* Configure MoltenVK to use a dedicated compute queue for compute[*] examples with sync barriers * Modify descriptorindexing example for iOS and variable descriptor count limitations on MoltenVK * Remove obsolete macOS #ifdefs no longer needed for modern MoltenVK versions * Update iOS project to fix missing vkloader.c reference and revise example list * Set required features and API version for VVL in debugprintf example * Remove unnecessary Apple-specific code from descriptorindexing example * Add Layer Settings capability to VulkanExampleBase::createInstance() * Replace setenv() in examples with Layer Settings configuration for macOS/iOS * Update comments in examples.h and fix missing initializer in computeraytracing example * Update imgui overlay and example to support iOS Simulator * Update more comments in examples.h and remove redundant initializers in deferred* examples * Separate variable descriptor count declarations for apple and non-apple platforms * Consolidate variable descriptor count declarations for apple vs. non-apple platforms * Configure MoltenVK with a dedicated compute queue in VulkanExampleBase() and remove from samples
630 lines
30 KiB
C++
630 lines
30 KiB
C++
/*
|
|
* Vulkan Example - Compute shader based ray tracing
|
|
*
|
|
* This samples implements a basic ray tracer with materials and reflections using a compute shader
|
|
* Shader storage buffers are used to pass geometry information for spheres and planes to the computer shader
|
|
* The compute shader then uses these as the scene geometry for ray tracing and outputs the results to a storage image
|
|
* The graphics part of the sample then displays that image full screen
|
|
* Not to be confused with actual hardware accelerated ray tracing
|
|
*
|
|
* Copyright (C) 2016-2023 by Sascha Willems - www.saschawillems.de
|
|
*
|
|
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
|
*/
|
|
|
|
#include "vulkanexamplebase.h"
|
|
|
|
class VulkanExample : public VulkanExampleBase
|
|
{
|
|
public:
|
|
// The compute shader will store the ray traced output to a storage image
|
|
vks::Texture storageImage{};
|
|
|
|
// Resources for the graphics part of the example. The graphics pipeline simply displays the compute shader output
|
|
struct Graphics {
|
|
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
|
|
VkDescriptorSet descriptorSet{ VK_NULL_HANDLE };
|
|
VkPipeline pipeline{ VK_NULL_HANDLE };
|
|
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
|
|
} graphics;
|
|
|
|
// Resources for the compute part of the example
|
|
struct Compute {
|
|
// Object properties for planes and spheres are passed via a shade storage buffer
|
|
// There is no vertex data, the compute shader calculates the primitives on the fly
|
|
vks::Buffer objectStorageBuffer;
|
|
vks::Buffer uniformBuffer; // Uniform buffer object containing scene parameters
|
|
VkQueue queue{ VK_NULL_HANDLE }; // Separate queue for compute commands (queue family may differ from the one used for graphics)
|
|
VkCommandPool commandPool{ VK_NULL_HANDLE }; // Use a separate command pool (queue family may differ from the one used for graphics)
|
|
VkCommandBuffer commandBuffer{ VK_NULL_HANDLE }; // Command buffer storing the dispatch commands and barriers
|
|
VkFence fence{ VK_NULL_HANDLE }; // Synchronization fence to avoid rewriting compute CB if still in use
|
|
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE }; // Compute shader binding layout
|
|
VkDescriptorSet descriptorSet{ VK_NULL_HANDLE }; // Compute shader bindings
|
|
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE }; // Layout of the compute pipeline
|
|
VkPipeline pipeline{ VK_NULL_HANDLE }; // Compute raytracing pipeline
|
|
struct UniformDataCompute { // Compute shader uniform block object
|
|
glm::vec3 lightPos;
|
|
float aspectRatio{ 1.0f };
|
|
glm::vec4 fogColor = glm::vec4(0.0f);
