procedural-3d-engine/examples/deferredmultisampling/deferredmultisampling.cpp
Sascha Willems cbf50a9ef3
Merge pull request #702 from iostrowsINTEL/deferred-fix
Deferred*: Fix incorrect command pool in deinitialization
2020-06-24 20:35:04 +02:00

1192 lines
42 KiB
C++

/*
* Vulkan Example - Multi sampling with explicit resolve for deferred shading example
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#include "VulkanBuffer.hpp"
#include "VulkanTexture.hpp"
#include "VulkanModel.hpp"
#define VERTEX_BUFFER_BIND_ID 0
#define ENABLE_VALIDATION false
class VulkanExample : public VulkanExampleBase
{
public:
bool debugDisplay = false;
bool useMSAA = true;
bool useSampleShading = true;
VkSampleCountFlagBits sampleCount = VK_SAMPLE_COUNT_1_BIT;
struct {
struct {
vks::Texture2D colorMap;
vks::Texture2D normalMap;
} model;
struct {
vks::Texture2D colorMap;
vks::Texture2D normalMap;
} floor;
} textures;
// Vertex layout for the models
vks::VertexLayout vertexLayout = vks::VertexLayout({
vks::VERTEX_COMPONENT_POSITION,
vks::VERTEX_COMPONENT_UV,
vks::VERTEX_COMPONENT_COLOR,
vks::VERTEX_COMPONENT_NORMAL,
vks::VERTEX_COMPONENT_TANGENT,
});
struct {
vks::Model model;
vks::Model floor;
vks::Model quad;
} models;
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
struct {
glm::mat4 projection;
glm::mat4 model;
glm::mat4 view;
glm::vec4 instancePos[3];
} uboVS, uboOffscreenVS;
struct Light {
glm::vec4 position;
glm::vec3 color;
float radius;
};
struct {
Light lights[6];
glm::vec4 viewPos;
glm::ivec2 windowSize;
} uboFragmentLights;
struct {
vks::Buffer vsFullScreen;
vks::Buffer vsOffscreen;
vks::Buffer fsLights;
} uniformBuffers;
struct {
VkPipeline deferred; // Deferred lighting calculation
VkPipeline deferredNoMSAA; // Deferred lighting calculation with explicit MSAA resolve
VkPipeline offscreen; // (Offscreen) scene rendering (fill G-Buffers)
VkPipeline offscreenSampleShading; // (Offscreen) scene rendering (fill G-Buffers) with sample shading rate enabled
VkPipeline debug; // G-Buffers debug display
} pipelines;
struct {
VkPipelineLayout deferred;
VkPipelineLayout offscreen;
} pipelineLayouts;
struct {
VkDescriptorSet model;
VkDescriptorSet floor;
} descriptorSets;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
// Framebuffer for offscreen rendering
struct FrameBufferAttachment {
VkImage image;
VkDeviceMemory mem;
VkImageView view;
VkFormat format;
};
struct FrameBuffer {
int32_t width, height;
VkFramebuffer frameBuffer;
FrameBufferAttachment position, normal, albedo;
FrameBufferAttachment depth;
VkRenderPass renderPass;
} offScreenFrameBuf;
// One sampler for the frame buffer color attachments
VkSampler colorSampler;
VkCommandBuffer offScreenCmdBuffer = VK_NULL_HANDLE;
// Semaphore used to synchronize between offscreen and final scene rendering
VkSemaphore offscreenSemaphore = VK_NULL_HANDLE;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "Multi sampled deferred shading";
camera.type = Camera::CameraType::firstperson;
camera.movementSpeed = 5.0f;
#ifndef __ANDROID__
camera.rotationSpeed = 0.25f;
#endif
camera.position = { 2.15f, 0.3f, -8.75f };
camera.setRotation(glm::vec3(-0.75f, 12.5f, 0.0f));
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
paused = true;
settings.overlay = true;
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
vkDestroySampler(device, colorSampler, nullptr);
// Frame buffer
// Color attachments
vkDestroyImageView(device, offScreenFrameBuf.position.view, nullptr);
vkDestroyImage(device, offScreenFrameBuf.position.image, nullptr);
vkFreeMemory(device, offScreenFrameBuf.position.mem, nullptr);
vkDestroyImageView(device, offScreenFrameBuf.normal.view, nullptr);
vkDestroyImage(device, offScreenFrameBuf.normal.image, nullptr);
vkFreeMemory(device, offScreenFrameBuf.normal.mem, nullptr);
vkDestroyImageView(device, offScreenFrameBuf.albedo.view, nullptr);
vkDestroyImage(device, offScreenFrameBuf.albedo.image, nullptr);
vkFreeMemory(device, offScreenFrameBuf.albedo.mem, nullptr);
// Depth attachment
vkDestroyImageView(device, offScreenFrameBuf.depth.view, nullptr);
vkDestroyImage(device, offScreenFrameBuf.depth.image, nullptr);
vkFreeMemory(device, offScreenFrameBuf.depth.mem, nullptr);
vkDestroyFramebuffer(device, offScreenFrameBuf.frameBuffer, nullptr);
