procedural-3d-engine/examples/shadowmappingomni/shadowmappingomni.cpp
Sascha Willems 91ab6a517f Code cleanup
2024-01-21 13:15:56 +01:00

708 lines
29 KiB
C++

/*
* Vulkan Example - Omni directional shadows using a dynamic cube map
*
* Copyright (C) 2016-2023 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkanexamplebase.h"
#include "VulkanglTFModel.h"
class VulkanExample : public VulkanExampleBase
{
public:
bool displayCubeMap{ false };
// Defines the depth range used for the shadow maps
// This should be kept as small as possible for precision
float zNear{ 0.1f };
float zFar{ 1024.0f };
struct {
vkglTF::Model scene;
vkglTF::Model debugcube;
} models;
glm::vec4 lightPos = glm::vec4(0.0f, -2.5f, 0.0f, 1.0);
struct UniformData {
glm::mat4 projection;
glm::mat4 view;
glm::mat4 model;
glm::vec4 lightPos;
};
UniformData uniformDataScene, uniformDataOffscreen;
struct {
vks::Buffer scene;
vks::Buffer offscreen;
} uniformBuffers;
struct {
VkPipeline scene{ VK_NULL_HANDLE };
VkPipeline offscreen{ VK_NULL_HANDLE };
VkPipeline cubemapDisplay{ VK_NULL_HANDLE };
} pipelines;
struct {
VkPipelineLayout scene{ VK_NULL_HANDLE };
VkPipelineLayout offscreen{ VK_NULL_HANDLE };
} pipelineLayouts;
struct {
VkDescriptorSet scene{ VK_NULL_HANDLE };
VkDescriptorSet offscreen{ VK_NULL_HANDLE };
} descriptorSets;
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
vks::Texture shadowCubeMap;
std::array<VkImageView, 6> shadowCubeMapFaceImageViews{};
// Framebuffer for offscreen rendering
struct FrameBufferAttachment {
VkImage image;
VkDeviceMemory mem;
VkImageView view;
};
struct OffscreenPass {
int32_t width, height;
std::array<VkFramebuffer, 6> frameBuffers;
FrameBufferAttachment depth;
VkRenderPass renderPass;
VkSampler sampler;
VkDescriptorImageInfo descriptor;
} offscreenPass;
// Size of the shadow map texture (per face)
const uint32_t offscreenImageSize{ 1024 };
// We use a 32 bit float format for max. precision. Depending on the use case, lower precision may be fine and can save bandwidth
const VkFormat offscreenImageFormat{ VK_FORMAT_R32_SFLOAT };
// The depth format is selected at runtime
VkFormat offscreenDepthFormat{ VK_FORMAT_UNDEFINED };
VulkanExample() : VulkanExampleBase()
{
title = "Point light shadows (cubemap)";
camera.type = Camera::CameraType::lookat;
camera.setPerspective(45.0f, (float)width / (float)height, zNear, zFar);
camera.setRotation(glm::vec3(-20.5f, -673.0f, 0.0f));
camera.setPosition(glm::vec3(0.0f, 0.5f, -15.0f));
timerSpeed *= 0.5f;
}
~VulkanExample()
{
if (device) {
// Cube map
for (uint32_t i = 0; i < 6; i++) {
vkDestroyImageView(device, shadowCubeMapFaceImageViews[i], nullptr);
}
vkDestroyImageView(device, shadowCubeMap.view, nullptr);
vkDestroyImage(device, shadowCubeMap.image, nullptr);
vkDestroySampler(device, shadowCubeMap.sampler, nullptr);
vkFreeMemory(device, shadowCubeMap.deviceMemory, nullptr);
// Depth attachment
vkDestroyImageView(device, offscreenPass.depth.view, nullptr);
vkDestroyImage(device, offscreenPass.depth.image, nullptr);
vkFreeMemory(device, offscreenPass.depth.mem, nullptr);
for (uint32_t i = 0; i < 6; i++)
{
vkDestroyFramebuffer(device, offscreenPass.frameBuffers[i], nullptr);
}
vkDestroyRenderPass(device, offscreenPass.renderPass, nullptr);
// Pipelines
vkDestroyPipeline(device, pipelines.scene, nullptr);
vkDestroyPipeline(device, pipelines.offscreen, nullptr);
vkDestroyPipeline(device, pipelines.cubemapDisplay, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.scene, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.offscreen, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
// Uniform buffers
uniformBuffers.offscreen.destroy();
uniformBuffers.scene.destroy();
}
}
void prepareCubeMap()
{
shadowCubeMap.width = offscreenImageSize;
shadowCubeMap.height = offscreenImageSize;
// Cube map image description
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = offscreenImageFormat;
imageCreateInfo.extent = { shadowCubeMap.width, shadowCubeMap.height, 1 };
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 6;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCreateInfo.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
VkCommandBuffer layoutCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
// Create cube map image
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &shadowCubeMap.image));
