procedural-3d-engine/tessellation/tessellation.cpp

656 lines
19 KiB
C++

/*
* Vulkan Example - Tessellation shader PN triangles
*
* Based on http://alex.vlachos.com/graphics/CurvedPNTriangles.pdf
* Shaders based on http://onrendering.blogspot.de/2011/12/tessellation-on-gpu-curved-pn-triangles.html
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#define GLM_FORCE_RADIANS
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#define VERTEX_BUFFER_BIND_ID 0
#define ENABLE_VALIDATION false
// Vertex layout for this example
std::vector<vkMeshLoader::VertexLayout> vertexLayout =
{
vkMeshLoader::VERTEX_LAYOUT_POSITION,
vkMeshLoader::VERTEX_LAYOUT_NORMAL,
vkMeshLoader::VERTEX_LAYOUT_UV
};
class VulkanExample : public VulkanExampleBase
{
public:
bool splitScreen = true;
struct {
vkTools::VulkanTexture colorMap;
} textures;
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
struct {
vkMeshLoader::MeshBuffer object;
} meshes;
vkTools::UniformData uniformDataTC, uniformDataTE;
struct {
float tessLevel = 4.0f;
} uboTC;
struct {
glm::mat4 projection;
glm::mat4 model;
float tessAlpha = 0.9f;
} uboTE;
struct {
VkPipeline solid;
VkPipeline wire;
VkPipeline solidPassThrough;
VkPipeline wirePassThrough;
} pipelines;
VkPipeline *pipelineLeft = &pipelines.solidPassThrough;
VkPipeline *pipelineRight = &pipelines.solid;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
zoom = -1.5f;
rotation = glm::vec3(-380.0f, 18.5f, 0.0f);
title = "Vulkan Example - Tessellation shader (PN Triangles)";
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
vkDestroyPipeline(device, pipelines.solid, nullptr);
vkDestroyPipeline(device, pipelines.wire, nullptr);
vkDestroyPipeline(device, pipelines.solidPassThrough, nullptr);
vkDestroyPipeline(device, pipelines.wirePassThrough, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vkMeshLoader::freeMeshBufferResources(device, &meshes.object);
vkDestroyBuffer(device, uniformDataTC.buffer, nullptr);
vkFreeMemory(device, uniformDataTC.memory, nullptr);
vkDestroyBuffer(device, uniformDataTE.buffer, nullptr);
vkFreeMemory(device, uniformDataTE.memory, nullptr);
textureLoader->destroyTexture(textures.colorMap);
}
void reBuildCommandBuffers()
{
if (!checkCommandBuffers())
{
destroyCommandBuffers();
createCommandBuffers();
}
buildCommandBuffers();
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
VkResult err;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo);
assert(!err);
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vkTools::initializers::viewport(
splitScreen ? (float)width / 2.0f : (float)width,
(float)height,
0.0f,
1.0f
);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D(
width,
height,
0,
0
);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdSetLineWidth(drawCmdBuffers[i], 1.0f);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.object.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.object.indices.buf, 0, VK_INDEX_TYPE_UINT32);
if (splitScreen)
{
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, *pipelineLeft);
vkCmdDrawIndexed(drawCmdBuffers[i], meshes.object.indexCount, 1, 0, 0, 0);
viewport.x = float(width) / 2;
}
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, *pipelineRight);
vkCmdDrawIndexed(drawCmdBuffers[i], meshes.object.indexCount, 1, 0, 0, 0);
vkCmdEndRenderPass(drawCmdBuffers[i]);
err = vkEndCommandBuffer(drawCmdBuffers[i]);
assert(!err);
}
}
void draw()
{
VkResult err;
// Get next image in the swap chain (back/front buffer)
err = swapChain.acquireNextImage(semaphores.presentComplete, &currentBuffer);
assert(!err);
submitPostPresentBarrier(swapChain.buffers[currentBuffer].image);
// Command buffer to be sumitted to the queue
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
// Submit to queue
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
assert(!err);
submitPrePresentBarrier(swapChain.buffers[currentBuffer].image);
err = swapChain.queuePresent(queue, currentBuffer, semaphores.renderComplete);
assert(!err);
err = vkQueueWaitIdle(queue);
assert(!err);
}
void loadMeshes()
{
loadMesh("./../data/models/lowpoly/bearmug.x", &meshes.object, vertexLayout, 4.0f);
}
void loadTextures()
{
textureLoader->loadTexture(
"./../data/textures/bearmug.ktx",
VK_FORMAT_BC3_UNORM_BLOCK,
&textures.colorMap);
}
void setupVertexDescriptions()
{
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vkTools::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