vkDestroyPipeline(device, pipelines.deferred, nullptr);
vkDestroyPipeline(device, pipelines.deferredNoMSAA, nullptr);
vkDestroyPipeline(device, pipelines.offscreen, nullptr);
vkDestroyPipeline(device, pipelines.offscreenSampleShading, nullptr);
vkDestroyPipeline(device, pipelines.debug, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.deferred, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.offscreen, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
// Meshes
models.model.destroy();
models.floor.destroy();
// Uniform buffers
uniformBuffers.vsOffscreen.destroy();
uniformBuffers.vsFullScreen.destroy();
uniformBuffers.fsLights.destroy();
vkDestroyRenderPass(device, offScreenFrameBuf.renderPass, nullptr);
textures.model.colorMap.destroy();
textures.model.normalMap.destroy();
textures.floor.colorMap.destroy();
textures.floor.normalMap.destroy();
vkDestroySemaphore(device, offscreenSemaphore, nullptr);
}
// Enable physical device features required for this example
virtual void getEnabledFeatures()
{
// Enable sample rate shading filtering if supported
if (deviceFeatures.sampleRateShading) {
enabledFeatures.sampleRateShading = VK_TRUE;
}
// Enable anisotropic filtering if supported
if (deviceFeatures.samplerAnisotropy) {
enabledFeatures.samplerAnisotropy = VK_TRUE;
}
// Enable texture compression
if (deviceFeatures.textureCompressionBC) {
enabledFeatures.textureCompressionBC = VK_TRUE;
}
else if (deviceFeatures.textureCompressionASTC_LDR) {
enabledFeatures.textureCompressionASTC_LDR = VK_TRUE;
}
else if (deviceFeatures.textureCompressionETC2) {
enabledFeatures.textureCompressionETC2 = VK_TRUE;
}
};
// Create a frame buffer attachment
void createAttachment(
VkFormat format,
VkImageUsageFlagBits usage,
FrameBufferAttachment *attachment)
{
VkImageAspectFlags aspectMask = 0;
VkImageLayout imageLayout;
attachment->format = format;
if (usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
{
aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imageLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
}
if (usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)
{
aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
imageLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
}
assert(aspectMask > 0);
VkImageCreateInfo image = vks::initializers::imageCreateInfo();
image.imageType = VK_IMAGE_TYPE_2D;
image.format = format;
image.extent.width = offScreenFrameBuf.width;
image.extent.height = offScreenFrameBuf.height;
image.extent.depth = 1;
image.mipLevels = 1;
image.arrayLayers = 1;
image.samples = sampleCount;
image.tiling = VK_IMAGE_TILING_OPTIMAL;
image.usage = usage | VK_IMAGE_USAGE_SAMPLED_BIT;
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &attachment->image));
vkGetImageMemoryRequirements(device, attachment->image, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &attachment->mem));
VK_CHECK_RESULT(vkBindImageMemory(device, attachment->image, attachment->mem, 0));
VkImageViewCreateInfo imageView = vks::initializers::imageViewCreateInfo();
imageView.viewType = VK_IMAGE_VIEW_TYPE_2D;
imageView.format = format;
imageView.subresourceRange = {};
imageView.subresourceRange.aspectMask = aspectMask;
imageView.subresourceRange.baseMipLevel = 0;
imageView.subresourceRange.levelCount = 1;
imageView.subresourceRange.baseArrayLayer = 0;
imageView.subresourceRange.layerCount = 1;
imageView.image = attachment->image;
VK_CHECK_RESULT(vkCreateImageView(device, &imageView, nullptr, &attachment->view));
}
// Prepare a new framebuffer for offscreen rendering
// The contents of this framebuffer are then
// blitted to our render target
void prepareOffscreenFramebuffer()
{
offScreenFrameBuf.width = this->width;
offScreenFrameBuf.height = this->height;
//offScreenFrameBuf.width = FB_DIM;
//offScreenFrameBuf.height = FB_DIM;
// Color attachments
// (World space) Positions
createAttachment(
VK_FORMAT_R16G16B16A16_SFLOAT,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
&offScreenFrameBuf.position);
// (World space) Normals
createAttachment(
VK_FORMAT_R16G16B16A16_SFLOAT,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
&offScreenFrameBuf.normal);
// Albedo (color)
createAttachment(
VK_FORMAT_R8G8B8A8_UNORM,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
