594 lines
No EOL
22 KiB
C++
594 lines
No EOL
22 KiB
C++
/*
|
|
* Vulkan Example - CPU based fire particle system
|
|
*
|
|
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
|
|
*
|
|
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
|
*/
|
|
|
|
#include "vulkanexamplebase.h"
|
|
#include "VulkanglTFModel.h"
|
|
|
|
#define ENABLE_VALIDATION false
|
|
#define PARTICLE_COUNT 512
|
|
#define PARTICLE_SIZE 10.0f
|
|
|
|
#define FLAME_RADIUS 8.0f
|
|
|
|
#define PARTICLE_TYPE_FLAME 0
|
|
#define PARTICLE_TYPE_SMOKE 1
|
|
|
|
struct Particle {
|
|
glm::vec4 pos;
|
|
glm::vec4 color;
|
|
float alpha;
|
|
float size;
|
|
float rotation;
|
|
uint32_t type;
|
|
// Attributes not used in shader
|
|
glm::vec4 vel;
|
|
float rotationSpeed;
|
|
};
|
|
|
|
class VulkanExample : public VulkanExampleBase
|
|
{
|
|
public:
|
|
struct {
|
|
struct {
|
|
vks::Texture2D smoke;
|
|
vks::Texture2D fire;
|
|
// Use a custom sampler to change sampler attributes required for rotating the uvs in the shader for alpha blended textures
|
|
VkSampler sampler;
|
|
} particles;
|
|
struct {
|
|
vks::Texture2D colorMap;
|
|
vks::Texture2D normalMap;
|
|
} floor;
|
|
} textures;
|
|
|
|
vkglTF::Model environment;
|
|
|
|
glm::vec3 emitterPos = glm::vec3(0.0f, -FLAME_RADIUS + 2.0f, 0.0f);
|
|
glm::vec3 minVel = glm::vec3(-3.0f, 0.5f, -3.0f);
|
|
glm::vec3 maxVel = glm::vec3(3.0f, 7.0f, 3.0f);
|
|
|
|
struct {
|
|
VkBuffer buffer;
|
|
VkDeviceMemory memory;
|
|
// Store the mapped address of the particle data for reuse
|
|
void *mappedMemory;
|
|
// Size of the particle buffer in bytes
|
|
size_t size;
|
|
} particles;
|
|
|
|
struct {
|
|
vks::Buffer fire;
|
|
vks::Buffer environment;
|
|
} uniformBuffers;
|
|
|
|
struct UBOVS {
|
|
glm::mat4 projection;
|
|
glm::mat4 modelView;
|
|
glm::vec2 viewportDim;
|
|
float pointSize = PARTICLE_SIZE;
|
|
} uboVS;
|
|
|
|
struct UBOEnv {
|
|
glm::mat4 projection;
|
|
glm::mat4 modelView;
|
|
glm::mat4 normal;
|
|
glm::vec4 lightPos = glm::vec4(0.0f, 0.0f, 0.0f, 0.0f);
|
|
} uboEnv;
|
|
|
|
struct {
|
|
VkPipeline particles;
|
|
VkPipeline environment;
|
|
} pipelines;
|
|
|
|
VkPipelineLayout pipelineLayout;
|
|
VkDescriptorSetLayout descriptorSetLayout;
|
|
|
|
struct {
|
|
VkDescriptorSet particles;
|
|
VkDescriptorSet environment;
|
|
} descriptorSets;
|
|
|
|
std::vector<Particle> particleBuffer;
|
|
|
|
std::default_random_engine rndEngine;
|
|
|
|
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
|
|
{
|
|
title = "CPU based particle system";
|
|
camera.type = Camera::CameraType::lookat;
|
|
camera.setPosition(glm::vec3(0.0f, 0.0f, -75.0f));
|
|
camera.setRotation(glm::vec3(-15.0f, 45.0f, 0.0f));
|
|
camera.setPerspective(60.0f, (float)width / (float)height, 1.0f, 256.0f);
|
|
timerSpeed *= 8.0f;
|
|
rndEngine.seed(benchmark.active ? 0 : (unsigned)time(nullptr));
|
|
}
|
|
|
|
~VulkanExample()
|
|
{
|
|
// Clean up used Vulkan resources
|
|
// Note : Inherited destructor cleans up resources stored in base class
|
|
|
|
textures.particles.smoke.destroy();
|
|
textures.particles.fire.destroy();
|
|
textures.floor.colorMap.destroy();
|
|
textures.floor.normalMap.destroy();
|
|
|
|
vkDestroyPipeline(device, pipelines.particles, nullptr);
|
|
vkDestroyPipeline(device, pipelines.environment, nullptr);
|
|
|
|
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
|
|
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
|
|
|
|
vkUnmapMemory(device, particles.memory);
|
|
vkDestroyBuffer(device, particles.buffer, nullptr);
|
|
vkFreeMemory(device, particles.memory, nullptr);
