procedural-3d-engine/base/vulkanTextureLoader.hpp

834 lines
32 KiB
C++

/*
* Texture loader for Vulkan
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#pragma once
#include <vulkan/vulkan.h>
#include <gli/gli.hpp>
#if defined(__ANDROID__)
#include <android/asset_manager.h>
#endif
namespace vkTools
{
struct VulkanTexture
{
VkSampler sampler;
VkImage image;
VkImageLayout imageLayout;
VkDeviceMemory deviceMemory;
VkImageView view;
uint32_t width, height;
uint32_t mipLevels;
uint32_t layerCount;
};
class VulkanTextureLoader
{
private:
VkPhysicalDevice physicalDevice;
VkDevice device;
VkQueue queue;
VkCommandBuffer cmdBuffer;
VkCommandPool cmdPool;
VkPhysicalDeviceMemoryProperties deviceMemoryProperties;
// Get appropriate memory type index for a memory allocation
uint32_t getMemoryType(uint32_t typeBits, VkFlags properties)
{
for (uint32_t i = 0; i < 32; i++)
{
if ((typeBits & 1) == 1)
{
if ((deviceMemoryProperties.memoryTypes[i].propertyFlags & properties) == properties)
{
return i;
}
}
typeBits >>= 1;
}
// todo : throw error
return 0;
}
public:
#if defined(__ANDROID__)
AAssetManager* assetManager = nullptr;
#endif
// Load a 2D texture
void loadTexture(std::string filename, VkFormat format, VulkanTexture *texture)
{
loadTexture(filename, format, texture, false);
}
// Load a 2D texture
void loadTexture(std::string filename, VkFormat format, VulkanTexture *texture, bool forceLinear)
{
loadTexture(filename, format, texture, forceLinear, VK_IMAGE_USAGE_SAMPLED_BIT);
}
// Load a 2D texture
void loadTexture(std::string filename, VkFormat format, VulkanTexture *texture, bool forceLinear, VkImageUsageFlags imageUsageFlags)
{
#if defined(__ANDROID__)
assert(assetManager != nullptr);
// Textures are stored inside the apk on Android (compressed)
// So they need to be loaded via the asset manager
AAsset* asset = AAssetManager_open(assetManager, filename.c_str(), AASSET_MODE_STREAMING);
assert(asset);
size_t size = AAsset_getLength(asset);
assert(size > 0);
void *textureData = malloc(size);
AAsset_read(asset, textureData, size);
AAsset_close(asset);
gli::texture2D tex2D(gli::load((const char*)textureData, size));
free(textureData);
#else
gli::texture2D tex2D(gli::load(filename.c_str()));
#endif
assert(!tex2D.empty());
texture->width = static_cast<uint32_t>(tex2D[0].dimensions().x);
texture->height = static_cast<uint32_t>(tex2D[0].dimensions().y);
texture->mipLevels = static_cast<uint32_t>(tex2D.levels());
// Get device properites for the requested texture format
VkFormatProperties formatProperties;
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
// Only use linear tiling if requested (and supported by the device)
// Support for linear tiling is mostly limited, so prefer to use
// optimal tiling instead
// On most implementations linear tiling will only support a very
// limited amount of formats and features (mip maps, cubemaps, arrays, etc.)
