833 lines
28 KiB
C++
833 lines
28 KiB
C++
/*
|
|
* Vulkan Example - Attraction based compute shader particle system
|
|
*
|
|
* Updated compute shader by Lukas Bergdoll (https://github.com/Voultapher)
|
|
*
|
|
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
|
|
*
|
|
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <vector>
|
|
#include <random>
|
|
|
|
#define GLM_FORCE_RADIANS
|
|
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
|
|
#include <glm/glm.hpp>
|
|
#include <glm/gtc/matrix_transform.hpp>
|
|
|
|
#include <vulkan/vulkan.h>
|
|
#include "vulkanexamplebase.h"
|
|
#include "VulkanTexture.hpp"
|
|
|
|
#define VERTEX_BUFFER_BIND_ID 0
|
|
#define ENABLE_VALIDATION false
|
|
#if defined(__ANDROID__)
|
|
// Lower particle count on Android for performance reasons
|
|
#define PARTICLE_COUNT 128 * 1024
|
|
#else
|
|
#define PARTICLE_COUNT 256 * 1024
|
|
#endif
|
|
|
|
class VulkanExample : public VulkanExampleBase
|
|
{
|
|
public:
|
|
float timer = 0.0f;
|
|
float animStart = 20.0f;
|
|
bool attachToCursor = false;
|
|
|
|
struct {
|
|
vks::Texture2D particle;
|
|
vks::Texture2D gradient;
|
|
} textures;
|
|
|
|
struct {
|
|
VkPipelineVertexInputStateCreateInfo inputState;
|
|
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
|
|
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
|
|
} vertices;
|
|
|
|
// Resources for the graphics part of the example
|
|
struct {
|
|
uint32_t queueFamilyIndex; // Used to check if compute and graphics queue families differ and require additional barriers
|
|
VkDescriptorSetLayout descriptorSetLayout; // Particle system rendering shader binding layout
|
|
VkDescriptorSet descriptorSet; // Particle system rendering shader bindings
|
|
VkPipelineLayout pipelineLayout; // Layout of the graphics pipeline
|
|
VkPipeline pipeline; // Particle rendering pipeline
|
|
VkSemaphore semaphore; // Execution dependency between compute & graphic submission
|
|
} graphics;
|
|
|
|
// Resources for the compute part of the example
|
|
struct {
|
|
uint32_t queueFamilyIndex; // Used to check if compute and graphics queue families differ and require additional barriers
|
|
vks::Buffer storageBuffer; // (Shader) storage buffer object containing the particles
|
|
vks::Buffer uniformBuffer; // Uniform buffer object containing particle system parameters
|
|
VkQueue queue; // Separate queue for compute commands (queue family may differ from the one used for graphics)
|
|
VkCommandPool commandPool; // Use a separate command pool (queue family may differ from the one used for graphics)
|
|
VkCommandBuffer commandBuffer; // Command buffer storing the dispatch commands and barriers
|
|
VkSemaphore semaphore; // Execution dependency between compute & graphic submission
|
|
VkDescriptorSetLayout descriptorSetLayout; // Compute shader binding layout
|
|
VkDescriptorSet descriptorSet; // Compute shader bindings
|
|
VkPipelineLayout pipelineLayout; // Layout of the compute pipeline
|
|
VkPipeline pipeline; // Compute pipeline for updating particle positions
|
|
struct computeUBO { // Compute shader uniform block object
|
|
float deltaT; // Frame delta time
|
|
float destX; // x position of the attractor
|
|
float destY; // y position of the attractor
|
|
int32_t particleCount = PARTICLE_COUNT;
|
|
} ubo;
|
|
} compute;
|
|
|
|
// SSBO particle declaration
|
|
struct Particle {
|
|
glm::vec2 pos; // Particle position
|
|
glm::vec2 vel; // Particle velocity
|
|
glm::vec4 gradientPos; // Texture coordiantes for the gradient ramp map
|
|
};
|
|
|
|
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
|
|
{
|
|
title = "Compute shader particle system";
|
|
settings.overlay = true;
|
|
}