vkMeshLoader::vertexSize(vertexLayout),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
// Describes memory layout and shader positions
vertices.attributeDescriptions.resize(3);
// Location 0 : Position
vertices.attributeDescriptions[0] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32_SFLOAT,
0);
// Location 1 : Normals
vertices.attributeDescriptions[1] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 3);
// Location 2 : Texture coordinates
vertices.attributeDescriptions[2] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
2,
VK_FORMAT_R32G32_SFLOAT,
sizeof(float) * 6);
vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupDescriptorPool()
{
// Example uses two ubos and one combined image sampler
std::vector<VkDescriptorPoolSize> poolSizes =
{
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2),
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1),
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vkTools::initializers::descriptorPoolCreateInfo(
poolSizes.size(),
poolSizes.data(),
1);
VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool);
assert(!vkRes);
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0 : Tessellation control shader ubo
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,
0),
// Binding 1 : Tessellation evaluation shader ubo
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,
1),
// Binding 2 : Fragment shader combined sampler
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
2),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vkTools::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
setLayoutBindings.size());
VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout);
assert(!err);
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vkTools::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout);
assert(!err);
}
void setupDescriptorSet()
{
VkDescriptorSetAllocateInfo allocInfo =
vkTools::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet);
assert(!vkRes);
VkDescriptorImageInfo texDescriptor =
vkTools::initializers::descriptorImageInfo(
textures.colorMap.sampler,
textures.colorMap.view,
VK_IMAGE_LAYOUT_GENERAL);
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
{
// Binding 0 : Tessellation control shader ubo
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformDataTC.descriptor),
// Binding 1 : Tessellation evaluation shader ubo
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
1,
&uniformDataTE.descriptor),
// Binding 2 : Color map
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
2,
&texDescriptor)
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkResult err;
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_PATCH_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vkTools::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_BACK_BIT,
VK_FRONT_FACE_COUNTER_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vkTools::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vkTools::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vkTools::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR,
VK_DYNAMIC_STATE_LINE_WIDTH
};
VkPipelineDynamicStateCreateInfo dynamicState =
vkTools::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
dynamicStateEnables.size(),
0);
VkPipelineTessellationStateCreateInfo tessellationState =
vkTools::initializers::pipelineTessellationStateCreateInfo(3);
// Tessellation pipelines
// Load shaders
std::array<VkPipelineShaderStageCreateInfo, 4> shaderStages;
shaderStages[0] = loadShader("./../data/shaders/tessellation/base.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader("./../data/shaders/tessellation/base.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
shaderStages[2] = loadShader("./../data/shaders/tessellation/pntriangles.tesc.spv", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT);
shaderStages[3] = loadShader("./../data/shaders/tessellation/pntriangles.tese.spv", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT);
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vkTools::initializers::pipelineCreateInfo(
pipelineLayout,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.pTessellationState = &tessellationState;
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data();
pipelineCreateInfo.renderPass = renderPass;
// Tessellation pipelines
// Solid
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid);
assert(!err);