VkBool32 useStaging = !forceLinear;
VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
// Use a separate command buffer for texture loading
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VK_CHECK_RESULT(vkBeginCommandBuffer(cmdBuffer, &cmdBufInfo));
if (useStaging)
{
// Create a host-visible staging buffer that contains the raw image data
VkBuffer stagingBuffer;
VkDeviceMemory stagingMemory;
VkBufferCreateInfo bufferCreateInfo = vkTools::initializers::bufferCreateInfo();
bufferCreateInfo.size = tex2D.size();
// This buffer is used as a transfer source for the buffer copy
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &stagingBuffer));
// Get memory requirements for the staging buffer (alignment, memory type bits)
vkGetBufferMemoryRequirements(device, stagingBuffer, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
// Get memory type index for a host visible buffer
memAllocInfo.memoryTypeIndex = getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &stagingMemory));
VK_CHECK_RESULT(vkBindBufferMemory(device, stagingBuffer, stagingMemory, 0));
// Copy texture data into staging buffer
uint8_t *data;
VK_CHECK_RESULT(vkMapMemory(device, stagingMemory, 0, memReqs.size, 0, (void **)&data));
memcpy(data, tex2D.data(), tex2D.size());
vkUnmapMemory(device, stagingMemory);
// Setup buffer copy regions for each mip level
std::vector<VkBufferImageCopy> bufferCopyRegions;
uint32_t offset = 0;
for (uint32_t i = 0; i < texture->mipLevels; i++)
{
VkBufferImageCopy bufferCopyRegion = {};
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
bufferCopyRegion.imageSubresource.mipLevel = i;
bufferCopyRegion.imageSubresource.baseArrayLayer = 0;
bufferCopyRegion.imageSubresource.layerCount = 1;
bufferCopyRegion.imageExtent.width = static_cast<uint32_t>(tex2D[i].dimensions().x);
bufferCopyRegion.imageExtent.height = static_cast<uint32_t>(tex2D[i].dimensions().y);
bufferCopyRegion.imageExtent.depth = 1;
bufferCopyRegion.bufferOffset = offset;
bufferCopyRegions.push_back(bufferCopyRegion);
offset += static_cast<uint32_t>(tex2D[i].size());
}
// Create optimal tiled target image
VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.mipLevels = texture->mipLevels;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.usage = imageUsageFlags;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
imageCreateInfo.extent = { texture->width, texture->height, 1 };
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &texture->image));
vkGetImageMemoryRequirements(device, texture->image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &texture->deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device, texture->image, texture->deviceMemory, 0));
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = texture->mipLevels;
subresourceRange.layerCount = 1;
// Image barrier for optimal image (target)
// Optimal image will be used as destination for the copy
setImageLayout(
cmdBuffer,
texture->image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_PREINITIALIZED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
subresourceRange);
// Copy mip levels from staging buffer
vkCmdCopyBufferToImage(
cmdBuffer,
stagingBuffer,
texture->image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
static_cast<uint32_t>(bufferCopyRegions.size()),
bufferCopyRegions.data()
);
// Change texture image layout to shader read after all mip levels have been copied
texture->imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
setImageLayout(
cmdBuffer,
texture->image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
texture->imageLayout,
subresourceRange);
// Submit command buffer containing copy and image layout commands
VK_CHECK_RESULT(vkEndCommandBuffer(cmdBuffer));
// Create a fence to make sure that the copies have finished before continuing
VkFence copyFence;
VkFenceCreateInfo fenceCreateInfo = vkTools::initializers::fenceCreateInfo(VK_FLAGS_NONE);
VK_CHECK_RESULT(vkCreateFence(device, &fenceCreateInfo, nullptr, &copyFence));
VkSubmitInfo submitInfo = vkTools::initializers::submitInfo();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &cmdBuffer;
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, copyFence));
VK_CHECK_RESULT(vkWaitForFences(device, 1, &copyFence, VK_TRUE, DEFAULT_FENCE_TIMEOUT));
vkDestroyFence(device, copyFence, nullptr);
// Clean up staging resources
vkFreeMemory(device, stagingMemory, nullptr);
vkDestroyBuffer(device, stagingBuffer, nullptr);
}
else
{
// Prefer using optimal tiling, as linear tiling
// may support only a small set of features
// depending on implementation (e.g. no mip maps, only one layer, etc.)
// Check if this support is supported for linear tiling
assert(formatProperties.linearTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT);
VkImage mappableImage;
VkDeviceMemory mappableMemory;
VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.extent = { texture->width, texture->height, 1 };
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_LINEAR;
imageCreateInfo.usage = imageUsageFlags;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
// Load mip map level 0 to linear tiling image
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &mappableImage));
// Get memory requirements for this image
// like size and alignment
vkGetImageMemoryRequirements(device, mappableImage, &memReqs);
// Set memory allocation size to required memory size
memAllocInfo.allocationSize = memReqs.size;
// Get memory type that can be mapped to host memory
memAllocInfo.memoryTypeIndex = getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
// Allocate host memory
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &mappableMemory));
// Bind allocated image for use
VK_CHECK_RESULT(vkBindImageMemory(device, mappableImage, mappableMemory, 0));
// Get sub resource layout
// Mip map count, array layer, etc.