|
|
|
|
uniformBuffers.environment.destroy();
|
|
uniformBuffers.fire.destroy();
|
|
|
|
vkDestroySampler(device, textures.particles.sampler, nullptr);
|
|
}
|
|
|
|
virtual void getEnabledFeatures()
|
|
{
|
|
// Enable anisotropic filtering if supported
|
|
if (deviceFeatures.samplerAnisotropy) {
|
|
enabledFeatures.samplerAnisotropy = VK_TRUE;
|
|
};
|
|
}
|
|
|
|
void buildCommandBuffers()
|
|
{
|
|
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
|
|
|
VkClearValue clearValues[2];
|
|
clearValues[0].color = defaultClearColor;
|
|
clearValues[1].depthStencil = { 1.0f, 0 };
|
|
|
|
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
|
|
renderPassBeginInfo.renderPass = renderPass;
|
|
renderPassBeginInfo.renderArea.offset.x = 0;
|
|
renderPassBeginInfo.renderArea.offset.y = 0;
|
|
renderPassBeginInfo.renderArea.extent.width = width;
|
|
renderPassBeginInfo.renderArea.extent.height = height;
|
|
renderPassBeginInfo.clearValueCount = 2;
|
|
renderPassBeginInfo.pClearValues = clearValues;
|
|
|
|
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
|
|
{
|
|
// Set target frame buffer
|
|
renderPassBeginInfo.framebuffer = frameBuffers[i];
|
|
|
|
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
|
|
|
|
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
|
|
|
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
|
|
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
|
|
|
VkRect2D scissor = vks::initializers::rect2D(width, height, 0,0);
|
|
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
|
|
|
VkDeviceSize offsets[1] = { 0 };
|
|
|
|
// Environment
|
|
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.environment, 0, nullptr);
|
|
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.environment);
|
|
environment.draw(drawCmdBuffers[i]);
|
|
|
|
// Particle system (no index buffer)
|
|
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.particles, 0, nullptr);
|
|
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.particles);
|
|
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &particles.buffer, offsets);
|
|
vkCmdDraw(drawCmdBuffers[i], PARTICLE_COUNT, 1, 0, 0);
|
|
|
|
drawUI(drawCmdBuffers[i]);
|
|
|
|
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
|
|
|
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
|
|
}
|
|
}
|
|
|
|
float rnd(float range)
|
|
{
|
|
std::uniform_real_distribution<float> rndDist(0.0f, range);
|
|
return rndDist(rndEngine);
|
|
}
|
|
|
|
void initParticle(Particle *particle, glm::vec3 emitterPos)
|
|
{
|
|
particle->vel = glm::vec4(0.0f, minVel.y + rnd(maxVel.y - minVel.y), 0.0f, 0.0f);
|
|
particle->alpha = rnd(0.75f);
|
|
particle->size = 1.0f + rnd(0.5f);
|
|
particle->color = glm::vec4(1.0f);
|
|
particle->type = PARTICLE_TYPE_FLAME;
|
|
particle->rotation = rnd(2.0f * float(M_PI));
|
|
particle->rotationSpeed = rnd(2.0f) - rnd(2.0f);
|
|
|
|
// Get random sphere point
|
|
float theta = rnd(2.0f * float(M_PI));
|
|
float phi = rnd(float(M_PI)) - float(M_PI) / 2.0f;
|
|
float r = rnd(FLAME_RADIUS);
|
|
|
|
particle->pos.x = r * cos(theta) * cos(phi);
|
|
particle->pos.y = r * sin(phi);
|
|
particle->pos.z = r * sin(theta) * cos(phi);
|
|
|
|
particle->pos += glm::vec4(emitterPos, 0.0f);
|
|
}
|
|
|
|
void transitionParticle(Particle *particle)
|
|
{
|
|
switch (particle->type)
|
|
{
|
|
case PARTICLE_TYPE_FLAME:
|
|
// Flame particles have a chance of turning into smoke
|
|
if (rnd(1.0f) < 0.05f)
|
|
{
|
|
particle->alpha = 0.0f;
|
|
particle->color = glm::vec4(0.25f + rnd(0.25f));