vkGetImageMemoryRequirements(device, shadowCubeMap.image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &shadowCubeMap.deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device, shadowCubeMap.image, shadowCubeMap.deviceMemory, 0));
// Image barrier for optimal image (target)
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = 1;
subresourceRange.layerCount = 6;
vks::tools::setImageLayout(
layoutCmd,
shadowCubeMap.image,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
subresourceRange);
vulkanDevice->flushCommandBuffer(layoutCmd, queue, true);
// Create sampler
VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo();
sampler.magFilter = VK_FILTER_LINEAR;
sampler.minFilter = VK_FILTER_LINEAR;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
sampler.addressModeV = sampler.addressModeU;
sampler.addressModeW = sampler.addressModeU;
sampler.mipLodBias = 0.0f;
sampler.maxAnisotropy = 1.0f;
sampler.compareOp = VK_COMPARE_OP_NEVER;
sampler.minLod = 0.0f;
sampler.maxLod = 1.0f;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &shadowCubeMap.sampler));
// Create image view
VkImageViewCreateInfo view = vks::initializers::imageViewCreateInfo();
view.image = VK_NULL_HANDLE;
view.viewType = VK_IMAGE_VIEW_TYPE_CUBE;
view.format = offscreenImageFormat;
view.components = { VK_COMPONENT_SWIZZLE_R };
view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
view.subresourceRange.layerCount = 6;
view.image = shadowCubeMap.image;
VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &shadowCubeMap.view));
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
view.subresourceRange.layerCount = 1;
view.image = shadowCubeMap.image;
for (uint32_t i = 0; i < 6; i++)
{
view.subresourceRange.baseArrayLayer = i;
VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &shadowCubeMapFaceImageViews[i]));
}
}
// Set up a separate render pass for the offscreen frame buffer
// This is necessary as the offscreen frame buffer attachments
// use formats different to the ones from the visible frame buffer
// and at least the depth one may not be compatible
void prepareOffscreenRenderpass()
{
VkAttachmentDescription osAttachments[2] = {};
// Find a suitable depth format for
VkBool32 validDepthFormat = vks::tools::getSupportedDepthFormat(physicalDevice, &offscreenDepthFormat);
assert(validDepthFormat);
osAttachments[0].format = offscreenImageFormat;
osAttachments[0].samples = VK_SAMPLE_COUNT_1_BIT;
osAttachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
osAttachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
osAttachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
osAttachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
osAttachments[0].initialLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
osAttachments[0].finalLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
// Depth attachment
osAttachments[1].format = offscreenDepthFormat;
osAttachments[1].samples = VK_SAMPLE_COUNT_1_BIT;
osAttachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
osAttachments[1].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
osAttachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
osAttachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
osAttachments[1].initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
osAttachments[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkAttachmentReference colorReference = {};
colorReference.attachment = 0;
colorReference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkAttachmentReference depthReference = {};
depthReference.attachment = 1;
depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &colorReference;
subpass.pDepthStencilAttachment = &depthReference;
VkRenderPassCreateInfo renderPassCreateInfo = vks::initializers::renderPassCreateInfo();
renderPassCreateInfo.attachmentCount = 2;
renderPassCreateInfo.pAttachments = osAttachments;
renderPassCreateInfo.subpassCount = 1;
renderPassCreateInfo.pSubpasses = &subpass;
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCreateInfo, nullptr, &offscreenPass.renderPass));
}
// Prepare a new framebuffer for offscreen rendering
// The contents of this framebuffer are then
// copied to the different cube map faces
void prepareOffscreenFramebuffer()
{
offscreenPass.width = offscreenImageSize;
offscreenPass.height = offscreenImageSize;
// Color attachment
