procedural-3d-engine/examples/texturecubemaparray/texturecubemaparray.cpp

613 lines
No EOL
24 KiB
C++

/*
* Vulkan Example - Cube map array texture loading and displaying
*
* Copyright (C) 2020 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#include "VulkanBuffer.hpp"
#include "VulkanTexture.hpp"
#include "VulkanModel.hpp"
#include <ktx.h>
#include <ktxvulkan.h>
#define ENABLE_VALIDATION false
class VulkanExample : public VulkanExampleBase
{
public:
bool displaySkybox = true;
vks::Texture cubeMapArray;
// Vertex layout for the models
vks::VertexLayout vertexLayout = vks::VertexLayout({
vks::VERTEX_COMPONENT_POSITION,
vks::VERTEX_COMPONENT_NORMAL,
vks::VERTEX_COMPONENT_UV,
});
struct Meshes {
vks::Model skybox;
std::vector<vks::Model> objects;
int32_t objectIndex = 0;
} models;
struct {
vks::Buffer object;
vks::Buffer skybox;
} uniformBuffers;
struct ShaderData {
glm::mat4 projection;
glm::mat4 modelView;
glm::mat4 inverseModelview;
float lodBias = 0.0f;
int cubeMapIndex = 1;
} shaderData;
struct {
VkPipeline skybox;
VkPipeline reflect;
} pipelines;
struct {
VkDescriptorSet object;
VkDescriptorSet skybox;
} descriptorSets;
VkPipelineLayout pipelineLayout;
VkDescriptorSetLayout descriptorSetLayout;
std::vector<std::string> objectNames;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "Cube map textures";
camera.type = Camera::CameraType::lookat;
camera.setPosition(glm::vec3(0.0f, 0.0f, -4.0f));
camera.setRotation(glm::vec3(-7.25f, -120.0f, 0.0f));
camera.setRotationSpeed(0.25f);
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
settings.overlay = true;
}
~VulkanExample()
{
// Clean up texture resources
vkDestroyImageView(device, cubeMapArray.view, nullptr);
vkDestroyImage(device, cubeMapArray.image, nullptr);
vkDestroySampler(device, cubeMapArray.sampler, nullptr);
vkFreeMemory(device, cubeMapArray.deviceMemory, nullptr);
vkDestroyPipeline(device, pipelines.skybox, nullptr);
vkDestroyPipeline(device, pipelines.reflect, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
for (auto& model : models.objects) {
model.destroy();
}
models.skybox.destroy();
uniformBuffers.object.destroy();
uniformBuffers.skybox.destroy();
}
// Enable physical device features required for this example
virtual void getEnabledFeatures()
{
if (deviceFeatures.imageCubeArray) {
enabledFeatures.imageCubeArray = VK_TRUE;
} else {
vks::tools::exitFatal("Selected GPU does not support cube map arrays!", VK_ERROR_FEATURE_NOT_PRESENT);
}
enabledFeatures.imageCubeArray = VK_TRUE;
if (deviceFeatures.samplerAnisotropy) {
enabledFeatures.samplerAnisotropy = VK_TRUE;
}
};
void loadCubemapArray(std::string filename, VkFormat format, bool forceLinearTiling)
{
ktxResult result;
ktxTexture* ktxTexture;
#if defined(__ANDROID__)
// Textures are stored inside the apk on Android (compressed)
// So they need to be loaded via the asset manager
AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, filename.c_str(), AASSET_MODE_STREAMING);
if (!asset) {
vks::tools::exitFatal("Could not load texture from " + filename + "\n\nThe file may be part of the additional asset pack.\n\nRun \"download_assets.py\" in the repository root to download the latest version.", -1);
}
size_t size = AAsset_getLength(asset);
assert(size > 0);
ktx_uint8_t *textureData = new ktx_uint8_t[size];
AAsset_read(asset, textureData, size);
AAsset_close(asset);