&offScreenFrameBuf.albedo);
// Depth attachment
// Find a suitable depth format
VkFormat attDepthFormat;
VkBool32 validDepthFormat = vks::tools::getSupportedDepthFormat(physicalDevice, &attDepthFormat);
assert(validDepthFormat);
createAttachment(
attDepthFormat,
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
&offScreenFrameBuf.depth);
// Set up separate renderpass with references
// to the color and depth attachments
std::array<VkAttachmentDescription, 4> attachmentDescs = {};
// Init attachment properties
for (uint32_t i = 0; i < 4; ++i)
{
attachmentDescs[i].samples = sampleCount;
attachmentDescs[i].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachmentDescs[i].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachmentDescs[i].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachmentDescs[i].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
if (i == 3)
{
attachmentDescs[i].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachmentDescs[i].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
}
else
{
attachmentDescs[i].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachmentDescs[i].finalLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
}
}
// Formats
attachmentDescs[0].format = offScreenFrameBuf.position.format;
attachmentDescs[1].format = offScreenFrameBuf.normal.format;
attachmentDescs[2].format = offScreenFrameBuf.albedo.format;
attachmentDescs[3].format = offScreenFrameBuf.depth.format;
std::vector<VkAttachmentReference> colorReferences;
colorReferences.push_back({ 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL });
colorReferences.push_back({ 1, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL });
colorReferences.push_back({ 2, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL });
VkAttachmentReference depthReference = {};
depthReference.attachment = 3;
depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.pColorAttachments = colorReferences.data();
subpass.colorAttachmentCount = static_cast<uint32_t>(colorReferences.size());
subpass.pDepthStencilAttachment = &depthReference;
// Use subpass dependencies for attachment layput transitions
std::array<VkSubpassDependency, 2> dependencies;
dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL;
dependencies[0].dstSubpass = 0;
dependencies[0].srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
dependencies[1].srcSubpass = 0;
dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL;
dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[1].dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[1].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
VkRenderPassCreateInfo renderPassInfo = {};
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
renderPassInfo.pAttachments = attachmentDescs.data();
renderPassInfo.attachmentCount = static_cast<uint32_t>(attachmentDescs.size());
renderPassInfo.subpassCount = 1;
renderPassInfo.pSubpasses = &subpass;
renderPassInfo.dependencyCount = 2;
renderPassInfo.pDependencies = dependencies.data();
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassInfo, nullptr, &offScreenFrameBuf.renderPass));
std::array<VkImageView,4> attachments;
attachments[0] = offScreenFrameBuf.position.view;
attachments[1] = offScreenFrameBuf.normal.view;
attachments[2] = offScreenFrameBuf.albedo.view;
attachments[3] = offScreenFrameBuf.depth.view;
VkFramebufferCreateInfo fbufCreateInfo = {};
fbufCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
fbufCreateInfo.pNext = NULL;
fbufCreateInfo.renderPass = offScreenFrameBuf.renderPass;
fbufCreateInfo.pAttachments = attachments.data();
fbufCreateInfo.attachmentCount = static_cast<uint32_t>(attachments.size());
fbufCreateInfo.width = offScreenFrameBuf.width;
fbufCreateInfo.height = offScreenFrameBuf.height;
fbufCreateInfo.layers = 1;
VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offScreenFrameBuf.frameBuffer));
// Create sampler to sample from the color attachments
VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo();
sampler.magFilter = VK_FILTER_NEAREST;
sampler.minFilter = VK_FILTER_NEAREST;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
sampler.addressModeV = sampler.addressModeU;
sampler.addressModeW = sampler.addressModeU;