VkImageSubresource subRes = {};
subRes.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subRes.mipLevel = 0;
VkSubresourceLayout subResLayout;
void *data;
// Get sub resources layout
// Includes row pitch, size offsets, etc.
vkGetImageSubresourceLayout(device, mappableImage, &subRes, &subResLayout);
// Map image memory
VK_CHECK_RESULT(vkMapMemory(device, mappableMemory, 0, memReqs.size, 0, &data));
// Copy image data into memory
memcpy(data, tex2D[subRes.mipLevel].data(), tex2D[subRes.mipLevel].size());
vkUnmapMemory(device, mappableMemory);
// Linear tiled images don't need to be staged
// and can be directly used as textures
texture->image = mappableImage;
texture->deviceMemory = mappableMemory;
texture->imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
// Setup image memory barrier
setImageLayout(
cmdBuffer,
texture->image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_PREINITIALIZED,
texture->imageLayout);
// Submit command buffer containing copy and image layout commands
VK_CHECK_RESULT(vkEndCommandBuffer(cmdBuffer));
VkFence nullFence = { VK_NULL_HANDLE };
VkSubmitInfo submitInfo = vkTools::initializers::submitInfo();
submitInfo.waitSemaphoreCount = 0;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &cmdBuffer;
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, nullFence));
VK_CHECK_RESULT(vkQueueWaitIdle(queue));
}
// Create sampler
VkSamplerCreateInfo sampler = {};
sampler.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
sampler.magFilter = VK_FILTER_LINEAR;
sampler.minFilter = VK_FILTER_LINEAR;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler.mipLodBias = 0.0f;
sampler.compareOp = VK_COMPARE_OP_NEVER;
sampler.minLod = 0.0f;
// Max level-of-detail should match mip level count
sampler.maxLod = (useStaging) ? (float)texture->mipLevels : 0.0f;
// Enable anisotropic filtering
sampler.maxAnisotropy = 8;
sampler.anisotropyEnable = VK_TRUE;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &texture->sampler));
// Create image view
// Textures are not directly accessed by the shaders and
// are abstracted by image views containing additional
// information and sub resource ranges
VkImageViewCreateInfo view = {};
view.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
view.pNext = NULL;
view.image = VK_NULL_HANDLE;
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
view.format = format;
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
// Linear tiling usually won't support mip maps
// Only set mip map count if optimal tiling is used
view.subresourceRange.levelCount = (useStaging) ? texture->mipLevels : 1;
view.image = texture->image;
VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &texture->view));
}
// Clean up vulkan resources used by a texture object
void destroyTexture(VulkanTexture texture)
{
vkDestroyImageView(device, texture.view, nullptr);
vkDestroyImage(device, texture.image, nullptr);
vkDestroySampler(device, texture.sampler, nullptr);
vkFreeMemory(device, texture.deviceMemory, nullptr);
}
VulkanTextureLoader(VkPhysicalDevice physicalDevice, VkDevice device, VkQueue queue, VkCommandPool cmdPool)
{
this->physicalDevice = physicalDevice;
this->device = device;
this->queue = queue;
this->cmdPool = cmdPool;
vkGetPhysicalDeviceMemoryProperties(physicalDevice, &deviceMemoryProperties);
// Create command buffer for submitting image barriers
// and converting tilings
VkCommandBufferAllocateInfo cmdBufInfo = {};
cmdBufInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
cmdBufInfo.commandPool = cmdPool;
cmdBufInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
cmdBufInfo.commandBufferCount = 1;
VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmdBufInfo, &cmdBuffer));
}
~VulkanTextureLoader()
{
vkFreeCommandBuffers(device, cmdPool, 1, &cmdBuffer);
}
// Load a cubemap texture (single file)
void loadCubemap(std::string filename, VkFormat format, VulkanTexture *texture)
{
#if defined(__ANDROID__)
assert(assetManager != nullptr);
// Textures are stored inside the apk on Android (compressed)
// So they need to be loaded via the asset manager
AAsset* asset = AAssetManager_open(assetManager, filename.c_str(), AASSET_MODE_STREAMING);
assert(asset);
size_t size = AAsset_getLength(asset);
assert(size > 0);