|
|
struct {
|
|
glm::vec3 pos = glm::vec3(0.0f, 0.0f, 4.0f);
|
|
glm::vec3 lookat = glm::vec3(0.0f, 0.5f, 0.0f);
|
|
float fov = 10.0f;
|
|
} camera;
|
|
glm::mat4 _pad;
|
|
} uniformData;
|
|
} compute;
|
|
|
|
// Definitions for scene objects
|
|
// The sample uses spheres and planes that are passed to the compute shader via a shader storage buffer
|
|
// The computer shader uses the object type to select different calculations
|
|
enum class SceneObjectType { Sphere = 0, Plane = 1 };
|
|
// Spheres and planes are described by different properties, we use a union for this
|
|
union SceneObjectProperty {
|
|
glm::vec4 positionAndRadius;
|
|
glm::vec4 normalAndDistance;
|
|
};
|
|
struct SceneObject {
|
|
SceneObjectProperty objectProperties{};
|
|
glm::vec3 diffuse;
|
|
float specular{ 1.0f };
|
|
uint32_t id{ 0 };
|
|
uint32_t objectType{ 0 };
|
|
// Due to alignment rules we need to pad to make the element align at 16-bytes
|
|
glm::ivec2 _pad;
|
|
};
|
|
|
|
VulkanExample() : VulkanExampleBase()
|
|
{
|
|
title = "Compute shader ray tracing";
|
|
timerSpeed *= 0.25f;
|
|
|
|
camera.type = Camera::CameraType::lookat;
|
|
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
|
|
camera.setRotation(glm::vec3(0.0f, 0.0f, 0.0f));
|
|
camera.setTranslation(glm::vec3(0.0f, 0.0f, -4.0f));
|
|
camera.rotationSpeed = 0.0f;
|
|
camera.movementSpeed = 2.5f;
|
|
}
|
|
|
|
~VulkanExample()
|
|
{
|
|
if (device) {
|
|
// Graphics
|
|
vkDestroyPipeline(device, graphics.pipeline, nullptr);
|
|
vkDestroyPipelineLayout(device, graphics.pipelineLayout, nullptr);
|
|
vkDestroyDescriptorSetLayout(device, graphics.descriptorSetLayout, nullptr);
|
|
|
|
// Compute
|
|
vkDestroyPipeline(device, compute.pipeline, nullptr);
|
|
vkDestroyPipelineLayout(device, compute.pipelineLayout, nullptr);
|
|
vkDestroyDescriptorSetLayout(device, compute.descriptorSetLayout, nullptr);
|
|
vkDestroyFence(device, compute.fence, nullptr);
|
|
vkDestroyCommandPool(device, compute.commandPool, nullptr);
|
|
compute.uniformBuffer.destroy();
|
|
compute.objectStorageBuffer.destroy();
|
|
|
|
storageImage.destroy();
|
|
}
|
|
}
|
|
|
|
// Prepare a storage image that is used to store the compute shader ray tracing output
|
|
void prepareStorageImage()
|
|
{
|
|
#if defined(__ANDROID__)
|
|
// Use a smaller image on Android for performance reasons
|
|
const uint32_t textureSize = 1024;
|
|
#else
|
|
const uint32_t textureSize = 2048;
|
|
#endif
|
|
|
|
const VkFormat format = VK_FORMAT_R8G8B8A8_UNORM;
|
|
|
|
// Get device properties for the requested texture format
|
|
VkFormatProperties formatProperties;
|
|
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
|
|
// Check if requested image format supports image storage operations required for storing pixel from the compute shader
|
|
assert(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT);
|
|
|
|
// Prepare blit target texture
|
|
storageImage.width = textureSize;
|
|
storageImage.height = textureSize;
|
|
|
|
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
|
|
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
|
|
imageCreateInfo.format = format;
|
|
imageCreateInfo.extent = { textureSize, textureSize, 1 };
|
|
imageCreateInfo.mipLevels = 1;
|
|
imageCreateInfo.arrayLayers = 1;
|
|
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
|
|
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
|
// Image will be sampled in the fragment shader and used as storage target in the compute shader
|
|
imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT;
|
|
imageCreateInfo.flags = 0;
|
|
|
|
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();
|
|
VkMemoryRequirements memReqs;
|
|
|
|
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &storageImage.image));
|
|
vkGetImageMemoryRequirements(device, storageImage.image, &memReqs);
|
|