|
|
particle->pos.x *= 0.5f;
|
|
particle->pos.z *= 0.5f;
|
|
particle->vel = glm::vec4(rnd(1.0f) - rnd(1.0f), (minVel.y * 2) + rnd(maxVel.y - minVel.y), rnd(1.0f) - rnd(1.0f), 0.0f);
|
|
particle->size = 1.0f + rnd(0.5f);
|
|
particle->rotationSpeed = rnd(1.0f) - rnd(1.0f);
|
|
particle->type = PARTICLE_TYPE_SMOKE;
|
|
}
|
|
else
|
|
{
|
|
initParticle(particle, emitterPos);
|
|
}
|
|
break;
|
|
case PARTICLE_TYPE_SMOKE:
|
|
// Respawn at end of life
|
|
initParticle(particle, emitterPos);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void prepareParticles()
|
|
{
|
|
particleBuffer.resize(PARTICLE_COUNT);
|
|
for (auto& particle : particleBuffer)
|
|
{
|
|
initParticle(&particle, emitterPos);
|
|
particle.alpha = 1.0f - (abs(particle.pos.y) / (FLAME_RADIUS * 2.0f));
|
|
}
|
|
|
|
particles.size = particleBuffer.size() * sizeof(Particle);
|
|
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
particles.size,
|
|
&particles.buffer,
|
|
&particles.memory,
|
|
particleBuffer.data()));
|
|
|
|
// Map the memory and store the pointer for reuse
|
|
VK_CHECK_RESULT(vkMapMemory(device, particles.memory, 0, particles.size, 0, &particles.mappedMemory));
|
|
}
|
|
|
|
void updateParticles()
|
|
{
|
|
float particleTimer = frameTimer * 0.45f;
|
|
for (auto& particle : particleBuffer)
|
|
{
|
|
switch (particle.type)
|
|
{
|
|
case PARTICLE_TYPE_FLAME:
|
|
particle.pos.y -= particle.vel.y * particleTimer * 3.5f;
|
|
particle.alpha += particleTimer * 2.5f;
|
|
particle.size -= particleTimer * 0.5f;
|
|
break;
|
|
case PARTICLE_TYPE_SMOKE:
|
|
particle.pos -= particle.vel * frameTimer * 1.0f;
|
|
particle.alpha += particleTimer * 1.25f;
|
|
particle.size += particleTimer * 0.125f;
|
|
particle.color -= particleTimer * 0.05f;
|
|
break;
|
|
}
|
|
particle.rotation += particleTimer * particle.rotationSpeed;
|
|
// Transition particle state
|
|
if (particle.alpha > 2.0f)
|
|
{
|
|
transitionParticle(&particle);
|
|
}
|
|
}
|
|
size_t size = particleBuffer.size() * sizeof(Particle);
|
|
memcpy(particles.mappedMemory, particleBuffer.data(), size);
|
|
}
|
|
|
|
void loadAssets()
|
|
{
|
|
// Particles
|
|
textures.particles.smoke.loadFromFile(getAssetPath() + "textures/particle_smoke.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
|
|
textures.particles.fire.loadFromFile(getAssetPath() + "textures/particle_fire.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
|
|
|
|
// Floor
|
|
textures.floor.colorMap.loadFromFile(getAssetPath() + "textures/fireplace_colormap_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
|
|
textures.floor.normalMap.loadFromFile(getAssetPath() + "textures/fireplace_normalmap_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
|
|
|
|
// Create a custom sampler to be used with the particle textures
|
|
// Create sampler
|
|
VkSamplerCreateInfo samplerCreateInfo = vks::initializers::samplerCreateInfo();
|
|
samplerCreateInfo.magFilter = VK_FILTER_LINEAR;
|
|
samplerCreateInfo.minFilter = VK_FILTER_LINEAR;
|
|
samplerCreateInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
|
|
// Different address mode
|
|
samplerCreateInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
|
|
samplerCreateInfo.addressModeV = samplerCreateInfo.addressModeU;
|
|
samplerCreateInfo.addressModeW = samplerCreateInfo.addressModeU;
|
|
samplerCreateInfo.mipLodBias = 0.0f;
|
|
samplerCreateInfo.compareOp = VK_COMPARE_OP_NEVER;
|
|
samplerCreateInfo.minLod = 0.0f;
|
|
// Both particle textures have the same number of mip maps
|
|