|
|
|
|
~VulkanExample()
|
|
{
|
|
// Graphics
|
|
vkDestroyPipeline(device, graphics.pipeline, nullptr);
|
|
vkDestroyPipelineLayout(device, graphics.pipelineLayout, nullptr);
|
|
vkDestroyDescriptorSetLayout(device, graphics.descriptorSetLayout, nullptr);
|
|
|
|
// Compute
|
|
compute.storageBuffer.destroy();
|
|
compute.uniformBuffer.destroy();
|
|
vkDestroyPipelineLayout(device, compute.pipelineLayout, nullptr);
|
|
vkDestroyDescriptorSetLayout(device, compute.descriptorSetLayout, nullptr);
|
|
vkDestroyPipeline(device, compute.pipeline, nullptr);
|
|
vkDestroySemaphore(device, compute.semaphore, nullptr);
|
|
vkDestroyCommandPool(device, compute.commandPool, nullptr);
|
|
|
|
textures.particle.destroy();
|
|
textures.gradient.destroy();
|
|
}
|
|
|
|
void loadAssets()
|
|
{
|
|
textures.particle.loadFromFile(getAssetPath() + "textures/particle01_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
|
|
textures.gradient.loadFromFile(getAssetPath() + "textures/particle_gradient_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
|
|
}
|
|
|
|
void buildCommandBuffers()
|
|
{
|
|
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
|
|
|
VkClearValue clearValues[2];
|
|
clearValues[0].color = defaultClearColor;
|
|
clearValues[1].depthStencil = { 1.0f, 0 };
|
|
|
|
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
|
|
renderPassBeginInfo.renderPass = renderPass;
|
|
renderPassBeginInfo.renderArea.offset.x = 0;
|
|
renderPassBeginInfo.renderArea.offset.y = 0;
|
|
renderPassBeginInfo.renderArea.extent.width = width;
|
|
renderPassBeginInfo.renderArea.extent.height = height;
|
|
renderPassBeginInfo.clearValueCount = 2;
|
|
renderPassBeginInfo.pClearValues = clearValues;
|
|
|
|
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
|
|
{
|
|
// Set target frame buffer
|
|
renderPassBeginInfo.framebuffer = frameBuffers[i];
|
|
|
|
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
|
|
|
|
// Acquire barrier
|
|
if (graphics.queueFamilyIndex != compute.queueFamilyIndex)
|
|
{
|
|
VkBufferMemoryBarrier buffer_barrier =
|
|
{
|
|
VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,
|
|
nullptr,
|
|
0,
|
|
VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT,
|
|
compute.queueFamilyIndex,
|
|
graphics.queueFamilyIndex,
|
|
compute.storageBuffer.buffer,
|
|
0,
|
|
compute.storageBuffer.size
|
|
};
|
|
|
|
vkCmdPipelineBarrier(
|
|
drawCmdBuffers[i],
|
|
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
|
|
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT,
|
|
0,
|
|
0, nullptr,
|
|
1, &buffer_barrier,
|
|
0, nullptr);
|
|
}
|
|
|
|
// Draw the particle system using the update vertex buffer
|
|
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
|
|
|
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
|
|
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
|
|
|
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
|
|
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
|
|
|
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipeline);
|
|
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelineLayout, 0, 1, &graphics.descriptorSet, 0, NULL);
|
|
|
|
VkDeviceSize offsets[1] = { 0 };
|
|
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &compute.storageBuffer.buffer, offsets);
|
|
vkCmdDraw(drawCmdBuffers[i], PARTICLE_COUNT, 1, 0, 0);
|
|
|
|
drawUI(drawCmdBuffers[i]);
|
|
|
|
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
|
|
|
// Release barrier
|
|
if (graphics.queueFamilyIndex != compute.queueFamilyIndex)
|
|
{
|
|
VkBufferMemoryBarrier buffer_barrier =
|
|
{
|
|
VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,
|
|
nullptr,
|
|
VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT,