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = offscreenImageFormat;
imageCreateInfo.extent.width = offscreenPass.width;
imageCreateInfo.extent.height = offscreenPass.height;
imageCreateInfo.extent.depth = 1;
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
// Image of the framebuffer is blit source
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCreateInfo.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VkImageViewCreateInfo colorImageView = vks::initializers::imageViewCreateInfo();
colorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D;
colorImageView.format = offscreenImageFormat;
colorImageView.flags = 0;
colorImageView.subresourceRange = {};
colorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
colorImageView.subresourceRange.baseMipLevel = 0;
colorImageView.subresourceRange.levelCount = 1;
colorImageView.subresourceRange.baseArrayLayer = 0;
colorImageView.subresourceRange.layerCount = 1;
VkCommandBuffer layoutCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
// Depth stencil attachment
imageCreateInfo.format = offscreenDepthFormat;
imageCreateInfo.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
VkImageViewCreateInfo depthStencilView = vks::initializers::imageViewCreateInfo();
depthStencilView.viewType = VK_IMAGE_VIEW_TYPE_2D;
depthStencilView.format = offscreenDepthFormat;
depthStencilView.flags = 0;
depthStencilView.subresourceRange = {};
depthStencilView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
if (offscreenDepthFormat >= VK_FORMAT_D16_UNORM_S8_UINT) {
depthStencilView.subresourceRange.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
}
depthStencilView.subresourceRange.baseMipLevel = 0;
depthStencilView.subresourceRange.levelCount = 1;
depthStencilView.subresourceRange.baseArrayLayer = 0;
depthStencilView.subresourceRange.layerCount = 1;
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &offscreenPass.depth.image));
VkMemoryRequirements memReqs;
vkGetImageMemoryRequirements(device, offscreenPass.depth.image, &memReqs);
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &offscreenPass.depth.mem));
VK_CHECK_RESULT(vkBindImageMemory(device, offscreenPass.depth.image, offscreenPass.depth.mem, 0));
vks::tools::setImageLayout(
layoutCmd,
offscreenPass.depth.image,
VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
vulkanDevice->flushCommandBuffer(layoutCmd, queue, true);
depthStencilView.image = offscreenPass.depth.image;
VK_CHECK_RESULT(vkCreateImageView(device, &depthStencilView, nullptr, &offscreenPass.depth.view));
VkImageView attachments[2];
attachments[1] = offscreenPass.depth.view;
VkFramebufferCreateInfo fbufCreateInfo = vks::initializers::framebufferCreateInfo();
fbufCreateInfo.renderPass = offscreenPass.renderPass;
fbufCreateInfo.attachmentCount = 2;
fbufCreateInfo.pAttachments = attachments;
fbufCreateInfo.width = offscreenPass.width;
fbufCreateInfo.height = offscreenPass.height;
fbufCreateInfo.layers = 1;
for (uint32_t i = 0; i < 6; i++)
{
attachments[0] = shadowCubeMapFaceImageViews[i];
VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offscreenPass.frameBuffers[i]));
}
}
// Updates a single cube map face
// Renders the scene with face's view directly to the cubemap layer `faceIndex`
// Uses push constants for quick update of view matrix for the current cube map face
void updateCubeFace(uint32_t faceIndex, VkCommandBuffer commandBuffer)
{
VkClearValue clearValues[2];
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 1.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
// Reuse render pass from example pass
renderPassBeginInfo.renderPass = offscreenPass.renderPass;
renderPassBeginInfo.framebuffer = offscreenPass.frameBuffers[faceIndex];
renderPassBeginInfo.renderArea.extent.width = offscreenPass.width;
renderPassBeginInfo.renderArea.extent.height = offscreenPass.height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
// Update view matrix via push constant
glm::mat4 viewMatrix = glm::mat4(1.0f);
switch (faceIndex)
{
case 0: // POSITIVE_X
viewMatrix = glm::rotate(viewMatrix, glm::radians(90.0f), glm::vec3(0.0f, 1.0f, 0.0f));
viewMatrix = glm::rotate(viewMatrix, glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f));
break;
case 1: // NEGATIVE_X
viewMatrix = glm::rotate(viewMatrix, glm::radians(-90.0f), glm::vec3(0.0f, 1.0f, 0.0f));