void *textureData = malloc(size);
AAsset_read(asset, textureData, size);
AAsset_close(asset);
gli::textureCube texCube(gli::load((const char*)textureData, size));
free(textureData);
#else
gli::textureCube texCube(gli::load(filename));
#endif
assert(!texCube.empty());
texture->width = (uint32_t)texCube[0].dimensions().x;
texture->height = (uint32_t)texCube[0].dimensions().y;
VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
// Create a host-visible staging buffer that contains the raw image data
VkBuffer stagingBuffer;
VkDeviceMemory stagingMemory;
VkBufferCreateInfo bufferCreateInfo = vkTools::initializers::bufferCreateInfo();
bufferCreateInfo.size = texCube.size();
// This buffer is used as a transfer source for the buffer copy
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &stagingBuffer));
// Get memory requirements for the staging buffer (alignment, memory type bits)
vkGetBufferMemoryRequirements(device, stagingBuffer, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
// Get memory type index for a host visible buffer
memAllocInfo.memoryTypeIndex = getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &stagingMemory));
VK_CHECK_RESULT(vkBindBufferMemory(device, stagingBuffer, stagingMemory, 0));
// Copy texture data into staging buffer
uint8_t *data;
VK_CHECK_RESULT(vkMapMemory(device, stagingMemory, 0, memReqs.size, 0, (void **)&data));
memcpy(data, texCube.data(), texCube.size());
vkUnmapMemory(device, stagingMemory);
// Setup buffer copy regions for the cube faces
// As all faces of a cube map must have the same dimensions, we can do a single copy
VkBufferImageCopy bufferCopyRegion = {};
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
bufferCopyRegion.imageSubresource.mipLevel = 0;
bufferCopyRegion.imageSubresource.baseArrayLayer = 0;
bufferCopyRegion.imageSubresource.layerCount = 6;
bufferCopyRegion.imageExtent.width = texture->width;
bufferCopyRegion.imageExtent.height = texture->height;
bufferCopyRegion.imageExtent.depth = 1;
// Create optimal tiled target image
VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.mipLevels = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
imageCreateInfo.extent = { texture->width, texture->height, 1 };
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
// Cube faces count as array layers in Vulkan
imageCreateInfo.arrayLayers = 6;
// This flag is required for cube map images
imageCreateInfo.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &texture->image));
vkGetImageMemoryRequirements(device, texture->image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &texture->deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device, texture->image, texture->deviceMemory, 0));
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VK_CHECK_RESULT(vkBeginCommandBuffer(cmdBuffer, &cmdBufInfo));
// Image barrier for optimal image (target)
// Set initial layout for all array layers (faces) of the optimal (target) tiled texture
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = 1;
subresourceRange.layerCount = 6;
vkTools::setImageLayout(
cmdBuffer,
texture->image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_PREINITIALIZED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
subresourceRange);
// Copy the cube map faces from the staging buffer to the optimal tiled image
vkCmdCopyBufferToImage(
cmdBuffer,
stagingBuffer,
texture->image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&bufferCopyRegion
);
// Change texture image layout to shader read after all faces have been copied
texture->imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
vkTools::setImageLayout(
cmdBuffer,
texture->image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
texture->imageLayout,
subresourceRange);
VK_CHECK_RESULT(vkEndCommandBuffer(cmdBuffer));
// Create a fence to make sure that the copies have finished before continuing
VkFence copyFence;
VkFenceCreateInfo fenceCreateInfo = vkTools::initializers::fenceCreateInfo(VK_FLAGS_NONE);
VK_CHECK_RESULT(vkCreateFence(device, &fenceCreateInfo, nullptr, &copyFence));
VkSubmitInfo submitInfo = vkTools::initializers::submitInfo();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &cmdBuffer;
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, copyFence));