|
|
0,
|
|
graphics.queueFamilyIndex,
|
|
compute.queueFamilyIndex,
|
|
compute.storageBuffer.buffer,
|
|
0,
|
|
compute.storageBuffer.size
|
|
};
|
|
|
|
vkCmdPipelineBarrier(
|
|
drawCmdBuffers[i],
|
|
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT,
|
|
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
|
|
0,
|
|
0, nullptr,
|
|
1, &buffer_barrier,
|
|
0, nullptr);
|
|
}
|
|
|
|
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
|
|
}
|
|
|
|
}
|
|
|
|
void buildComputeCommandBuffer()
|
|
{
|
|
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
|
|
|
VK_CHECK_RESULT(vkBeginCommandBuffer(compute.commandBuffer, &cmdBufInfo));
|
|
|
|
// Compute particle movement
|
|
|
|
// Add memory barrier to ensure that the (graphics) vertex shader has fetched attributes before compute starts to write to the buffer
|
|
if (graphics.queueFamilyIndex != compute.queueFamilyIndex)
|
|
{
|
|
VkBufferMemoryBarrier buffer_barrier =
|
|
{
|
|
VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,
|
|
nullptr,
|
|
0,
|
|
VK_ACCESS_SHADER_WRITE_BIT,
|
|
graphics.queueFamilyIndex,
|
|
compute.queueFamilyIndex,
|
|
compute.storageBuffer.buffer,
|
|
0,
|
|
compute.storageBuffer.size
|
|
};
|
|
|
|
vkCmdPipelineBarrier(
|
|
compute.commandBuffer,
|
|
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT,
|
|
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
|
|
0,
|
|
0, nullptr,
|
|
1, &buffer_barrier,
|
|
0, nullptr);
|
|
}
|
|
|
|
// Dispatch the compute job
|
|
vkCmdBindPipeline(compute.commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipeline);
|
|
vkCmdBindDescriptorSets(compute.commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipelineLayout, 0, 1, &compute.descriptorSet, 0, 0);
|
|
vkCmdDispatch(compute.commandBuffer, PARTICLE_COUNT / 256, 1, 1);
|
|
|
|
// Add barrier to ensure that compute shader has finished writing to the buffer
|
|
// Without this the (rendering) vertex shader may display incomplete results (partial data from last frame)
|
|
if (graphics.queueFamilyIndex != compute.queueFamilyIndex)
|
|
{
|
|
VkBufferMemoryBarrier buffer_barrier =
|
|
{
|
|
VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,
|
|
nullptr,
|
|
VK_ACCESS_SHADER_WRITE_BIT,
|
|
0,
|
|
compute.queueFamilyIndex,
|
|
graphics.queueFamilyIndex,
|
|
compute.storageBuffer.buffer,
|
|
0,
|
|
compute.storageBuffer.size
|
|
};
|
|
|
|
vkCmdPipelineBarrier(
|
|
compute.commandBuffer,
|
|
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
|
|
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT,
|
|
0,
|
|
0, nullptr,
|
|
1, &buffer_barrier,
|
|
0, nullptr);
|
|
}
|
|
|
|
vkEndCommandBuffer(compute.commandBuffer);
|
|
}
|
|
|
|
// Setup and fill the compute shader storage buffers containing the particles
|
|
void prepareStorageBuffers()
|
|
{
|
|
std::default_random_engine rndEngine(benchmark.active ? 0 : (unsigned)time(nullptr));
|
|
std::uniform_real_distribution<float> rndDist(-1.0f, 1.0f);
|
|
|
|
// Initial particle positions
|
|
std::vector<Particle> particleBuffer(PARTICLE_COUNT);
|
|
for (auto& particle : particleBuffer) {
|
|
particle.pos = glm::vec2(rndDist(rndEngine), rndDist(rndEngine));
|
|
particle.vel = glm::vec2(0.0f);
|
|
particle.gradientPos.x = particle.pos.x / 2.0f;
|
|
}
|
|
|
|
VkDeviceSize storageBufferSize = particleBuffer.size() * sizeof(Particle);
|
|
|
|
// Staging
|
|
// SSBO won't be changed on the host after upload so copy to device local memory
|
|
|
|
vks::Buffer stagingBuffer;
|
|
|
|
vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&stagingBuffer,
|
|
storageBufferSize,
|
|
particleBuffer.data());
|
|
|
|
vulkanDevice->createBuffer(
|
|