samplerCreateInfo.maxLod = float(textures.particles.fire.mipLevels);
|
|
|
|
if (vulkanDevice->features.samplerAnisotropy)
|
|
{
|
|
// Enable anisotropic filtering
|
|
samplerCreateInfo.maxAnisotropy = 8.0f;
|
|
samplerCreateInfo.anisotropyEnable = VK_TRUE;
|
|
}
|
|
|
|
// Use a different border color (than the normal texture loader) for additive blending
|
|
samplerCreateInfo.borderColor = VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK;
|
|
VK_CHECK_RESULT(vkCreateSampler(device, &samplerCreateInfo, nullptr, &textures.particles.sampler));
|
|
|
|
const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY;
|
|
environment.loadFromFile(getAssetPath() + "models/fireplace.gltf", vulkanDevice, queue, glTFLoadingFlags);
|
|
}
|
|
|
|
void setupDescriptorPool()
|
|
{
|
|
std::vector<VkDescriptorPoolSize> poolSizes = {
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2),
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 4)
|
|
};
|
|
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
|
|
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
|
|
}
|
|
|
|
void setupDescriptorSetLayout()
|
|
{
|
|
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
|
|
// Binding 0 : Vertex shader uniform buffer
|
|
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
|
|
// Binding 1 : Fragment shader image sampler
|
|
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1),
|
|
// Binding 1 : Fragment shader image sampler
|
|
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT,2)
|
|
};
|
|
|
|
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
|
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
|
|
|
|
VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
|
|
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout));
|
|
}
|
|
|
|
void setupDescriptorSets()
|
|
{
|
|
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
|
|
|
|
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
|
|
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.particles));
|
|
|
|
// Image descriptor for the color map texture
|
|
VkDescriptorImageInfo texDescriptorSmoke =
|
|
vks::initializers::descriptorImageInfo(
|
|
textures.particles.sampler,
|
|
textures.particles.smoke.view,
|
|
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
|
|
VkDescriptorImageInfo texDescriptorFire =
|
|
vks::initializers::descriptorImageInfo(
|
|
textures.particles.sampler,
|
|
textures.particles.fire.view,
|
|
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
|
|
|
|
writeDescriptorSets = {
|
|
// Binding 0: Vertex shader uniform buffer
|
|
vks::initializers::writeDescriptorSet(descriptorSets.particles, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.fire.descriptor),
|
|
// Binding 1: Smoke texture
|
|
vks::initializers::writeDescriptorSet(descriptorSets.particles, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptorSmoke),
|
|
// Binding 1: Fire texture array
|
|
vks::initializers::writeDescriptorSet(descriptorSets.particles, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &texDescriptorFire)
|
|
};
|
|
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
|
|
|
|
// Environment
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.environment));
|
|
|
|
writeDescriptorSets = {
|
|
// Binding 0: Vertex shader uniform buffer
|
|
vks::initializers::writeDescriptorSet(descriptorSets.environment, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.environment.descriptor),
|
|
// Binding 1: Color map
|
|
vks::initializers::writeDescriptorSet(descriptorSets.environment, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textures.floor.colorMap.descriptor),
