procedural-3d-engine/shaders/slang/terraintessellation/terrain.slang
2025-05-16 20:12:30 +02:00

252 lines
7.2 KiB
Text

/* Copyright (c) 2025, Sascha Willems
*
* SPDX-License-Identifier: MIT
*
*/
struct VSInput
{
float3 Pos;
float3 Normal;
float2 UV;
};
struct VSOutput
{
float4 Pos : SV_POSITION;
float3 Normal;
float2 UV;
};
struct DSOutput
{
float4 Pos : SV_POSITION;
float3 Normal;
float2 UV;
float3 ViewVec;
float3 LightVec;
float3 EyePos;
float3 WorldPos;
};
struct UBO
{
float4x4 projection;
float4x4 modelview;
float4 lightPos;
float4 frustumPlanes[6];
float displacementFactor;
float tessellationFactor;
float2 viewportDim;
float tessellatedEdgeSize;
};
ConstantBuffer<UBO> ubo;
Sampler2D samplerHeight;
Sampler2DArray samplerLayers;
struct HSOutput
{
float4 Pos : SV_POSITION;
float3 Normal : NORMAL0;
float2 UV : TEXCOORD0;
};
struct ConstantsHSOutput
{
float TessLevelOuter[4] : SV_TessFactor;
float TessLevelInner[2] : SV_InsideTessFactor;
};
// Calculate the tessellation factor based on screen space
// dimensions of the edge
float screenSpaceTessFactor(float4 p0, float4 p1)
{
// Calculate edge mid point
float4 midPoint = 0.5 * (p0 + p1);
// Sphere radius as distance between the control points
float radius = distance(p0, p1) / 2.0;
// View space
float4 v0 = mul(ubo.modelview, midPoint);
// Project into clip space
float4 clip0 = mul(ubo.projection, (v0 - float4(radius, float3(0.0, 0.0, 0.0))));
float4 clip1 = mul(ubo.projection, (v0 + float4(radius, float3(0.0, 0.0, 0.0))));
// Get normalized device coordinates
clip0 /= clip0.w;
clip1 /= clip1.w;
// Convert to viewport coordinates
clip0.xy *= ubo.viewportDim;
clip1.xy *= ubo.viewportDim;
// Return the tessellation factor based on the screen size
// given by the distance of the two edge control points in screen space
// and a reference (min.) tessellation size for the edge set by the application
return clamp(distance(clip0, clip1) / ubo.tessellatedEdgeSize * ubo.tessellationFactor, 1.0, 64.0);
}
// Checks the current's patch visibility against the frustum using a sphere check
// Sphere radius is given by the patch size
bool frustumCheck(float4 Pos, float2 inUV)
{
// Fixed radius (increase if patch size is increased in example)
const float radius = 8.0f;
float4 pos = Pos;
pos.y -= samplerHeight.SampleLevel(inUV, 0.0).r * ubo.displacementFactor;
// Check sphere against frustum planes
for (int i = 0; i < 6; i++) {
if (dot(pos, ubo.frustumPlanes[i]) + radius < 0.0)
{
return false;
}
}
return true;
}
ConstantsHSOutput ConstantsHS(InputPatch<VSOutput, 4> patch)
{
ConstantsHSOutput output;
if (!frustumCheck(patch[0].Pos, patch[0].UV))
{
output.TessLevelInner[0] = 0.0;
output.TessLevelInner[1] = 0.0;
output.TessLevelOuter[0] = 0.0;
output.TessLevelOuter[1] = 0.0;
output.TessLevelOuter[2] = 0.0;
output.TessLevelOuter[3] = 0.0;
}
else
{
if (ubo.tessellationFactor > 0.0)
{
output.TessLevelOuter[0] = screenSpaceTessFactor(patch[3].Pos, patch[0].Pos);
output.TessLevelOuter[1] = screenSpaceTessFactor(patch[0].Pos, patch[1].Pos);
output.TessLevelOuter[2] = screenSpaceTessFactor(patch[1].Pos, patch[2].Pos);
output.TessLevelOuter[3] = screenSpaceTessFactor(patch[2].Pos, patch[3].Pos);
output.TessLevelInner[0] = lerp(output.TessLevelOuter[0], output.TessLevelOuter[3], 0.5);
output.TessLevelInner[1] = lerp(output.TessLevelOuter[2], output.TessLevelOuter[1], 0.5);
}
else
{