// The SSBO will be used as a storage buffer for the compute pipeline and as a vertex buffer in the graphics pipeline
|
|
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
|
|
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
|
|
&compute.storageBuffer,
|
|
storageBufferSize);
|
|
|
|
// Copy from staging buffer to storage buffer
|
|
VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
|
VkBufferCopy copyRegion = {};
|
|
copyRegion.size = storageBufferSize;
|
|
vkCmdCopyBuffer(copyCmd, stagingBuffer.buffer, compute.storageBuffer.buffer, 1, ©Region);
|
|
// Execute a transfer barrier to the compute queue, if necessary
|
|
if (graphics.queueFamilyIndex != compute.queueFamilyIndex)
|
|
{
|
|
VkBufferMemoryBarrier buffer_barrier =
|
|
{
|
|
VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,
|
|
nullptr,
|
|
VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT,
|
|
0,
|
|
graphics.queueFamilyIndex,
|
|
compute.queueFamilyIndex,
|
|
compute.storageBuffer.buffer,
|
|
0,
|
|
compute.storageBuffer.size
|
|
};
|
|
|
|
vkCmdPipelineBarrier(
|
|
copyCmd,
|
|
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT,
|
|
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
|
|
0,
|
|
0, nullptr,
|
|
1, &buffer_barrier,
|
|
0, nullptr);
|
|
}
|
|
VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true);
|
|
|
|
stagingBuffer.destroy();
|
|
|
|
// Binding description
|
|
vertices.bindingDescriptions.resize(1);
|
|
vertices.bindingDescriptions[0] =
|
|
vks::initializers::vertexInputBindingDescription(
|
|
VERTEX_BUFFER_BIND_ID,
|
|
sizeof(Particle),
|
|
VK_VERTEX_INPUT_RATE_VERTEX);
|
|
|
|
// Attribute descriptions
|
|
// Describes memory layout and shader positions
|
|
vertices.attributeDescriptions.resize(2);
|
|
// Location 0 : Position
|
|
vertices.attributeDescriptions[0] =
|
|
vks::initializers::vertexInputAttributeDescription(
|
|
VERTEX_BUFFER_BIND_ID,
|
|
0,
|
|
VK_FORMAT_R32G32_SFLOAT,
|
|
offsetof(Particle, pos));
|
|
// Location 1 : Gradient position
|
|
vertices.attributeDescriptions[1] =
|
|
vks::initializers::vertexInputAttributeDescription(
|
|
VERTEX_BUFFER_BIND_ID,
|
|
1,
|
|
VK_FORMAT_R32G32B32A32_SFLOAT,
|
|
offsetof(Particle, gradientPos));
|
|
|
|
// Assign to vertex buffer
|
|
vertices.inputState = vks::initializers::pipelineVertexInputStateCreateInfo();
|
|
vertices.inputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertices.bindingDescriptions.size());
|
|
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
|
|
vertices.inputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertices.attributeDescriptions.size());
|
|
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
|
|
}
|
|
|
|
void setupDescriptorPool()
|
|
{
|
|
std::vector<VkDescriptorPoolSize> poolSizes =
|
|
{
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1),
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2)
|
|
};
|
|
|
|
VkDescriptorPoolCreateInfo descriptorPoolInfo =
|
|
vks::initializers::descriptorPoolCreateInfo(
|
|
static_cast<uint32_t>(poolSizes.size()),
|
|
poolSizes.data(),
|
|
2);
|
|
|
|
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
|
|
}
|
|
|
|
void setupDescriptorSetLayout()
|
|
{
|
|
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings;
|
|
// Binding 0 : Particle color map
|
|
setLayoutBindings.push_back(vks::initializers::descriptorSetLayoutBinding(
|
|
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
|
|
VK_SHADER_STAGE_FRAGMENT_BIT,
|
|
0));
|
|
// Binding 1 : Particle gradient ramp
|
|
setLayoutBindings.push_back(vks::initializers::descriptorSetLayoutBinding(
|
|
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
|
|
VK_SHADER_STAGE_FRAGMENT_BIT,
|
|
1));
|
|
|
|