VK_CHECK_RESULT(vkWaitForFences(device, 1, &copyFence, VK_TRUE, DEFAULT_FENCE_TIMEOUT));
vkDestroyFence(device, copyFence, nullptr);
// Create sampler
VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo();
sampler.magFilter = VK_FILTER_LINEAR;
sampler.minFilter = VK_FILTER_LINEAR;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
sampler.addressModeV = sampler.addressModeU;
sampler.addressModeW = sampler.addressModeU;
sampler.mipLodBias = 0.0f;
sampler.maxAnisotropy = 8;
sampler.compareOp = VK_COMPARE_OP_NEVER;
sampler.minLod = 0.0f;
sampler.maxLod = 0.0f;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &texture->sampler));
// Create image view
VkImageViewCreateInfo view = vkTools::initializers::imageViewCreateInfo();
view.image = VK_NULL_HANDLE;
view.viewType = VK_IMAGE_VIEW_TYPE_CUBE;
view.format = format;
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
view.subresourceRange.layerCount = 6;
view.image = texture->image;
VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &texture->view));
// Clean up staging resources
vkFreeMemory(device, stagingMemory, nullptr);
vkDestroyBuffer(device, stagingBuffer, nullptr);
}
// Load an array texture (single file)
void loadTextureArray(std::string filename, VkFormat format, VulkanTexture *texture)
{
#if defined(__ANDROID__)
assert(assetManager != nullptr);
// Textures are stored inside the apk on Android (compressed)
// So they need to be loaded via the asset manager
AAsset* asset = AAssetManager_open(assetManager, filename.c_str(), AASSET_MODE_STREAMING);
assert(asset);
size_t size = AAsset_getLength(asset);
assert(size > 0);
void *textureData = malloc(size);
AAsset_read(asset, textureData, size);
AAsset_close(asset);
gli::texture2DArray tex2DArray(gli::load((const char*)textureData, size));
free(textureData);
#else
gli::texture2DArray tex2DArray(gli::load(filename));
#endif
assert(!tex2DArray.empty());
texture->width = static_cast<uint32_t>(tex2DArray.dimensions().x);
texture->height = static_cast<uint32_t>(tex2DArray.dimensions().y);
texture->layerCount = static_cast<uint32_t>(tex2DArray.layers());
VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
// Create a host-visible staging buffer that contains the raw image data
VkBuffer stagingBuffer;
VkDeviceMemory stagingMemory;
VkBufferCreateInfo bufferCreateInfo = vkTools::initializers::bufferCreateInfo();
bufferCreateInfo.size = tex2DArray.size();
// This buffer is used as a transfer source for the buffer copy
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &stagingBuffer));
// Get memory requirements for the staging buffer (alignment, memory type bits)
vkGetBufferMemoryRequirements(device, stagingBuffer, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
// Get memory type index for a host visible buffer
memAllocInfo.memoryTypeIndex = getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &stagingMemory));
VK_CHECK_RESULT(vkBindBufferMemory(device, stagingBuffer, stagingMemory, 0));
// Copy texture data into staging buffer
uint8_t *data;
VK_CHECK_RESULT(vkMapMemory(device, stagingMemory, 0, memReqs.size, 0, (void **)&data));
memcpy(data, tex2DArray.data(), tex2DArray.size());
vkUnmapMemory(device, stagingMemory);
// Setup buffer copy regions for array layers
std::vector<VkBufferImageCopy> bufferCopyRegions;
uint32_t offset = 0;
// Check if all array layers have the same dimesions
bool sameDims = true;
for (uint32_t layer = 0; layer < texture->layerCount; layer++)
{
if (tex2DArray[layer].dimensions().x != texture->width || tex2DArray[layer].dimensions().y != texture->height)
{
sameDims = false;
break;
}
}
// If all layers of the texture array have the same dimensions, we only need to do one copy
if (sameDims)
{
VkBufferImageCopy bufferCopyRegion = {};
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
bufferCopyRegion.imageSubresource.mipLevel = 0;
bufferCopyRegion.imageSubresource.baseArrayLayer = 0;
bufferCopyRegion.imageSubresource.layerCount = texture->layerCount;
bufferCopyRegion.imageExtent.width = static_cast<uint32_t>(tex2DArray[0].dimensions().x);
bufferCopyRegion.imageExtent.height = static_cast<uint32_t>(tex2DArray[0].dimensions().y);
bufferCopyRegion.imageExtent.depth = 1;
bufferCopyRegion.bufferOffset = offset;