memAllocInfo.allocationSize = memReqs.size;
|
|
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
|
|
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &storageImage.deviceMemory));
|
|
VK_CHECK_RESULT(vkBindImageMemory(device, storageImage.image, storageImage.deviceMemory, 0));
|
|
|
|
VkCommandBuffer layoutCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
|
storageImage.imageLayout = VK_IMAGE_LAYOUT_GENERAL;
|
|
vks::tools::setImageLayout(layoutCmd, storageImage.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, storageImage.imageLayout);
|
|
// Add an initial release barrier to the graphics queue,
|
|
// so that when the compute command buffer executes for the first time
|
|
// it doesn't complain about a lack of a corresponding "release" to its "acquire"
|
|
if (vulkanDevice->queueFamilyIndices.graphics != vulkanDevice->queueFamilyIndices.compute)
|
|
{
|
|
VkImageMemoryBarrier imageMemoryBarrier = {};
|
|
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
|
|
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_GENERAL;
|
|
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
|
|
imageMemoryBarrier.image = storageImage.image;
|
|
imageMemoryBarrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
|
|
imageMemoryBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
|
|
imageMemoryBarrier.dstAccessMask = 0;
|
|
imageMemoryBarrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
|
|
imageMemoryBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
|
|
vkCmdPipelineBarrier(
|
|
layoutCmd,
|
|
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
|
|
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
|
|
VK_FLAGS_NONE,
|
|
0, nullptr,
|
|
0, nullptr,
|
|
1, &imageMemoryBarrier);
|
|
}
|
|
vulkanDevice->flushCommandBuffer(layoutCmd, queue, true);
|
|
|
|
// Create sampler
|
|
VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo();
|
|
sampler.magFilter = VK_FILTER_LINEAR;
|
|
sampler.minFilter = VK_FILTER_LINEAR;
|
|
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
|
|
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
|
|
sampler.addressModeV = sampler.addressModeU;
|
|
sampler.addressModeW = sampler.addressModeU;
|
|
sampler.mipLodBias = 0.0f;
|
|
sampler.maxAnisotropy = 1.0f;
|
|
sampler.compareOp = VK_COMPARE_OP_NEVER;
|
|
sampler.minLod = 0.0f;
|
|
sampler.maxLod = 0.0f;
|
|
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
|
|
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &storageImage.sampler));
|
|
|
|
// Create image view
|
|
VkImageViewCreateInfo view = vks::initializers::imageViewCreateInfo();
|
|
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
|
|
view.format = format;
|
|
view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
|
|
view.image = storageImage.image;
|
|
VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &storageImage.view));
|
|
|
|
// Initialize a descriptor for later use
|
|
storageImage.descriptor.imageLayout = storageImage.imageLayout;
|
|
storageImage.descriptor.imageView = storageImage.view;
|
|
storageImage.descriptor.sampler = storageImage.sampler;
|
|
storageImage.device = vulkanDevice;
|
|
}
|
|
|
|
void buildCommandBuffers()
|
|
{
|
|
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
|
|
|
VkClearValue clearValues[2];
|
|
clearValues[0].color = defaultClearColor;
|
|
clearValues[1].depthStencil = { 1.0f, 0 };
|
|
|
|
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
|
|
renderPassBeginInfo.renderPass = renderPass;
|
|
renderPassBeginInfo.renderArea.offset.x = 0;
|
|
renderPassBeginInfo.renderArea.offset.y = 0;
|
|
renderPassBeginInfo.renderArea.extent.width = width;
|
|
renderPassBeginInfo.renderArea.extent.height = height;
|
|
renderPassBeginInfo.clearValueCount = 2;
|
|
renderPassBeginInfo.pClearValues = clearValues;
|
|
|
|
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
|
|
{
|
|