VkDescriptorSetLayoutCreateInfo descriptorLayout =
|
|
vks::initializers::descriptorSetLayoutCreateInfo(
|
|
setLayoutBindings.data(),
|
|
static_cast<uint32_t>(setLayoutBindings.size()));
|
|
|
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &graphics.descriptorSetLayout));
|
|
|
|
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo =
|
|
vks::initializers::pipelineLayoutCreateInfo(
|
|
&graphics.descriptorSetLayout,
|
|
1);
|
|
|
|
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &graphics.pipelineLayout));
|
|
}
|
|
|
|
void setupDescriptorSet()
|
|
{
|
|
VkDescriptorSetAllocateInfo allocInfo =
|
|
vks::initializers::descriptorSetAllocateInfo(
|
|
descriptorPool,
|
|
&graphics.descriptorSetLayout,
|
|
1);
|
|
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &graphics.descriptorSet));
|
|
|
|
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
|
|
// Binding 0 : Particle color map
|
|
writeDescriptorSets.push_back(vks::initializers::writeDescriptorSet(
|
|
graphics.descriptorSet,
|
|
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
|
|
0,
|
|
&textures.particle.descriptor));
|
|
// Binding 1 : Particle gradient ramp
|
|
writeDescriptorSets.push_back(vks::initializers::writeDescriptorSet(
|
|
graphics.descriptorSet,
|
|
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
|
|
1,
|
|
&textures.gradient.descriptor));
|
|
|
|
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
|
|
}
|
|
|
|
void preparePipelines()
|
|
{
|
|
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
|
|
vks::initializers::pipelineInputAssemblyStateCreateInfo(
|
|
VK_PRIMITIVE_TOPOLOGY_POINT_LIST,
|
|
0,
|
|
VK_FALSE);
|
|
|
|
VkPipelineRasterizationStateCreateInfo rasterizationState =
|
|
vks::initializers::pipelineRasterizationStateCreateInfo(
|
|
VK_POLYGON_MODE_FILL,
|
|
VK_CULL_MODE_NONE,
|
|
VK_FRONT_FACE_COUNTER_CLOCKWISE,
|
|
0);
|
|
|
|
VkPipelineColorBlendAttachmentState blendAttachmentState =
|
|
vks::initializers::pipelineColorBlendAttachmentState(
|
|
0xf,
|
|
VK_FALSE);
|
|
|
|
VkPipelineColorBlendStateCreateInfo colorBlendState =
|
|
vks::initializers::pipelineColorBlendStateCreateInfo(
|
|
1,
|
|
&blendAttachmentState);
|
|
|
|
VkPipelineDepthStencilStateCreateInfo depthStencilState =
|
|
vks::initializers::pipelineDepthStencilStateCreateInfo(
|
|
VK_FALSE,
|
|
VK_FALSE,
|
|
VK_COMPARE_OP_ALWAYS);
|
|
|
|
VkPipelineViewportStateCreateInfo viewportState =
|
|
vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
|
|
|
VkPipelineMultisampleStateCreateInfo multisampleState =
|
|
vks::initializers::pipelineMultisampleStateCreateInfo(
|
|
VK_SAMPLE_COUNT_1_BIT,
|
|
0);
|
|
|
|
std::vector<VkDynamicState> dynamicStateEnables = {
|
|
VK_DYNAMIC_STATE_VIEWPORT,
|
|
VK_DYNAMIC_STATE_SCISSOR
|
|
};
|
|
VkPipelineDynamicStateCreateInfo dynamicState =
|
|
vks::initializers::pipelineDynamicStateCreateInfo(
|
|
dynamicStateEnables.data(),
|
|
static_cast<uint32_t>(dynamicStateEnables.size()),
|
|
0);
|
|
|
|
// Rendering pipeline
|
|
// Load shaders
|
|
std::array<VkPipelineShaderStageCreateInfo,2> shaderStages;
|
|
|
|
shaderStages[0] = loadShader(getAssetPath() + "shaders/computeparticles/particle.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
|
shaderStages[1] = loadShader(getAssetPath() + "shaders/computeparticles/particle.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
|
|
|
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
|
|
vks::initializers::pipelineCreateInfo(
|
|
graphics.pipelineLayout,
|
|
renderPass,
|
|
0);
|
|
|
|
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
|
|
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
|
|
pipelineCreateInfo.pRasterizationState = &rasterizationState;
