procedural-3d-engine/shaders/slang/inlineuniformblocks/pbr.slang
2025-05-04 17:23:23 +02:00

137 lines
No EOL
3.4 KiB
Text

/* Copyright (c) 2025, Sascha Willems
*
* SPDX-License-Identifier: MIT
*
*/
struct VSInput
{
float3 Pos;
float3 Normal;
};
struct VSOutput
{
float4 Pos : SV_POSITION;
float3 WorldPos;
float3 Normal;
};
struct UBO
{
float4x4 projection;
float4x4 model;
float4x4 view;
float3 camPos;
};
ConstantBuffer<UBO> ubo;
// Inline uniform block
struct UniformInline {
float roughness;
float metallic;
float r;
float g;
float b;
float ambient;
};
[[vk::binding(0,1)]] ConstantBuffer<UniformInline> material;
#define PI 3.14159265359
#define MATERIALCOLOR float3(material.r, material.g, material.b)
// Normal Distribution function --------------------------------------
float D_GGX(float dotNH, float roughness)
{
float alpha = roughness * roughness;
float alpha2 = alpha * alpha;
float denom = dotNH * dotNH * (alpha2 - 1.0) + 1.0;
return (alpha2)/(PI * denom*denom);
}
// Geometric Shadowing function --------------------------------------
float G_SchlicksmithGGX(float dotNL, float dotNV, float roughness)
{
float r = (roughness + 1.0);
float k = (r*r) / 8.0;
float GL = dotNL / (dotNL * (1.0 - k) + k);
float GV = dotNV / (dotNV * (1.0 - k) + k);
return GL * GV;
}
// Fresnel function ----------------------------------------------------
float3 F_Schlick(float cosTheta, float metallic)
{
float3 F0 = lerp(float3(0.04, 0.04, 0.04), MATERIALCOLOR, metallic); // * material.specular
float3 F = F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0);
return F;
}
// Specular BRDF composition --------------------------------------------
float3 BRDF(float3 L, float3 V, float3 N, float metallic, float roughness)
{
// Precalculate vectors and dot products
float3 H = normalize (V + L);
float dotNV = clamp(dot(N, V), 0.0, 1.0);
float dotNL = clamp(dot(N, L), 0.0, 1.0);
float dotLH = clamp(dot(L, H), 0.0, 1.0);
float dotNH = clamp(dot(N, H), 0.0, 1.0);
// Light color fixed
float3 lightColor = float3(1.0, 1.0, 1.0);
float3 color = float3(0.0, 0.0, 0.0);
if (dotNL > 0.0)
{
float rroughness = max(0.05, roughness);
// D = Normal distribution (Distribution of the microfacets)
float D = D_GGX(dotNH, rroughness);
// G = Geometric shadowing term (Microfacets shadowing)
float G = G_SchlicksmithGGX(dotNL, dotNV, rroughness);
// F = Fresnel factor (Reflectance depending on angle of incidence)
float3 F = F_Schlick(dotNV, metallic);
float3 spec = D * F * G / (4.0 * dotNL * dotNV);
color += spec * dotNL * lightColor;
}
return color;
}
[shader("vertex")]
VSOutput vertexMain(VSInput input, uniform float3 objPos)
{
VSOutput output;
float3 locPos = mul(ubo.model, float4(input.Pos, 1.0)).xyz;
output.WorldPos = locPos + objPos;
output.Normal = mul((float4x3)ubo.model, input.Normal).xyz;
output.Pos = mul(ubo.projection, mul(ubo.view, float4(output.WorldPos, 1.0)));
return output;
}
[shader("fragment")]
float4 fragmentMain(VSOutput input)
{
float3 N = normalize(input.Normal);
float3 V = normalize(ubo.camPos - input.WorldPos);
float roughness = material.roughness;
// Specular contribution
float3 lightPos = float3(0.0f, 0.0f, 10.0f);
float3 Lo = float3(0.0, 0.0, 0.0);
float3 L = normalize(lightPos.xyz - input.WorldPos);
Lo += BRDF(L, V, N, material.metallic, roughness);
// Combine with ambient
float3 color = MATERIALCOLOR * material.ambient;
color += Lo;
// Gamma correct
color = pow(color, float3(0.4545, 0.4545, 0.4545));
return float4(color, 1.0);
}