sampler.mipLodBias = 0.0f;
sampler.maxAnisotropy = 1.0f;
sampler.minLod = 0.0f;
sampler.minLod = 0.0f;
sampler.maxLod = 1.0f;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &colorSampler));
}
// Build command buffer for rendering the scene to the offscreen frame buffer attachments
void buildDeferredCommandBuffer()
{
if (offScreenCmdBuffer == VK_NULL_HANDLE) {
offScreenCmdBuffer = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, false);
}
// Create a semaphore used to synchronize offscreen rendering and usage
if (offscreenSemaphore == VK_NULL_HANDLE) {
VkSemaphoreCreateInfo semaphoreCreateInfo = vks::initializers::semaphoreCreateInfo();
VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &offscreenSemaphore));
}
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
// Clear values for all attachments written in the fragment sahder
std::array<VkClearValue,4> clearValues;
clearValues[0].color = clearValues[1].color = { { 0.0f, 0.0f, 0.0f, 0.0f } };
clearValues[2].color = { { 0.0f, 0.0f, 0.0f, 0.0f } };
clearValues[3].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = offScreenFrameBuf.renderPass;
renderPassBeginInfo.framebuffer = offScreenFrameBuf.frameBuffer;
renderPassBeginInfo.renderArea.extent.width = offScreenFrameBuf.width;
renderPassBeginInfo.renderArea.extent.height = offScreenFrameBuf.height;
renderPassBeginInfo.clearValueCount = static_cast<uint32_t>(clearValues.size());
renderPassBeginInfo.pClearValues = clearValues.data();
VK_CHECK_RESULT(vkBeginCommandBuffer(offScreenCmdBuffer, &cmdBufInfo));
vkCmdBeginRenderPass(offScreenCmdBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)offScreenFrameBuf.width, (float)offScreenFrameBuf.height, 0.0f, 1.0f);
vkCmdSetViewport(offScreenCmdBuffer, 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(offScreenFrameBuf.width, offScreenFrameBuf.height, 0, 0);
vkCmdSetScissor(offScreenCmdBuffer, 0, 1, &scissor);
vkCmdBindPipeline(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, useSampleShading ? pipelines.offscreenSampleShading : pipelines.offscreen);
VkDeviceSize offsets[1] = { 0 };
// Background
vkCmdBindDescriptorSets(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.offscreen, 0, 1, &descriptorSets.floor, 0, NULL);
vkCmdBindVertexBuffers(offScreenCmdBuffer, VERTEX_BUFFER_BIND_ID, 1, &models.floor.vertices.buffer, offsets);
vkCmdBindIndexBuffer(offScreenCmdBuffer, models.floor.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(offScreenCmdBuffer, models.floor.indexCount, 1, 0, 0, 0);
// Object
vkCmdBindDescriptorSets(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.offscreen, 0, 1, &descriptorSets.model, 0, NULL);
vkCmdBindVertexBuffers(offScreenCmdBuffer, VERTEX_BUFFER_BIND_ID, 1, &models.model.vertices.buffer, offsets);
vkCmdBindIndexBuffer(offScreenCmdBuffer, models.model.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(offScreenCmdBuffer, models.model.indexCount, 3, 0, 0, 0);
vkCmdEndRenderPass(offScreenCmdBuffer);
VK_CHECK_RESULT(vkEndCommandBuffer(offScreenCmdBuffer));
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = { { 1.0f, 1.0f, 1.0f, 0.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.deferred, 0, 1, &descriptorSet, 0, NULL);
if (debugDisplay)
{
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.debug);
vkCmdDraw(drawCmdBuffers[i], 3, 1, 0, 0);
// Move viewport to display final composition in lower right corner
viewport.x = viewport.width * 0.5f;
viewport.y = viewport.height * 0.5f;
viewport.width = (float)width * 0.5f;
viewport.height = (float)height * 0.5f;
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
}
camera.updateAspectRatio((float)viewport.width / (float)viewport.height);
// Final composition as full screen quad
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, useMSAA ? pipelines.deferred : pipelines.deferredNoMSAA);
vkCmdDraw(drawCmdBuffers[i], 3, 1, 0, 0);
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void loadAssets()
{
models.model.loadFromFile(getAssetPath() + "models/armor/armor.dae", vertexLayout, 1.0f, vulkanDevice, queue);
vks::ModelCreateInfo modelCreateInfo;
modelCreateInfo.scale = glm::vec3(15.0f);
modelCreateInfo.uvscale = glm::vec2(8.0f, 8.0f);
modelCreateInfo.center = glm::vec3(0.0f, 2.3f, 0.0f);