|
|
pipelineCreateInfo.pColorBlendState = &colorBlendState;
|
|
pipelineCreateInfo.pMultisampleState = &multisampleState;
|
|
pipelineCreateInfo.pViewportState = &viewportState;
|
|
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
|
|
pipelineCreateInfo.pDynamicState = &dynamicState;
|
|
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
|
|
pipelineCreateInfo.pStages = shaderStages.data();
|
|
pipelineCreateInfo.renderPass = renderPass;
|
|
|
|
// Additive blending
|
|
blendAttachmentState.colorWriteMask = 0xF;
|
|
blendAttachmentState.blendEnable = VK_TRUE;
|
|
blendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD;
|
|
blendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_ONE;
|
|
blendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE;
|
|
blendAttachmentState.alphaBlendOp = VK_BLEND_OP_ADD;
|
|
blendAttachmentState.srcAlphaBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
|
|
blendAttachmentState.dstAlphaBlendFactor = VK_BLEND_FACTOR_DST_ALPHA;
|
|
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &graphics.pipeline));
|
|
}
|
|
|
|
void prepareGraphics()
|
|
{
|
|
prepareStorageBuffers();
|
|
prepareUniformBuffers();
|
|
setupDescriptorSetLayout();
|
|
preparePipelines();
|
|
setupDescriptorSet();
|
|
|
|
// Semaphore for compute & graphics sync
|
|
VkSemaphoreCreateInfo semaphoreCreateInfo = vks::initializers::semaphoreCreateInfo();
|
|
VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &graphics.semaphore));
|
|
}
|
|
|
|
void prepareCompute()
|
|
{
|
|
// Create a compute capable device queue
|
|
// The VulkanDevice::createLogicalDevice functions finds a compute capable queue and prefers queue families that only support compute
|
|
// Depending on the implementation this may result in different queue family indices for graphics and computes,
|
|
// requiring proper synchronization (see the memory and pipeline barriers)
|
|
vkGetDeviceQueue(device, compute.queueFamilyIndex, 0, &compute.queue);
|
|
|
|
// Create compute pipeline
|
|
// Compute pipelines are created separate from graphics pipelines even if they use the same queue (family index)
|
|
|
|
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
|
|
// Binding 0 : Particle position storage buffer
|
|
vks::initializers::descriptorSetLayoutBinding(
|
|
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
|
|
VK_SHADER_STAGE_COMPUTE_BIT,
|
|
0),
|
|
// Binding 1 : Uniform buffer
|
|
vks::initializers::descriptorSetLayoutBinding(
|
|
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
|
|
VK_SHADER_STAGE_COMPUTE_BIT,
|
|
1),
|
|
};
|
|
|
|
VkDescriptorSetLayoutCreateInfo descriptorLayout =
|
|
vks::initializers::descriptorSetLayoutCreateInfo(
|
|
setLayoutBindings.data(),
|
|
static_cast<uint32_t>(setLayoutBindings.size()));
|
|
|
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &compute.descriptorSetLayout));
|
|
|
|
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
|
|
vks::initializers::pipelineLayoutCreateInfo(
|
|
&compute.descriptorSetLayout,
|
|
1);
|
|
|
|
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &compute.pipelineLayout));
|
|
|
|
VkDescriptorSetAllocateInfo allocInfo =
|
|
vks::initializers::descriptorSetAllocateInfo(
|
|
descriptorPool,
|
|
&compute.descriptorSetLayout,
|
|
1);
|
|
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &compute.descriptorSet));
|
|
|
|
std::vector<VkWriteDescriptorSet> computeWriteDescriptorSets =
|
|
{
|
|
// Binding 0 : Particle position storage buffer
|
|
vks::initializers::writeDescriptorSet(
|
|
compute.descriptorSet,
|
|
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
|
|
0,
|
|
&compute.storageBuffer.descriptor),
|
|