result = ktxTexture_CreateFromMemory(textureData, size, KTX_TEXTURE_CREATE_LOAD_IMAGE_DATA_BIT, &ktxTexture);
delete[] textureData;
#else
if (!vks::tools::fileExists(filename)) {
vks::tools::exitFatal("Could not load texture from " + filename + "\n\nThe file may be part of the additional asset pack.\n\nRun \"download_assets.py\" in the repository root to download the latest version.", -1);
}
result = ktxTexture_CreateFromNamedFile(filename.c_str(), KTX_TEXTURE_CREATE_LOAD_IMAGE_DATA_BIT, &ktxTexture);
#endif
assert(result == KTX_SUCCESS);
// Get properties required for using and upload texture data from the ktx texture object
cubeMapArray.width = ktxTexture->baseWidth;
cubeMapArray.height = ktxTexture->baseHeight;
cubeMapArray.mipLevels = ktxTexture->numLevels;
cubeMapArray.layerCount = ktxTexture->numLayers;
ktx_uint8_t *ktxTextureData = ktxTexture_GetData(ktxTexture);
ktx_size_t ktxTextureSize = ktxTexture_GetSize(ktxTexture);
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
// Create a host-visible staging buffer that contains the raw image data
VkBuffer stagingBuffer;
VkDeviceMemory stagingMemory;
VkBufferCreateInfo bufferCreateInfo = vks::initializers::bufferCreateInfo();
bufferCreateInfo.size = ktxTextureSize;
// This buffer is used as a transfer source for the buffer copy
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &stagingBuffer));
// Get memory requirements for the staging buffer (alignment, memory type bits)
vkGetBufferMemoryRequirements(device, stagingBuffer, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
// Get memory type index for a host visible buffer
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &stagingMemory));
VK_CHECK_RESULT(vkBindBufferMemory(device, stagingBuffer, stagingMemory, 0));
// Copy texture data into staging buffer
uint8_t *data;
VK_CHECK_RESULT(vkMapMemory(device, stagingMemory, 0, memReqs.size, 0, (void **)&data));
memcpy(data, ktxTextureData, ktxTextureSize);
vkUnmapMemory(device, stagingMemory);
// Create optimal tiled target image
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.mipLevels = cubeMapArray.mipLevels;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCreateInfo.extent = { cubeMapArray.width, cubeMapArray.height, 1 };
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
// Cube faces count as array layers in Vulkan
imageCreateInfo.arrayLayers = 6 * cubeMapArray.layerCount;
// This flag is required for cube map images
imageCreateInfo.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &cubeMapArray.image));
vkGetImageMemoryRequirements(device, cubeMapArray.image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &cubeMapArray.deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device, cubeMapArray.image, cubeMapArray.deviceMemory, 0));
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
// Setup buffer copy regions for each face including all of its miplevels
std::vector<VkBufferImageCopy> bufferCopyRegions;
uint32_t offset = 0;
/*
Setup buffer copy regions to copy the data from the ktx file to our image
Cube map arrays in ktx are stored with a layout like this:
- Mip Level 0
- Layer 0 (= Cube map 0)
- Face +X
- Face -X
- Face +Y
- Face -Y
- Face +Z
- Face -Z
- Layer 1 (= Cube map 1)
- Face +X
...
- Mip Level 1
- Layer 0 (= Cube map 0)
- Face +X
...
- Layer 1 (= Cube map 1)
- Face +X
...