viewMatrix = glm::rotate(viewMatrix, glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f));
break;
case 2: // POSITIVE_Y
viewMatrix = glm::rotate(viewMatrix, glm::radians(-90.0f), glm::vec3(1.0f, 0.0f, 0.0f));
break;
case 3: // NEGATIVE_Y
viewMatrix = glm::rotate(viewMatrix, glm::radians(90.0f), glm::vec3(1.0f, 0.0f, 0.0f));
break;
case 4: // POSITIVE_Z
viewMatrix = glm::rotate(viewMatrix, glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f));
break;
case 5: // NEGATIVE_Z
viewMatrix = glm::rotate(viewMatrix, glm::radians(180.0f), glm::vec3(0.0f, 0.0f, 1.0f));
break;
}
// Render scene from cube face's point of view
vkCmdBeginRenderPass(commandBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
// Update shader push constant block
// Contains current face view matrix
vkCmdPushConstants(
commandBuffer,
pipelineLayouts.offscreen,
VK_SHADER_STAGE_VERTEX_BIT,
0,
sizeof(glm::mat4),
&viewMatrix);
vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.offscreen);
vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.offscreen, 0, 1, &descriptorSets.offscreen, 0, NULL);
models.scene.draw(commandBuffer);
vkCmdEndRenderPass(commandBuffer);
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
/*
Generate shadow cube maps using one render pass per face
*/
{
VkViewport viewport = vks::initializers::viewport((float)offscreenPass.width, (float)offscreenPass.height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(offscreenPass.width, offscreenPass.height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
for (uint32_t face = 0; face < 6; face++) {
updateCubeFace(face, drawCmdBuffers[i]);
}
}
/*
Note: Explicit synchronization is not required between the render pass, as this is done implicit via sub pass dependencies
*/
/*
Scene rendering with applied shadow map
*/
{
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.framebuffer = frameBuffers[i];
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.scene, 0, 1, &descriptorSets.scene, 0, NULL);
if (displayCubeMap)
{
// Display all six sides of the shadow cube map
// Note: Visualization of the different faces is done in the fragment shader, see cubemapdisplay.frag
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.cubemapDisplay);
models.debugcube.draw(drawCmdBuffers[i]);
}
else
{
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.scene);
models.scene.draw(drawCmdBuffers[i]);
}
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
}
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void loadAssets()
{
const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY;
models.debugcube.loadFromFile(getAssetPath() + "models/cube.gltf", vulkanDevice, queue, glTFLoadingFlags);
models.scene.loadFromFile(getAssetPath() + "models/shadowscene_fire.gltf", vulkanDevice, queue, glTFLoadingFlags);
}
void setupDescriptors()
{
// Pool
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 3);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
// Layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
// Binding 1 : Fragment shader image sampler (cube map)
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
// Sets
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
// 3D scene
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.scene));
// Image descriptor for the cube map
VkDescriptorImageInfo texDescriptor =
vks::initializers::descriptorImageInfo(
shadowCubeMap.sampler,
shadowCubeMap.view,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
std::vector<VkWriteDescriptorSet> sceneDescriptorSets = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSets.scene, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.scene.descriptor),
// Binding 1 : Fragment shader shadow sampler
vks::initializers::writeDescriptorSet(descriptorSets.scene, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(sceneDescriptorSets.size()), sceneDescriptorSets.data(), 0, nullptr);
// Offscreen
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.offscreen));
std::vector<VkWriteDescriptorSet> offScreenWriteDescriptorSets = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSets.offscreen, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.offscreen.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(offScreenWriteDescriptorSets.size()), offScreenWriteDescriptorSets.data(), 0, nullptr);
}
void preparePipelines()
{
// Layouts