// Tessellation factor can be set to zero by example
// to demonstrate a simple passthrough
output.TessLevelInner[0] = 1.0;
output.TessLevelInner[1] = 1.0;
output.TessLevelOuter[0] = 1.0;
output.TessLevelOuter[1] = 1.0;
output.TessLevelOuter[2] = 1.0;
output.TessLevelOuter[3] = 1.0;
}
}
return output;
}
float3 sampleTerrainLayer(float2 inUV)
{
// Define some layer ranges for sampling depending on terrain height
float2 layers[6];
layers[0] = float2(-10.0, 10.0);
layers[1] = float2(5.0, 45.0);
layers[2] = float2(45.0, 80.0);
layers[3] = float2(75.0, 100.0);
layers[4] = float2(95.0, 140.0);
layers[5] = float2(140.0, 190.0);
float3 color = float3(0.0, 0.0, 0.0);
// Get height from displacement map
float height = samplerHeight.SampleLevel(inUV, 0.0).r * 255.0;
for (int i = 0; i < 6; i++)
{
float range = layers[i].y - layers[i].x;
float weight = (range - abs(height - layers[i].y)) / range;
weight = max(0.0, weight);
color += weight * samplerLayers.Sample(float3(inUV * 16.0, i)).rgb;
}
return color;
}
float fog(float density, float4 FragCoord)
{
const float LOG2 = -1.442695;
float dist = FragCoord.z / FragCoord.w * 0.1;
float d = density * dist;
return 1.0 - clamp(exp2(d * d * LOG2), 0.0, 1.0);
}
[shader("vertex")]
VSOutput vertexMain(VSInput input)
{
VSOutput output;
output.Pos = float4(input.Pos.xyz, 1.0);
output.UV = input.UV;
output.Normal = input.Normal;
return output;
}
[shader("hull")]
[domain("quad")]
[partitioning("integer")]
[outputtopology("triangle_cw")]
[outputcontrolpoints(4)]
[patchconstantfunc("ConstantsHS")]
[maxtessfactor(20.0f)]
HSOutput hullMain(InputPatch<VSOutput, 4> patch, uint InvocationID: SV_OutputControlPointID)
{
HSOutput output;
output.Pos = patch[InvocationID].Pos;
output.Normal = patch[InvocationID].Normal;
output.UV = patch[InvocationID].UV;
return output;
}
[shader("domain")]
[domain("quad")]
DSOutput domainMain(ConstantsHSOutput input, float2 TessCoord: SV_DomainLocation, const OutputPatch<HSOutput, 4> patch)
{
// Interpolate UV coordinates
DSOutput output;
float2 uv1 = lerp(patch[0].UV, patch[1].UV, TessCoord.x);
float2 uv2 = lerp(patch[3].UV, patch[2].UV, TessCoord.x);
output.UV = lerp(uv1, uv2, TessCoord.y);
float3 n1 = lerp(patch[0].Normal, patch[1].Normal, TessCoord.x);
float3 n2 = lerp(patch[3].Normal, patch[2].Normal, TessCoord.x);
output.Normal = lerp(n1, n2, TessCoord.y);
// Interpolate positions
float4 pos1 = lerp(patch[0].Pos, patch[1].Pos, TessCoord.x);
float4 pos2 = lerp(patch[3].Pos, patch[2].Pos, TessCoord.x);
float4 pos = lerp(pos1, pos2, TessCoord.y);
// Displace
pos.y -= samplerHeight.SampleLevel(output.UV, 0.0).r * ubo.displacementFactor;
// Perspective projection
output.Pos = mul(ubo.projection, mul(ubo.modelview, pos));
// Calculate vectors for lighting based on tessellated position
output.ViewVec = -pos.xyz;
output.LightVec = normalize(ubo.lightPos.xyz + output.ViewVec);
output.WorldPos = pos.xyz;
output.EyePos = mul(ubo.modelview, pos).xyz;
return output;
}
[shader("fragment")]
float4 fragmentMain(DSOutput input)
{
float3 N = normalize(input.Normal);
float3 L = normalize(input.LightVec);
float3 ambient = float3(0.5, 0.5, 0.5);
float3 diffuse = max(dot(N, L), 0.0) * float3(1.0, 1.0, 1.0);
float4 color = float4((ambient + diffuse) * sampleTerrainLayer(input.UV), 1.0);
const float4 fogColor = float4(0.47, 0.5, 0.67, 0.0);
return lerp(color, fogColor, fog(0.25, input.Pos));
}