procedural-3d-engine/shaders/slang/pbrtexture/pbrtexture.slang
2025-05-04 13:31:14 +02:00

198 lines
No EOL
5.3 KiB
Text

// Copyright 2020 Google LLC
struct VSInput
{
float3 Pos;
float3 Normal;
float2 UV;
float4 Tangent;
};
struct VSOutput
{
float4 Pos : SV_POSITION;
float3 WorldPos;
float3 Normal;
float2 UV;
float3 Tangent;
};
struct UBO {
float4x4 projection;
float4x4 model;
float4x4 view;
float3 camPos;
};
ConstantBuffer<UBO> ubo;
struct UBOParams {
float4 lights[4];
float exposure;
float gamma;
};
ConstantBuffer<UBOParams> uboParams;
SamplerCube samplerIrradiance;
Sampler2D samplerBRDFLUT;
SamplerCube prefilteredMapSampler;
Sampler2D albedoMapSampler;
Sampler2D normalMapSampler;
Sampler2D aoMapSampler;
Sampler2D metallicMapSampler;
Sampler2D roughnessMapSampler;
#define PI 3.1415926535897932384626433832795
#define ALBEDO(uv) pow(albedoMapSampler.Sample(uv).rgb, float3(2.2, 2.2, 2.2))
// From http://filmicgames.com/archives/75
float3 Uncharted2Tonemap(float3 x)
{
float A = 0.15;
float B = 0.50;
float C = 0.10;
float D = 0.20;
float E = 0.02;
float F = 0.30;
return ((x*(A*x+C*B)+D*E)/(x*(A*x+B)+D*F))-E/F;
}
// Normal Distribution function --------------------------------------
float D_GGX(float dotNH, float roughness)
{
float alpha = roughness * roughness;
float alpha2 = alpha * alpha;
float denom = dotNH * dotNH * (alpha2 - 1.0) + 1.0;
return (alpha2)/(PI * denom*denom);
}
// Geometric Shadowing function --------------------------------------
float G_SchlicksmithGGX(float dotNL, float dotNV, float roughness)
{
float r = (roughness + 1.0);
float k = (r*r) / 8.0;
float GL = dotNL / (dotNL * (1.0 - k) + k);
float GV = dotNV / (dotNV * (1.0 - k) + k);
return GL * GV;
}
// Fresnel function ----------------------------------------------------
float3 F_Schlick(float cosTheta, float3 F0)
{
return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0);
}
float3 F_SchlickR(float cosTheta, float3 F0, float roughness)
{
return F0 + (max((1.0 - roughness).xxx, F0) - F0) * pow(1.0 - cosTheta, 5.0);
}
float3 prefilteredReflection(float3 R, float roughness)
{
const float MAX_REFLECTION_LOD = 9.0; // todo: param/const
float lod = roughness * MAX_REFLECTION_LOD;
float lodf = floor(lod);
float lodc = ceil(lod);
float3 a = prefilteredMapSampler.SampleLevel(R, lodf).rgb;
float3 b = prefilteredMapSampler.SampleLevel(R, lodc).rgb;
return lerp(a, b, lod - lodf);
}
float3 specularContribution(float2 inUV, float3 L, float3 V, float3 N, float3 F0, float metallic, float roughness)
{
// Precalculate vectors and dot products
float3 H = normalize (V + L);
float dotNH = clamp(dot(N, H), 0.0, 1.0);
float dotNV = clamp(dot(N, V), 0.0, 1.0);
float dotNL = clamp(dot(N, L), 0.0, 1.0);
// Light color fixed
float3 lightColor = float3(1.0, 1.0, 1.0);
float3 color = float3(0.0, 0.0, 0.0);
if (dotNL > 0.0) {
// D = Normal distribution (Distribution of the microfacets)
float D = D_GGX(dotNH, roughness);
// G = Geometric shadowing term (Microfacets shadowing)
float G = G_SchlicksmithGGX(dotNL, dotNV, roughness);
// F = Fresnel factor (Reflectance depending on angle of incidence)
float3 F = F_Schlick(dotNV, F0);
float3 spec = D * F * G / (4.0 * dotNL * dotNV + 0.001);
float3 kD = (float3(1.0, 1.0, 1.0) - F) * (1.0 - metallic);
color += (kD * ALBEDO(inUV) / PI + spec) * dotNL;
}
return color;
}
float3 calculateNormal(VSOutput input)
{
float3 tangentNormal = normalMapSampler.Sample(input.UV).xyz * 2.0 - 1.0;
float3 N = normalize(input.Normal);
float3 T = normalize(input.Tangent);
float3 B = normalize(cross(N, T));
float3x3 TBN = transpose(float3x3(T, B, N));
return normalize(mul(TBN, tangentNormal));
}
[shader("vertex")]
VSOutput vertexMain(VSInput input)
{
VSOutput output;
float3 locPos = mul(ubo.model, float4(input.Pos, 1.0)).xyz;
output.WorldPos = locPos;
output.Normal = mul((float3x3)ubo.model, input.Normal);
output.Tangent = mul((float3x3)ubo.model, input.Tangent.xyz);
output.UV = input.UV;
output.Pos = mul(ubo.projection, mul(ubo.view, float4(output.WorldPos, 1.0)));
return output;
}
[shader("fragment")]
float4 fragmentMain(VSOutput input)
{
float3 N = calculateNormal(input);
float3 V = normalize(ubo.camPos - input.WorldPos);
float3 R = reflect(-V, N);
float metallic = metallicMapSampler.Sample(input.UV).r;
float roughness = roughnessMapSampler.Sample(input.UV).r;
float3 F0 = float3(0.04, 0.04, 0.04);
F0 = lerp(F0, ALBEDO(input.UV), metallic);
float3 Lo = float3(0.0, 0.0, 0.0);
for(int i = 0; i < 4; i++) {
float3 L = normalize(uboParams.lights[i].xyz - input.WorldPos);
Lo += specularContribution(input.UV, L, V, N, F0, metallic, roughness);
}
float2 brdf = samplerBRDFLUT.Sample(float2(max(dot(N, V), 0.0), roughness)).rg;
float3 reflection = prefilteredReflection(R, roughness).rgb;
float3 irradiance = samplerIrradiance.Sample(N).rgb;
// Diffuse based on irradiance
float3 diffuse = irradiance * ALBEDO(input.UV);
float3 F = F_SchlickR(max(dot(N, V), 0.0), F0, roughness);
// Specular reflectance
float3 specular = reflection * (F * brdf.x + brdf.y);
// Ambient part
float3 kD = 1.0 - F;
kD *= 1.0 - metallic;
float3 ambient = (kD * diffuse + specular) * aoMapSampler.Sample(input.UV).rrr;
float3 color = ambient + Lo;
// Tone mapping
color = Uncharted2Tonemap(color * uboParams.exposure);
color = color * (1.0f / Uncharted2Tonemap((11.2f).xxx));
// Gamma correction
color = pow(color, (1.0f / uboParams.gamma).xxx);
return float4(color, 1.0);
}