bufferCopyRegions.push_back(bufferCopyRegion);
}
else
{
// If dimensions differ, copy layer by layer and pass offsets
for (uint32_t layer = 0; layer < texture->layerCount; layer++)
{
VkBufferImageCopy bufferCopyRegion = {};
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
bufferCopyRegion.imageSubresource.mipLevel = 0;
bufferCopyRegion.imageSubresource.baseArrayLayer = layer;
bufferCopyRegion.imageSubresource.layerCount = 1;
bufferCopyRegion.imageExtent.width = static_cast<uint32_t>(tex2DArray[layer].dimensions().x);
bufferCopyRegion.imageExtent.height = static_cast<uint32_t>(tex2DArray[layer].dimensions().y);
bufferCopyRegion.imageExtent.depth = 1;
bufferCopyRegion.bufferOffset = offset;
bufferCopyRegions.push_back(bufferCopyRegion);
offset += static_cast<uint32_t>(tex2DArray[layer].size());
}
}
// Create optimal tiled target image
VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.mipLevels = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
imageCreateInfo.extent = { texture->width, texture->height, 1 };
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
imageCreateInfo.arrayLayers = texture->layerCount;
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &texture->image));
vkGetImageMemoryRequirements(device, texture->image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &texture->deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device, texture->image, texture->deviceMemory, 0));
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VK_CHECK_RESULT(vkBeginCommandBuffer(cmdBuffer, &cmdBufInfo));
// Image barrier for optimal image (target)
// Set initial layout for all array layers (faces) of the optimal (target) tiled texture
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = 1;
subresourceRange.layerCount = texture->layerCount;
vkTools::setImageLayout(
cmdBuffer,
texture->image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_PREINITIALIZED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
subresourceRange);
// Copy the cube map faces from the staging buffer to the optimal tiled image
vkCmdCopyBufferToImage(
cmdBuffer,
stagingBuffer,
texture->image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
static_cast<uint32_t>(bufferCopyRegions.size()),
bufferCopyRegions.data()
);
// Change texture image layout to shader read after all faces have been copied
texture->imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
vkTools::setImageLayout(
cmdBuffer,
texture->image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
texture->imageLayout,
subresourceRange);
VK_CHECK_RESULT(vkEndCommandBuffer(cmdBuffer));
// Create a fence to make sure that the copies have finished before continuing
VkFence copyFence;
VkFenceCreateInfo fenceCreateInfo = vkTools::initializers::fenceCreateInfo(VK_FLAGS_NONE);
VK_CHECK_RESULT(vkCreateFence(device, &fenceCreateInfo, nullptr, &copyFence));
VkSubmitInfo submitInfo = vkTools::initializers::submitInfo();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &cmdBuffer;
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, copyFence));
VK_CHECK_RESULT(vkWaitForFences(device, 1, &copyFence, VK_TRUE, DEFAULT_FENCE_TIMEOUT));
vkDestroyFence(device, copyFence, nullptr);
// Create sampler
VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo();
sampler.magFilter = VK_FILTER_LINEAR;
sampler.minFilter = VK_FILTER_LINEAR;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
sampler.addressModeV = sampler.addressModeU;
sampler.addressModeW = sampler.addressModeU;
sampler.mipLodBias = 0.0f;
sampler.maxAnisotropy = 8;
sampler.compareOp = VK_COMPARE_OP_NEVER;
sampler.minLod = 0.0f;
sampler.maxLod = 0.0f;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &texture->sampler));
// Create image view
VkImageViewCreateInfo view = vkTools::initializers::imageViewCreateInfo();
view.image = VK_NULL_HANDLE;
view.viewType = VK_IMAGE_VIEW_TYPE_2D_ARRAY;
view.format = format;
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
view.subresourceRange.layerCount = texture->layerCount;
view.image = texture->image;
VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &texture->view));
// Clean up staging resources
vkFreeMemory(device, stagingMemory, nullptr);
vkDestroyBuffer(device, stagingBuffer, nullptr);
}
};
};