// Set target frame buffer
|
|
renderPassBeginInfo.framebuffer = frameBuffers[i];
|
|
|
|
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
|
|
|
|
// Image memory barrier to make sure that compute shader writes are finished before sampling from the texture
|
|
VkImageMemoryBarrier imageMemoryBarrier = {};
|
|
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
|
|
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_GENERAL;
|
|
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
|
|
imageMemoryBarrier.image = storageImage.image;
|
|
imageMemoryBarrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
|
|
if (vulkanDevice->queueFamilyIndices.graphics != vulkanDevice->queueFamilyIndices.compute)
|
|
{
|
|
// Acquire barrier for graphics queue
|
|
imageMemoryBarrier.srcAccessMask = 0;
|
|
imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
|
|
imageMemoryBarrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
|
|
imageMemoryBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
|
|
vkCmdPipelineBarrier(
|
|
drawCmdBuffers[i],
|
|
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
|
|
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
|
|
VK_FLAGS_NONE,
|
|
0, nullptr,
|
|
0, nullptr,
|
|
1, &imageMemoryBarrier);
|
|
}
|
|
else
|
|
{
|
|
// Combined barrier on single queue family
|
|
imageMemoryBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
|
|
imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
|
|
imageMemoryBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
|
imageMemoryBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
|
vkCmdPipelineBarrier(
|
|
drawCmdBuffers[i],
|
|
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
|
|
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
|
|
VK_FLAGS_NONE,
|
|
0, nullptr,
|
|
0, nullptr,
|
|
1, &imageMemoryBarrier);
|
|
}
|
|
|
|
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
|
|
|
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
|
|
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
|
|
|
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
|
|
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
|
|
|
// Display ray traced image generated by compute shader as a full screen quad
|
|
// Quad vertices are generated in the vertex shader
|
|
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelineLayout, 0, 1, &graphics.descriptorSet, 0, NULL);
|
|
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipeline);
|
|
vkCmdDraw(drawCmdBuffers[i], 3, 1, 0, 0);
|
|
|
|
drawUI(drawCmdBuffers[i]);
|
|
|
|
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
|
|
|
if (vulkanDevice->queueFamilyIndices.graphics != vulkanDevice->queueFamilyIndices.compute)
|
|
{
|
|
// Release barrier from graphics queue
|
|
imageMemoryBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
|
|
imageMemoryBarrier.dstAccessMask = 0;
|
|
imageMemoryBarrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
|
|
imageMemoryBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
|
|
vkCmdPipelineBarrier(
|
|
drawCmdBuffers[i],
|
|
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
|
|
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
|
|
VK_FLAGS_NONE,
|
|
0, nullptr,
|
|
0, nullptr,
|
|
1, &imageMemoryBarrier);
|
|
}
|
|
|
|
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
|
|
}
|
|
|
|
}
|
|
|
|
void buildComputeCommandBuffer()
|
|
{
|
|
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
|
|
|
VK_CHECK_RESULT(vkBeginCommandBuffer(compute.commandBuffer, &cmdBufInfo));
|
|
|
|
VkImageMemoryBarrier imageMemoryBarrier = {};
|
|
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
|
|
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_GENERAL;
|
|
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
|
|
imageMemoryBarrier.image = storageImage.image;
|
|
imageMemoryBarrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
