
{
|
|
VulkanExampleBase::prepare();
|
|
loadAssets();
|
|
prepareUniformBuffers();
|
|
setupDescriptorSetLayout();
|
|
preparePipelines();
|
|
setupDescriptorSets();
|
|
buildCommandBuffers();
|
|
prepared = true;
|
|
}
|
|
|
|
virtual void render()
|
|
{
|
|
if (!prepared)
|
|
return;
|
|
draw();
|
|
if (!paused)
|
|
updateLights();
|
|
}
|
|
|
|
virtual void viewChanged()
|
|
{
|
|
updateUniformBuffers();
|
|
}
|
|
|
|
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
|
|
{
|
|
if (overlay->header("Settings")) {
|
|
if (overlay->comboBox("Material", &materialIndex, materialNames)) {
|
|
buildCommandBuffers();
|
|
}
|
|
if (overlay->comboBox("Object type", &models.objectIndex, objectNames)) {
|
|
updateUniformBuffers();
|
|
buildCommandBuffers();
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
VULKAN_EXAMPLE_MAIN() |