models.floor.loadFromFile(getAssetPath() + "models/openbox.dae", vertexLayout, &modelCreateInfo, vulkanDevice, queue);
// Textures
std::string texFormatSuffix;
VkFormat texFormat;
// Get supported compressed texture format
if (vulkanDevice->features.textureCompressionBC) {
texFormatSuffix = "_bc3_unorm";
texFormat = VK_FORMAT_BC3_UNORM_BLOCK;
}
else if (vulkanDevice->features.textureCompressionASTC_LDR) {
texFormatSuffix = "_astc_8x8_unorm";
texFormat = VK_FORMAT_ASTC_8x8_UNORM_BLOCK;
}
else if (vulkanDevice->features.textureCompressionETC2) {
texFormatSuffix = "_etc2_unorm";
texFormat = VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK;
}
else {
vks::tools::exitFatal("Device does not support any compressed texture format!", VK_ERROR_FEATURE_NOT_PRESENT);
}
textures.model.colorMap.loadFromFile(getAssetPath() + "models/armor/color" + texFormatSuffix + ".ktx", texFormat, vulkanDevice, queue);
textures.model.normalMap.loadFromFile(getAssetPath() + "models/armor/normal" + texFormatSuffix + ".ktx", texFormat, vulkanDevice, queue);
textures.floor.colorMap.loadFromFile(getAssetPath() + "textures/stonefloor02_color" + texFormatSuffix + ".ktx", texFormat, vulkanDevice, queue);
textures.floor.normalMap.loadFromFile(getAssetPath() + "textures/stonefloor02_normal" + texFormatSuffix + ".ktx", texFormat, vulkanDevice, queue);
}
void setupVertexDescriptions()
{
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vks::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
vertexLayout.stride(),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
vertices.attributeDescriptions.resize(5);
// Location 0: Position
vertices.attributeDescriptions[0] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32_SFLOAT,
0);
// Location 1: Texture coordinates
vertices.attributeDescriptions[1] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32_SFLOAT,
sizeof(float) * 3);
// Location 2: Color
vertices.attributeDescriptions[2] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
2,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 5);
// Location 3: Normal
vertices.attributeDescriptions[3] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
3,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 8);
// Location 4: Tangent
vertices.attributeDescriptions[4] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
4,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 11);
vertices.inputState = vks::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertices.bindingDescriptions.size());
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertices.attributeDescriptions.size());
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupDescriptorPool()
{
std::vector<VkDescriptorPoolSize> poolSizes =
{
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 8),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 9)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vks::initializers::descriptorPoolCreateInfo(
static_cast<uint32_t>(poolSizes.size()),
poolSizes.data(),
3);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
// Deferred shading layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0 : Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT,
0),
// Binding 1 : Position texture target / Scene colormap
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
1),
// Binding 2 : Normals texture target
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
2),
// Binding 3 : Albedo texture target
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
3),
// Binding 4 : Fragment shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_FRAGMENT_BIT,
4),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vks::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
static_cast<uint32_t>(setLayoutBindings.size()));
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vks::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.deferred));
// Offscreen (scene) rendering pipeline layout
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.offscreen));
}
void setupDescriptorSet()
{
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
// Textured quad descriptor set
VkDescriptorSetAllocateInfo allocInfo =
vks::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
// Image descriptors for the offscreen color attachments