// Binding 1 : Uniform buffer
|
|
vks::initializers::writeDescriptorSet(
|
|
compute.descriptorSet,
|
|
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
|
|
1,
|
|
&compute.uniformBuffer.descriptor)
|
|
};
|
|
|
|
vkUpdateDescriptorSets(device, static_cast<uint32_t>(computeWriteDescriptorSets.size()), computeWriteDescriptorSets.data(), 0, NULL);
|
|
|
|
// Create pipeline
|
|
VkComputePipelineCreateInfo computePipelineCreateInfo = vks::initializers::computePipelineCreateInfo(compute.pipelineLayout, 0);
|
|
computePipelineCreateInfo.stage = loadShader(getAssetPath() + "shaders/computeparticles/particle.comp.spv", VK_SHADER_STAGE_COMPUTE_BIT);
|
|
VK_CHECK_RESULT(vkCreateComputePipelines(device, pipelineCache, 1, &computePipelineCreateInfo, nullptr, &compute.pipeline));
|
|
|
|
// Separate command pool as queue family for compute may be different than graphics
|
|
VkCommandPoolCreateInfo cmdPoolInfo = {};
|
|
cmdPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
|
|
cmdPoolInfo.queueFamilyIndex = compute.queueFamilyIndex;
|
|
cmdPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
|
|
VK_CHECK_RESULT(vkCreateCommandPool(device, &cmdPoolInfo, nullptr, &compute.commandPool));
|
|
|
|
// Create a command buffer for compute operations
|
|
compute.commandBuffer = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, compute.commandPool);
|
|
|
|
// Semaphore for compute & graphics sync
|
|
VkSemaphoreCreateInfo semaphoreCreateInfo = vks::initializers::semaphoreCreateInfo();
|
|
VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &compute.semaphore));
|
|
|
|
// Signal the semaphore
|
|
VkSubmitInfo submitInfo = vks::initializers::submitInfo();
|
|
submitInfo.signalSemaphoreCount = 1;
|
|
submitInfo.pSignalSemaphores = &compute.semaphore;
|
|
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
|
|
VK_CHECK_RESULT(vkQueueWaitIdle(queue));
|
|
|
|
// Build a single command buffer containing the compute dispatch commands
|
|
buildComputeCommandBuffer();
|
|
|
|
// If graphics and compute queue family indices differ, acquire and immediately release the storage buffer, so that the initial acquire from the graphics command buffers are matched up properly
|
|
if (graphics.queueFamilyIndex != compute.queueFamilyIndex)
|
|
{
|
|
// Create a transient command buffer for setting up the initial buffer transfer state
|
|
VkCommandBuffer transferCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, compute.commandPool, true);
|
|
|
|
VkBufferMemoryBarrier acquire_buffer_barrier =
|
|
{
|
|
VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,
|
|
nullptr,
|
|
0,
|
|
VK_ACCESS_SHADER_WRITE_BIT,
|
|
graphics.queueFamilyIndex,
|
|
compute.queueFamilyIndex,
|
|
compute.storageBuffer.buffer,
|
|
0,
|
|
compute.storageBuffer.size
|
|
};
|
|
vkCmdPipelineBarrier(
|
|
transferCmd,
|
|
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT,
|
|
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
|
|
0,
|
|
0, nullptr,
|
|
1, &acquire_buffer_barrier,
|
|
0, nullptr);
|
|
|
|
VkBufferMemoryBarrier release_buffer_barrier =
|
|
{
|
|
VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,
|
|
nullptr,
|
|
VK_ACCESS_SHADER_WRITE_BIT,
|
|
0,
|
|
compute.queueFamilyIndex,
|
|
graphics.queueFamilyIndex,
|
|
compute.storageBuffer.buffer,
|
|
0,
|
|
compute.storageBuffer.size
|
|
};
|
|
vkCmdPipelineBarrier(
|
|
transferCmd,
|
|
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
|
|
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT,
|
|
0,
|
|
0, nullptr,
|
|
1, &release_buffer_barrier,
|
|
0, nullptr);
|
|
|
|
vulkanDevice->flushCommandBuffer(transferCmd, compute.queue, compute.commandPool);
|
|
}
|
|
}
|
|
|
|