*/
for (uint32_t face = 0; face < 6; face++) {
for (uint32_t layer = 0; layer < ktxTexture->numLayers; layer++) {
for (uint32_t level = 0; level < ktxTexture->numLevels; level++) {
ktx_size_t offset;
KTX_error_code ret = ktxTexture_GetImageOffset(ktxTexture, level, layer, face, &offset);
assert(ret == KTX_SUCCESS);
VkBufferImageCopy bufferCopyRegion = {};
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
bufferCopyRegion.imageSubresource.mipLevel = level;
bufferCopyRegion.imageSubresource.baseArrayLayer = layer * 6 + face;
bufferCopyRegion.imageSubresource.layerCount = 1;
bufferCopyRegion.imageExtent.width = ktxTexture->baseWidth >> level;
bufferCopyRegion.imageExtent.height = ktxTexture->baseHeight >> level;
bufferCopyRegion.imageExtent.depth = 1;
bufferCopyRegion.bufferOffset = offset;
bufferCopyRegions.push_back(bufferCopyRegion);
}
}
}
// Image barrier for optimal image (target)
// Set initial layout for all array layers (faces) of the optimal (target) tiled texture
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = cubeMapArray.mipLevels;
subresourceRange.layerCount = 6 * cubeMapArray.layerCount;
vks::tools::setImageLayout(
copyCmd,
cubeMapArray.image,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
subresourceRange);
// Copy the cube map faces from the staging buffer to the optimal tiled image
vkCmdCopyBufferToImage(
copyCmd,
stagingBuffer,
cubeMapArray.image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
static_cast<uint32_t>(bufferCopyRegions.size()),
bufferCopyRegions.data()
);
// Change texture image layout to shader read after all faces have been copied
cubeMapArray.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
vks::tools::setImageLayout(
copyCmd,
cubeMapArray.image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
cubeMapArray.imageLayout,
subresourceRange);
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
// Create sampler
VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo();
sampler.magFilter = VK_FILTER_LINEAR;
sampler.minFilter = VK_FILTER_LINEAR;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
sampler.addressModeV = sampler.addressModeU;
sampler.addressModeW = sampler.addressModeU;
sampler.mipLodBias = 0.0f;
sampler.compareOp = VK_COMPARE_OP_NEVER;
sampler.minLod = 0.0f;
sampler.maxLod = cubeMapArray.mipLevels;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
sampler.maxAnisotropy = 1.0f;
if (vulkanDevice->features.samplerAnisotropy)
{
sampler.maxAnisotropy = vulkanDevice->properties.limits.maxSamplerAnisotropy;
sampler.anisotropyEnable = VK_TRUE;
}
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &cubeMapArray.sampler));
// Create the image view for a cube map array
VkImageViewCreateInfo view = vks::initializers::imageViewCreateInfo();
view.viewType = VK_IMAGE_VIEW_TYPE_CUBE_ARRAY;
view.format = format;
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
view.subresourceRange.layerCount = 6 * cubeMapArray.layerCount;
view.subresourceRange.levelCount = cubeMapArray.mipLevels;
view.image = cubeMapArray.image;
VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &cubeMapArray.view));
// Clean up staging resources
vkFreeMemory(device, stagingMemory, nullptr);
vkDestroyBuffer(device, stagingBuffer, nullptr);
ktxTexture_Destroy(ktxTexture);
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
// Skybox
if (displaySkybox)
{
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.skybox, 0, NULL);
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &models.skybox.vertices.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.skybox.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.skybox);
vkCmdDrawIndexed(drawCmdBuffers[i], models.skybox.indexCount, 1, 0, 0, 0);
}
// 3D object
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.object, 0, NULL);
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &models.objects[models.objectIndex].vertices.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.objects[models.objectIndex].indices.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.reflect);
vkCmdDrawIndexed(drawCmdBuffers[i], models.objects[models.objectIndex].indexCount, 1, 0, 0, 0);
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void loadAssets()
{
// Skybox
models.skybox.loadFromFile(getAssetPath() + "models/cube.obj", vertexLayout, 0.05f, vulkanDevice, queue);
// Objects
std::vector<std::string> filenames = { "sphere.obj", "teapot.dae", "torusknot.obj", "venus.fbx" };
objectNames = { "Sphere", "Teapot", "Torusknot", "Venus" };
for (auto file : filenames) {
vks::Model model;
model.loadFromFile(getAssetPath() + "models/" + file, vertexLayout, 0.05f * (file == "venus.fbx" ? 3.0f : 1.0f), vulkanDevice, queue);
models.objects.push_back(model);
}
// Load the cube map array from a ktx texture file
loadCubemapArray(getAssetPath() + "textures/cubemap_array.ktx", VK_FORMAT_R8G8B8A8_UNORM, false);
}
void setupDescriptorPool()
{
const std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2)