VkDescriptorImageInfo texDescriptorPosition =
vks::initializers::descriptorImageInfo(
colorSampler,
offScreenFrameBuf.position.view,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
VkDescriptorImageInfo texDescriptorNormal =
vks::initializers::descriptorImageInfo(
colorSampler,
offScreenFrameBuf.normal.view,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
VkDescriptorImageInfo texDescriptorAlbedo =
vks::initializers::descriptorImageInfo(
colorSampler,
offScreenFrameBuf.albedo.view,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
writeDescriptorSets = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformBuffers.vsFullScreen.descriptor),
// Binding 1 : Position texture target
vks::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&texDescriptorPosition),
// Binding 2 : Normals texture target
vks::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
2,
&texDescriptorNormal),
// Binding 3 : Albedo texture target
vks::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
3,
&texDescriptorAlbedo),
// Binding 4 : Fragment shader uniform buffer
vks::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
4,
&uniformBuffers.fsLights.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
// Offscreen (scene)
// Model
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.model));
writeDescriptorSets =
{
// Binding 0: Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(
descriptorSets.model,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformBuffers.vsOffscreen.descriptor),
// Binding 1: Color map
vks::initializers::writeDescriptorSet(
descriptorSets.model,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&textures.model.colorMap.descriptor),
// Binding 2: Normal map
vks::initializers::writeDescriptorSet(
descriptorSets.model,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
2,
&textures.model.normalMap.descriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
// Backbround
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.floor));
writeDescriptorSets =
{
// Binding 0: Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(
descriptorSets.floor,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformBuffers.vsOffscreen.descriptor),
// Binding 1: Color map
vks::initializers::writeDescriptorSet(
descriptorSets.floor,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&textures.floor.colorMap.descriptor),
// Binding 2: Normal map
vks::initializers::writeDescriptorSet(
descriptorSets.floor,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
2,
&textures.floor.normalMap.descriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vks::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vks::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_BACK_BIT,
VK_FRONT_FACE_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vks::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vks::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vks::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vks::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vks::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
static_cast<uint32_t>(dynamicStateEnables.size()),
0);
// Final fullscreen pass pipeline
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vks::initializers::pipelineCreateInfo(
pipelineLayouts.deferred,
renderPass,
0);
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCreateInfo.pStages = shaderStages.data();
// Deferred
// Empty vertex input state, quads are generated by the vertex shader
VkPipelineVertexInputStateCreateInfo emptyInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
pipelineCreateInfo.pVertexInputState = &emptyInputState;
pipelineCreateInfo.layout = pipelineLayouts.deferred;
// Use specialization constants to pass number of samples to the shader (used for MSAA resolve)
VkSpecializationMapEntry specializationEntry{};
specializationEntry.constantID = 0;
specializationEntry.offset = 0;
specializationEntry.size = sizeof(uint32_t);
uint32_t specializationData = sampleCount;
VkSpecializationInfo specializationInfo;
specializationInfo.mapEntryCount = 1;
specializationInfo.pMapEntries = &specializationEntry;
specializationInfo.dataSize = sizeof(specializationData);
specializationInfo.pData = &specializationData;