|
|
// Binding 2: Normal map
|
|
vks::initializers::writeDescriptorSet(descriptorSets.environment, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &textures.floor.normalMap.descriptor),
|
|
};
|
|
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
|
|
}
|
|
|
|
void preparePipelines()
|
|
{
|
|
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_POINT_LIST, 0, VK_FALSE);
|
|
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
|
|
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
|
|
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
|
|
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
|
|
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
|
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
|
|
std::vector<VkDynamicState> dynamicStateEnables = {VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR};
|
|
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
|
|
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
|
|
|
|
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass);
|
|
pipelineCI.pInputAssemblyState = &inputAssemblyState;
|
|
pipelineCI.pRasterizationState = &rasterizationState;
|
|
pipelineCI.pColorBlendState = &colorBlendState;
|
|
pipelineCI.pMultisampleState = &multisampleState;
|
|
pipelineCI.pViewportState = &viewportState;
|
|
pipelineCI.pDepthStencilState = &depthStencilState;
|
|
pipelineCI.pDynamicState = &dynamicState;
|
|
pipelineCI.stageCount = shaderStages.size();
|
|
pipelineCI.pStages = shaderStages.data();
|
|
|
|
// Particle rendering pipeline
|
|
{
|
|
// Vertex input state
|
|
VkVertexInputBindingDescription vertexInputBinding =
|
|
vks::initializers::vertexInputBindingDescription(0, sizeof(Particle), VK_VERTEX_INPUT_RATE_VERTEX);
|
|
|
|
std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
|
|
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32A32_SFLOAT, offsetof(Particle, pos)), // Location 0: Position
|
|
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32A32_SFLOAT, offsetof(Particle, color)), // Location 1: Color
|
|
vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32_SFLOAT, offsetof(Particle, alpha)), // Location 2: Alpha
|
|
vks::initializers::vertexInputAttributeDescription(0, 3, VK_FORMAT_R32_SFLOAT, offsetof(Particle, size)), // Location 3: Size
|
|
vks::initializers::vertexInputAttributeDescription(0, 4, VK_FORMAT_R32_SFLOAT, offsetof(Particle, rotation)), // Location 4: Rotation
|
|
vks::initializers::vertexInputAttributeDescription(0, 5, VK_FORMAT_R32_SINT, offsetof(Particle, type)), // Location 5: Particle type
|
|
};
|
|
|
|
VkPipelineVertexInputStateCreateInfo vertexInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
|
|
vertexInputState.vertexBindingDescriptionCount = 1;
|
|
vertexInputState.pVertexBindingDescriptions = &vertexInputBinding;
|
|
vertexInputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
|
|
vertexInputState.pVertexAttributeDescriptions = vertexInputAttributes.data();
|
|
|
|
pipelineCI.pVertexInputState = &vertexInputState;
|
|
|
|
// Don t' write to depth buffer
|
|
depthStencilState.depthWriteEnable = VK_FALSE;
|
|
|
|
// Premulitplied alpha
|
|
blendAttachmentState.blendEnable = VK_TRUE;
|
|
blendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_ONE;
|
|
blendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
|
|
blendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD;
|
|
blendAttachmentState.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE;
|
|