// 3D scene pipeline layout
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayouts.scene));
// Offscreen pipeline layout
// Push constants for cube map face view matrices
VkPushConstantRange pushConstantRange = vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT, sizeof(glm::mat4), 0);
// Push constant ranges are part of the pipeline layout
pipelineLayoutCreateInfo.pushConstantRangeCount = 1;
pipelineLayoutCreateInfo.pPushConstantRanges = &pushConstantRange;
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayouts.offscreen));
// Pipelines
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
// 3D scene pipeline
// Load shaders
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
shaderStages[0] = loadShader(getShadersPath() + "shadowmappingomni/scene.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "shadowmappingomni/scene.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayouts.scene, renderPass, 0);
pipelineCI.pInputAssemblyState = &inputAssemblyState;
pipelineCI.pRasterizationState = &rasterizationState;
pipelineCI.pColorBlendState = &colorBlendState;
pipelineCI.pMultisampleState = &multisampleState;
pipelineCI.pViewportState = &viewportState;
pipelineCI.pDepthStencilState = &depthStencilState;
pipelineCI.pDynamicState = &dynamicState;
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCI.pStages = shaderStages.data();
pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({vkglTF::VertexComponent::Position, vkglTF::VertexComponent::Color, vkglTF::VertexComponent::Normal});
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.scene));
// Offscreen pipeline
shaderStages[0] = loadShader(getShadersPath() + "shadowmappingomni/offscreen.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "shadowmappingomni/offscreen.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
pipelineCI.layout = pipelineLayouts.offscreen;
pipelineCI.renderPass = offscreenPass.renderPass;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.offscreen));
// Cube map display pipeline
shaderStages[0] = loadShader(getShadersPath() + "shadowmappingomni/cubemapdisplay.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "shadowmappingomni/cubemapdisplay.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkPipelineVertexInputStateCreateInfo emptyInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
pipelineCI.pVertexInputState = &emptyInputState;
pipelineCI.layout = pipelineLayouts.scene;
pipelineCI.renderPass = renderPass;
rasterizationState.cullMode = VK_CULL_MODE_NONE;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.cubemapDisplay));
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Offscreen vertex shader uniform buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.offscreen, sizeof(UniformData)));
// Scene vertex shader uniform buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.scene, sizeof(UniformData)));
// Map persistent
VK_CHECK_RESULT(uniformBuffers.offscreen.map());
VK_CHECK_RESULT(uniformBuffers.scene.map());
}
void updateUniformBuffers()
{
uniformDataScene.projection = camera.matrices.perspective;
uniformDataScene.view = camera.matrices.view;
uniformDataScene.model = glm::mat4(1.0f);
uniformDataScene.lightPos = lightPos;
memcpy(uniformBuffers.scene.mapped, &uniformDataScene, sizeof(UniformData));
}
void updateUniformBufferOffscreen()
{
lightPos.x = sin(glm::radians(timer * 360.0f)) * 0.15f;
lightPos.z = cos(glm::radians(timer * 360.0f)) * 0.15f;
uniformDataOffscreen.projection = glm::perspective((float)(M_PI / 2.0), 1.0f, zNear, zFar);
uniformDataOffscreen.view = glm::mat4(1.0f);
uniformDataOffscreen.model = glm::translate(glm::mat4(1.0f), glm::vec3(-lightPos.x, -lightPos.y, -lightPos.z));
uniformDataOffscreen.lightPos = lightPos;
memcpy(uniformBuffers.offscreen.mapped, &uniformDataOffscreen, sizeof(UniformData));
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
prepareUniformBuffers();
prepareCubeMap();
setupDescriptors();
prepareOffscreenRenderpass();
preparePipelines();
prepareOffscreenFramebuffer();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
updateUniformBuffers();
updateUniformBufferOffscreen();
draw();
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Settings")) {
if (overlay->checkBox("Display shadow cube render target", &displayCubeMap)) {
buildCommandBuffers();
}
}
}
};
VULKAN_EXAMPLE_MAIN()