// With MSAA
shaderStages[0] = loadShader(getShadersPath() + "deferredmultisampling/deferred.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "deferredmultisampling/deferred.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
shaderStages[1].pSpecializationInfo = &specializationInfo;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.deferred));
// No MSAA (1 sample)
specializationData = 1;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.deferredNoMSAA));
// Debug display pipeline
specializationData = sampleCount;
shaderStages[0] = loadShader(getShadersPath() + "deferredmultisampling/debug.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "deferredmultisampling/debug.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
shaderStages[1].pSpecializationInfo = &specializationInfo;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.debug));
// Offscreen scene rendering pipeline
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
shaderStages[0] = loadShader(getShadersPath() + "deferredmultisampling/mrt.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "deferredmultisampling/mrt.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
//rasterizationState.polygonMode = VK_POLYGON_MODE_LINE;
//rasterizationState.lineWidth = 2.0f;
multisampleState.rasterizationSamples = sampleCount;
multisampleState.alphaToCoverageEnable = VK_TRUE;
// Separate render pass
pipelineCreateInfo.renderPass = offScreenFrameBuf.renderPass;
// Separate layout
pipelineCreateInfo.layout = pipelineLayouts.offscreen;
// Blend attachment states required for all color attachments
// This is important, as color write mask will otherwise be 0x0 and you
// won't see anything rendered to the attachment
std::array<VkPipelineColorBlendAttachmentState, 3> blendAttachmentStates = {
vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE),
vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE),
vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE)
};
colorBlendState.attachmentCount = static_cast<uint32_t>(blendAttachmentStates.size());
colorBlendState.pAttachments = blendAttachmentStates.data();
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.offscreen));
multisampleState.sampleShadingEnable = VK_TRUE;
multisampleState.minSampleShading = 0.25f;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.offscreenSampleShading));
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Fullscreen vertex shader
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.vsFullScreen,
sizeof(uboVS)));
// Deferred vertex shader
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.vsOffscreen,
sizeof(uboOffscreenVS)));
// Deferred fragment shader
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.fsLights,
sizeof(uboFragmentLights)));
// Map persistent
VK_CHECK_RESULT(uniformBuffers.vsFullScreen.map());
VK_CHECK_RESULT(uniformBuffers.vsOffscreen.map());
VK_CHECK_RESULT(uniformBuffers.fsLights.map());
// Init some values
uboOffscreenVS.instancePos[0] = glm::vec4(0.0f);
uboOffscreenVS.instancePos[1] = glm::vec4(-4.0f, 0.0, -4.0f, 0.0f);
uboOffscreenVS.instancePos[2] = glm::vec4(4.0f, 0.0, -4.0f, 0.0f);
// Update
updateUniformBuffersScreen();
updateUniformBufferDeferredMatrices();
updateUniformBufferDeferredLights();
}
void updateUniformBuffersScreen()
{
if (debugDisplay)
{
uboVS.projection = glm::ortho(0.0f, 2.0f, 0.0f, 2.0f, -1.0f, 1.0f);
}
else
{
uboVS.projection = glm::ortho(0.0f, 1.0f, 0.0f, 1.0f, -1.0f, 1.0f);
}
uboVS.model = glm::mat4(1.0f);
memcpy(uniformBuffers.vsFullScreen.mapped, &uboVS, sizeof(uboVS));
}
void updateUniformBufferDeferredMatrices()
{
uboOffscreenVS.projection = camera.matrices.perspective;
uboOffscreenVS.view = camera.matrices.view;
uboOffscreenVS.model = glm::mat4(1.0f);
memcpy(uniformBuffers.vsOffscreen.mapped, &uboOffscreenVS, sizeof(uboOffscreenVS));
}
// Update fragment shader light position uniform block
void updateUniformBufferDeferredLights()
{
// White
uboFragmentLights.lights[0].position = glm::vec4(0.0f, 0.0f, 1.0f, 0.0f);
uboFragmentLights.lights[0].color = glm::vec3(1.5f);
uboFragmentLights.lights[0].radius = 15.0f * 0.25f;
// Red
uboFragmentLights.lights[1].position = glm::vec4(-2.0f, 0.0f, 0.0f, 0.0f);
uboFragmentLights.lights[1].color = glm::vec3(1.0f, 0.0f, 0.0f);