// Prepare and initialize uniform buffer containing shader uniforms
|
|
void prepareUniformBuffers()
|
|
{
|
|
// Compute shader uniform buffer block
|
|
vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&compute.uniformBuffer,
|
|
sizeof(compute.ubo));
|
|
|
|
// Map for host access
|
|
VK_CHECK_RESULT(compute.uniformBuffer.map());
|
|
|
|
updateUniformBuffers();
|
|
}
|
|
|
|
void updateUniformBuffers()
|
|
{
|
|
compute.ubo.deltaT = frameTimer * 2.5f;
|
|
if (!attachToCursor)
|
|
{
|
|
compute.ubo.destX = sin(glm::radians(timer * 360.0f)) * 0.75f;
|
|
compute.ubo.destY = 0.0f;
|
|
}
|
|
else
|
|
{
|
|
float normalizedMx = (mousePos.x - static_cast<float>(width / 2)) / static_cast<float>(width / 2);
|
|
float normalizedMy = (mousePos.y - static_cast<float>(height / 2)) / static_cast<float>(height / 2);
|
|
compute.ubo.destX = normalizedMx;
|
|
compute.ubo.destY = normalizedMy;
|
|
}
|
|
|
|
memcpy(compute.uniformBuffer.mapped, &compute.ubo, sizeof(compute.ubo));
|
|
}
|
|
|
|
void draw()
|
|
{
|
|
VulkanExampleBase::prepareFrame();
|
|
|
|
VkPipelineStageFlags graphicsWaitStageMasks[] = { VK_PIPELINE_STAGE_VERTEX_INPUT_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT };
|
|
VkSemaphore graphicsWaitSemaphores[] = { compute.semaphore, semaphores.presentComplete };
|
|
VkSemaphore graphicsSignalSemaphores[] = { graphics.semaphore, semaphores.renderComplete };
|
|
|
|
// Submit graphics commands
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
|
|
submitInfo.waitSemaphoreCount = 2;
|
|
submitInfo.pWaitSemaphores = graphicsWaitSemaphores;
|
|
submitInfo.pWaitDstStageMask = graphicsWaitStageMasks;
|
|
submitInfo.signalSemaphoreCount = 2;
|
|
submitInfo.pSignalSemaphores = graphicsSignalSemaphores;
|
|
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
|
|
|
|
VulkanExampleBase::submitFrame();
|
|
|
|
// Wait for rendering finished
|
|
VkPipelineStageFlags waitStageMask = VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT;
|
|
|
|
// Submit compute commands
|
|
VkSubmitInfo computeSubmitInfo = vks::initializers::submitInfo();
|
|
computeSubmitInfo.commandBufferCount = 1;
|
|
computeSubmitInfo.pCommandBuffers = &compute.commandBuffer;
|
|
computeSubmitInfo.waitSemaphoreCount = 1;
|
|
computeSubmitInfo.pWaitSemaphores = &graphics.semaphore;
|
|
computeSubmitInfo.pWaitDstStageMask = &waitStageMask;
|
|
computeSubmitInfo.signalSemaphoreCount = 1;
|
|
computeSubmitInfo.pSignalSemaphores = &compute.semaphore;
|
|
VK_CHECK_RESULT(vkQueueSubmit(compute.queue, 1, &computeSubmitInfo, VK_NULL_HANDLE));
|
|
|
|
}
|
|
|
|
void prepare()
|
|
{
|
|
VulkanExampleBase::prepare();
|
|
// We will be using the queue family indices to check if graphics and compute queue families differ
|
|
// If that's the case, we need additional barriers for acquiring and releasing resources
|
|
graphics.queueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
|
|
compute.queueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
|
|
loadAssets();
|
|
setupDescriptorPool();
|
|
prepareGraphics();
|
|
prepareCompute();
|
|
buildCommandBuffers();
|
|
prepared = true;
|
|
}
|
|
|
|
virtual void render()
|
|
{
|
|
if (!prepared)
|
|
return;
|
|
draw();
|
|
|
|
if (!attachToCursor)
|
|
{
|
|
if (animStart > 0.0f)
|
|
{
|
|
animStart -= frameTimer * 5.0f;
|
|
}
|
|
else if (animStart <= 0.0f)
|
|
{
|
|
timer += frameTimer * 0.04f;
|
|
if (timer > 1.f)
|
|
timer = 0.f;
|
|
}
|
|
}
|
|
|
|
updateUniformBuffers();
|
|
}
|
|
|
|
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
|
|
{
|
|
if (overlay->header("Settings")) {
|
|
overlay->checkBox("Attach attractor to cursor", &attachToCursor);
|
|
}
|
|
}
|
|
};
|
|
|
|
VULKAN_EXAMPLE_MAIN()
|