blendAttachmentState.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO;
|
|
blendAttachmentState.alphaBlendOp = VK_BLEND_OP_ADD;
|
|
blendAttachmentState.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
|
|
|
|
shaderStages[0] = loadShader(getShadersPath() + "particlefire/particle.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
|
shaderStages[1] = loadShader(getShadersPath() + "particlefire/particle.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.particles));
|
|
}
|
|
|
|
// Environment rendering pipeline (normal mapped)
|
|
{
|
|
// Vertex input state is taken from the glTF model loader
|
|
pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position, vkglTF::VertexComponent::UV, vkglTF::VertexComponent::Normal, vkglTF::VertexComponent::Tangent });
|
|
|
|
blendAttachmentState.blendEnable = VK_FALSE;
|
|
depthStencilState.depthWriteEnable = VK_TRUE;
|
|
inputAssemblyState.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
|
|
|
|
shaderStages[0] = loadShader(getShadersPath() + "particlefire/normalmap.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
|
shaderStages[1] = loadShader(getShadersPath() + "particlefire/normalmap.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.environment));
|
|
}
|
|
}
|
|
|
|
// Prepare and initialize uniform buffer containing shader uniforms
|
|
void prepareUniformBuffers()
|
|
{
|
|
// Vertex shader uniform buffer block
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&uniformBuffers.fire,
|
|
sizeof(uboVS)));
|
|
|
|
// Vertex shader uniform buffer block
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&uniformBuffers.environment,
|
|
sizeof(uboEnv)));
|
|
|
|
// Map persistent
|
|
VK_CHECK_RESULT(uniformBuffers.fire.map());
|
|
VK_CHECK_RESULT(uniformBuffers.environment.map());
|
|
|
|
updateUniformBuffers();
|
|
}
|
|
|
|
void updateUniformBufferLight()
|
|
{
|
|
// Environment
|
|
uboEnv.lightPos.x = sin(timer * 2.0f * float(M_PI)) * 1.5f;
|
|
uboEnv.lightPos.y = 0.0f;
|
|
uboEnv.lightPos.z = cos(timer * 2.0f * float(M_PI)) * 1.5f;
|
|
memcpy(uniformBuffers.environment.mapped, &uboEnv, sizeof(uboEnv));
|
|
}
|
|
|
|
void updateUniformBuffers()
|
|
{
|
|
// Particle system fire
|
|
uboVS.projection = camera.matrices.perspective;
|
|
uboVS.modelView = camera.matrices.view;
|
|
uboVS.viewportDim = glm::vec2((float)width, (float)height);
|
|
memcpy(uniformBuffers.fire.mapped, &uboVS, sizeof(uboVS));
|
|
|
|
// Environment
|
|
uboEnv.projection = camera.matrices.perspective;
|
|
uboEnv.modelView = camera.matrices.view;
|
|
uboEnv.normal = glm::inverseTranspose(uboEnv.modelView);
|
|
memcpy(uniformBuffers.environment.mapped, &uboEnv, sizeof(uboEnv));
|
|
}
|
|
|
|
void draw()
|
|
{
|
|
VulkanExampleBase::prepareFrame();
|
|
|
|
// Command buffer to be submitted to the queue
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
|
|
|
|
// Submit to queue
|
|
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
|
|
|
|
VulkanExampleBase::submitFrame();
|
|
}
|
|
|
|
void prepare()
|
|
{
|
|
VulkanExampleBase::prepare();
|
|
loadAssets();
|
|
prepareParticles();
|
|
prepareUniformBuffers();
|
|
setupDescriptorSetLayout();
|
|
preparePipelines();
|
|
setupDescriptorPool();
|
|
setupDescriptorSets();
|
|
buildCommandBuffers();
|
|
prepared = true;
|
|
}
|
|
|
|
virtual void render()
|
|
{
|
|
if (!prepared)
|
|
return;
|
|
draw();
|
|
if (!paused)
|
|
{
|
|
updateUniformBufferLight();
|
|
updateParticles();
|
|
}
|
|
if (camera.updated)
|
|
{
|
|
updateUniformBuffers();
|
|
}
|
|
}
|
|
};
|
|
|
|
VULKAN_EXAMPLE_MAIN() |