};
const VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
const std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0 : Uniform buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0),
// Binding 1 : Fragment shader image sampler
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1)
};
const VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
const VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout));
}
void setupDescriptorSets()
{
// Image descriptor for the cube map texture
VkDescriptorImageInfo textureDescriptor = vks::initializers::descriptorImageInfo(cubeMapArray.sampler, cubeMapArray.view, cubeMapArray.imageLayout);
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
// 3D object descriptor set
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.object));
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSets.object, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.object.descriptor),
// Binding 1 : Fragment shader cubemap sampler
vks::initializers::writeDescriptorSet(descriptorSets.object, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textureDescriptor)
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
// Sky box descriptor set
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.skybox));
writeDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSets.skybox, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.skybox.descriptor),
// Binding 1 : Fragment shader cubemap sampler
vks::initializers::writeDescriptorSet(descriptorSets.skybox, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textureDescriptor)
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = {VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR};
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
// Vertex bindings and attributes
VkVertexInputBindingDescription vertexInputBinding =
vks::initializers::vertexInputBindingDescription(0, vertexLayout.stride(), VK_VERTEX_INPUT_RATE_VERTEX);
std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, 0), // Location 0: Position
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3), // Location 1: Normal
};
VkPipelineVertexInputStateCreateInfo vertexInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
vertexInputState.vertexBindingDescriptionCount = 1;
vertexInputState.pVertexBindingDescriptions = &vertexInputBinding;
vertexInputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
vertexInputState.pVertexAttributeDescriptions = vertexInputAttributes.data();
VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data();
pipelineCreateInfo.pVertexInputState = &vertexInputState;
// Skybox pipeline (background cube)
shaderStages[0] = loadShader(getShadersPath() + "texturecubemaparray/skybox.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "texturecubemaparray/skybox.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.skybox));
// Cube map reflect pipeline
shaderStages[0] = loadShader(getShadersPath() + "texturecubemaparray/reflect.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "texturecubemaparray/reflect.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// Enable depth test and write
depthStencilState.depthWriteEnable = VK_TRUE;
depthStencilState.depthTestEnable = VK_TRUE;
// Flip cull mode
rasterizationState.cullMode = VK_CULL_MODE_FRONT_BIT;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.reflect));
}
void prepareUniformBuffers()
{
// Object vertex shader uniform buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.object,
sizeof(ShaderData)));
// Skybox vertex shader uniform buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.skybox,
sizeof(ShaderData)));
// Map persistent
VK_CHECK_RESULT(uniformBuffers.object.map());
VK_CHECK_RESULT(uniformBuffers.skybox.map());
updateUniformBuffers();
}
void updateUniformBuffers()
{
// 3D object
shaderData.projection = camera.matrices.perspective;
shaderData.modelView = camera.matrices.view;
shaderData.inverseModelview = glm::inverse(camera.matrices.view);
memcpy(uniformBuffers.object.mapped, &shaderData, sizeof(ShaderData));
// Skybox
shaderData.modelView = camera.matrices.view;
// Cancel out translation
shaderData.modelView[3] = glm::vec4(0.0f, 0.0f, 0.0f, 1.0f);
memcpy(uniformBuffers.skybox.mapped, &shaderData, sizeof(ShaderData));
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSets();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
if (camera.updated) {
updateUniformBuffers();
}
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Settings")) {
if (overlay->sliderInt("Cube map", &shaderData.cubeMapIndex, 0, cubeMapArray.layerCount - 1)) {
updateUniformBuffers();
}
if (overlay->sliderFloat("LOD bias", &shaderData.lodBias, 0.0f, (float)cubeMapArray.mipLevels)) {
updateUniformBuffers();
}
if (overlay->comboBox("Object type", &models.objectIndex, objectNames)) {
buildCommandBuffers();
}
if (overlay->checkBox("Skybox", &displaySkybox)) {
buildCommandBuffers();
}
}
}
};
VULKAN_EXAMPLE_MAIN()