uboFragmentLights.lights[1].radius = 15.0f;
// Blue
uboFragmentLights.lights[2].position = glm::vec4(2.0f, 1.0f, 0.0f, 0.0f);
uboFragmentLights.lights[2].color = glm::vec3(0.0f, 0.0f, 2.5f);
uboFragmentLights.lights[2].radius = 5.0f;
// Yellow
uboFragmentLights.lights[3].position = glm::vec4(0.0f, 0.9f, 0.5f, 0.0f);
uboFragmentLights.lights[3].color = glm::vec3(1.0f, 1.0f, 0.0f);
uboFragmentLights.lights[3].radius = 2.0f;
// Green
uboFragmentLights.lights[4].position = glm::vec4(0.0f, 0.5f, 0.0f, 0.0f);
uboFragmentLights.lights[4].color = glm::vec3(0.0f, 1.0f, 0.2f);
uboFragmentLights.lights[4].radius = 5.0f;
// Yellow
uboFragmentLights.lights[5].position = glm::vec4(0.0f, 1.0f, 0.0f, 0.0f);
uboFragmentLights.lights[5].color = glm::vec3(1.0f, 0.7f, 0.3f);
uboFragmentLights.lights[5].radius = 25.0f;
uboFragmentLights.lights[0].position.x = sin(glm::radians(360.0f * timer)) * 5.0f;
uboFragmentLights.lights[0].position.z = cos(glm::radians(360.0f * timer)) * 5.0f;
uboFragmentLights.lights[1].position.x = -4.0f + sin(glm::radians(360.0f * timer) + 45.0f) * 2.0f;
uboFragmentLights.lights[1].position.z = 0.0f + cos(glm::radians(360.0f * timer) + 45.0f) * 2.0f;
uboFragmentLights.lights[2].position.x = 4.0f + sin(glm::radians(360.0f * timer)) * 2.0f;
uboFragmentLights.lights[2].position.z = 0.0f + cos(glm::radians(360.0f * timer)) * 2.0f;
uboFragmentLights.lights[4].position.x = 0.0f + sin(glm::radians(360.0f * timer + 90.0f)) * 5.0f;
uboFragmentLights.lights[4].position.z = 0.0f - cos(glm::radians(360.0f * timer + 45.0f)) * 5.0f;
uboFragmentLights.lights[5].position.x = 0.0f + sin(glm::radians(-360.0f * timer + 135.0f)) * 10.0f;
uboFragmentLights.lights[5].position.z = 0.0f - cos(glm::radians(-360.0f * timer - 45.0f)) * 10.0f;
// Current view position
uboFragmentLights.viewPos = glm::vec4(camera.position, 0.0f) * glm::vec4(-1.0f, 1.0f, -1.0f, 1.0f);
memcpy(uniformBuffers.fsLights.mapped, &uboFragmentLights, sizeof(uboFragmentLights));
}
void draw()
{
VulkanExampleBase::prepareFrame();
// Offscreen rendering
// Wait for swap chain presentation to finish
submitInfo.pWaitSemaphores = &semaphores.presentComplete;
// Signal ready with offscreen semaphore
submitInfo.pSignalSemaphores = &offscreenSemaphore;
// Submit work
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &offScreenCmdBuffer;
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
// Scene rendering
// Wait for offscreen semaphore
submitInfo.pWaitSemaphores = &offscreenSemaphore;
// Signal ready with render complete semaphpre
submitInfo.pSignalSemaphores = &semaphores.renderComplete;
// Submit work
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
sampleCount = getMaxUsableSampleCount();
loadAssets();
setupVertexDescriptions();
prepareOffscreenFramebuffer();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
buildDeferredCommandBuffer();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
updateUniformBufferDeferredLights();
}
virtual void viewChanged()
{
updateUniformBufferDeferredMatrices();
uboFragmentLights.windowSize = glm::ivec2(width, height);
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Settings")) {
if (overlay->checkBox("Display render targets", &debugDisplay)) {
buildCommandBuffers();
updateUniformBuffersScreen();
}
if (overlay->checkBox("MSAA", &useMSAA)) {
buildCommandBuffers();
}
if (vulkanDevice->features.sampleRateShading) {
if (overlay->checkBox("Sample rate shading", &useSampleShading)) {
buildDeferredCommandBuffer();
}
}
}
}
// Returns the maximum sample count usable by the platform
VkSampleCountFlagBits getMaxUsableSampleCount()
{
VkSampleCountFlags counts = std::min(deviceProperties.limits.framebufferColorSampleCounts, deviceProperties.limits.framebufferDepthSampleCounts);
if (counts & VK_SAMPLE_COUNT_64_BIT) { return VK_SAMPLE_COUNT_64_BIT; }
if (counts & VK_SAMPLE_COUNT_32_BIT) { return VK_SAMPLE_COUNT_32_BIT; }
if (counts & VK_SAMPLE_COUNT_16_BIT) { return VK_SAMPLE_COUNT_16_BIT; }
if (counts & VK_SAMPLE_COUNT_8_BIT) { return VK_SAMPLE_COUNT_8_BIT; }
if (counts & VK_SAMPLE_COUNT_4_BIT) { return VK_SAMPLE_COUNT_4_BIT; }
if (counts & VK_SAMPLE_COUNT_2_BIT) { return VK_SAMPLE_COUNT_2_BIT; }
return VK_SAMPLE_COUNT_1_BIT;
}
};
VULKAN_EXAMPLE_MAIN()