// Wireframe
rasterizationState.polygonMode = VK_POLYGON_MODE_LINE;
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.wire);
assert(!err);
// Pass through pipelines
// Load pass through tessellation shaders (Vert and frag are reused)
shaderStages[2] = loadShader("./../data/shaders/tessellation/passthrough.tesc.spv", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT);
shaderStages[3] = loadShader("./../data/shaders/tessellation/passthrough.tese.spv", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT);
// Solid
rasterizationState.polygonMode = VK_POLYGON_MODE_FILL;
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solidPassThrough);
assert(!err);
// Wireframe
rasterizationState.polygonMode = VK_POLYGON_MODE_LINE;
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.wirePassThrough);
assert(!err);
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Tessellation evaluation shader uniform buffer
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
sizeof(uboTE),
&uboTE,
&uniformDataTE.buffer,
&uniformDataTE.memory,
&uniformDataTE.descriptor);
// Tessellation control shader uniform buffer
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
sizeof(uboTC),
&uboTC,
&uniformDataTC.buffer,
&uniformDataTC.memory,
&uniformDataTC.descriptor);
updateUniformBuffers();
}
void updateUniformBuffers()
{
// Tessellation eval
glm::mat4 viewMatrix = glm::mat4();
uboTE.projection = glm::perspective(deg_to_rad(45.0f), (float)(width* ((splitScreen) ? 0.5f : 1.0f)) / (float)height, 0.1f, 256.0f);
viewMatrix = glm::translate(viewMatrix, glm::vec3(0.0f, 0.0f, zoom));
float offset = 0.5f;
int uboIndex = 1;
uboTE.model = glm::mat4();
uboTE.model = viewMatrix * glm::translate(uboTE.model, glm::vec3(0, 0, 0));
uboTE.model = glm::rotate(uboTE.model, deg_to_rad(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
uboTE.model = glm::rotate(uboTE.model, deg_to_rad(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
uboTE.model = glm::rotate(uboTE.model, deg_to_rad(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
uint8_t *pData;
VkResult err = vkMapMemory(device, uniformDataTE.memory, 0, sizeof(uboTE), 0, (void **)&pData);
assert(!err);
memcpy(pData, &uboTE, sizeof(uboTE));
vkUnmapMemory(device, uniformDataTE.memory);
// Tessellation control
err = vkMapMemory(device, uniformDataTC.memory, 0, sizeof(uboTC), 0, (void **)&pData);
assert(!err);
memcpy(pData, &uboTC, sizeof(uboTC));
vkUnmapMemory(device, uniformDataTC.memory);
}
void prepare()
{
VulkanExampleBase::prepare();
loadTextures();
loadMeshes();
setupVertexDescriptions();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
vkDeviceWaitIdle(device);
draw();
vkDeviceWaitIdle(device);
}
virtual void viewChanged()
{
updateUniformBuffers();
}
void changeTessellationLevel(float delta)
{
uboTC.tessLevel += delta;
// Clamp
uboTC.tessLevel = fmax(1.0f, fmin(uboTC.tessLevel, 32.0f));
updateUniformBuffers();
}
void togglePipelines()
{
if (pipelineRight == &pipelines.solid)
{
pipelineRight = &pipelines.wire;
pipelineLeft = &pipelines.wirePassThrough;
}
else
{
pipelineRight = &pipelines.solid;
pipelineLeft = &pipelines.solidPassThrough;
}
reBuildCommandBuffers();
}
void toggleSplitScreen()
{
splitScreen = !splitScreen;
updateUniformBuffers();
reBuildCommandBuffers();
}
};
VulkanExample *vulkanExample;
#ifdef _WIN32
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
if (vulkanExample != NULL)
{
vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam);
if (uMsg == WM_KEYDOWN)
{
switch (wParam)
{
case VK_ADD:
vulkanExample->changeTessellationLevel(0.25);
break;
case VK_SUBTRACT:
vulkanExample->changeTessellationLevel(-0.25);
break;
case 0x57:
vulkanExample->togglePipelines();
break;
case 0x53:
vulkanExample->toggleSplitScreen();
break;
}
}
}
return (DefWindowProc(hWnd, uMsg, wParam, lParam));
}
#else
static void handleEvent(const xcb_generic_event_t *event)
{
if (vulkanExample != NULL)
{
vulkanExample->handleEvent(event);
// TODO : Keys for tessellation level changes
}
}
#endif
#ifdef _WIN32
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow)
#else
int main(const int argc, const char *argv[])
#endif
{
vulkanExample = new VulkanExample();
#ifdef _WIN32
vulkanExample->setupWindow(hInstance, WndProc);
#else
vulkanExample->setupWindow();
#endif
vulkanExample->initSwapchain();
vulkanExample->prepare();
vulkanExample->renderLoop();
delete(vulkanExample);
return 0;
}