|
|
if (vulkanDevice->queueFamilyIndices.graphics != vulkanDevice->queueFamilyIndices.compute)
|
|
{
|
|
// Acquire barrier for compute queue
|
|
imageMemoryBarrier.srcAccessMask = 0;
|
|
imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
|
|
imageMemoryBarrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
|
|
imageMemoryBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
|
|
vkCmdPipelineBarrier(
|
|
compute.commandBuffer,
|
|
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
|
|
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
|
|
VK_FLAGS_NONE,
|
|
0, nullptr,
|
|
0, nullptr,
|
|
1, &imageMemoryBarrier);
|
|
}
|
|
|
|
vkCmdBindPipeline(compute.commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipeline);
|
|
vkCmdBindDescriptorSets(compute.commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipelineLayout, 0, 1, &compute.descriptorSet, 0, 0);
|
|
|
|
vkCmdDispatch(compute.commandBuffer, storageImage.width / 16, storageImage.height / 16, 1);
|
|
|
|
if (vulkanDevice->queueFamilyIndices.graphics != vulkanDevice->queueFamilyIndices.compute)
|
|
{
|
|
// Release barrier from compute queue
|
|
imageMemoryBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
|
|
imageMemoryBarrier.dstAccessMask = 0;
|
|
imageMemoryBarrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
|
|
imageMemoryBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
|
|
vkCmdPipelineBarrier(
|
|
compute.commandBuffer,
|
|
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
|
|
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
|
|
VK_FLAGS_NONE,
|
|
0, nullptr,
|
|
0, nullptr,
|
|
1, &imageMemoryBarrier);
|
|
}
|
|
|
|
vkEndCommandBuffer(compute.commandBuffer);
|
|
}
|
|
|
|
// Setup and fill the compute shader storage buffes containing object definitions for the raytraced scene
|
|
void prepareStorageBuffers()
|
|
{
|
|
// Id used to identify objects by the ray tracing shader
|
|
uint32_t currentId = 0;
|
|
|
|
std::vector<SceneObject> sceneObjects{};
|
|
|
|
// Add some spheres to the scene
|
|
//std::vector<Sphere> spheres;
|
|
// Lambda to simplify object creation
|
|
auto addSphere = [&sceneObjects, ¤tId](glm::vec3 pos, float radius, glm::vec3 diffuse, float specular) {
|
|
SceneObject sphere{};
|
|
sphere.id = currentId++;
|
|
sphere.objectProperties.positionAndRadius = glm::vec4(pos, radius);
|
|
sphere.diffuse = diffuse;
|
|
sphere.specular = specular;
|
|
sphere.objectType = (uint32_t)SceneObjectType::Sphere;
|
|
sceneObjects.push_back(sphere);
|
|
};
|
|
|
|
auto addPlane = [&sceneObjects, ¤tId](glm::vec3 normal, float distance, glm::vec3 diffuse, float specular) {
|
|
SceneObject plane{};
|
|
plane.id = currentId++;
|
|
plane.objectProperties.normalAndDistance = glm::vec4(normal, distance);
|
|
plane.diffuse = diffuse;
|
|
plane.specular = specular;
|
|
plane.objectType = (uint32_t)SceneObjectType::Plane;
|
|
sceneObjects.push_back(plane);
|
|
};
|
|
|
|
addSphere(glm::vec3(1.75f, -0.5f, 0.0f), 1.0f, glm::vec3(0.0f, 1.0f, 0.0f), 32.0f);
|
|
addSphere(glm::vec3(0.0f, 1.0f, -0.5f), 1.0f, glm::vec3(0.65f, 0.77f, 0.97f), 32.0f);
|
|
addSphere(glm::vec3(-1.75f, -0.75f, -0.5f), 1.25f, glm::vec3(0.9f, 0.76f, 0.46f), 32.0f);
|
|
|
|
const float roomDim = 4.0f;
|
|
addPlane(glm::vec3(0.0f, 1.0f, 0.0f), roomDim, glm::vec3(1.0f), 32.0f);
|
|
addPlane(glm::vec3(0.0f, -1.0f, 0.0f), roomDim, glm::vec3(1.0f), 32.0f);
|
|
addPlane(glm::vec3(0.0f, 0.0f, 1.0f), roomDim, glm::vec3(1.0f), 32.0f);
|
|
addPlane(glm::vec3(0.0f, 0.0f, -1.0f), roomDim, glm::vec3(0.0f), 32.0f);
|
|
addPlane(glm::vec3(-1.0f, 0.0f, 0.0f), roomDim, glm::vec3(1.0f, 0.0f, 0.0f), 32.0f);
|
|
addPlane(glm::vec3(1.0f, 0.0f, 0.0f), roomDim, glm::vec3(0.0f, 1.0f, 0.0f), 32.0f);
|
|
|
|
VkDeviceSize storageBufferSize = sceneObjects.size() * sizeof(SceneObject);
|
|
|
|
// Copy the data to the device
|
|
vks::Buffer stagingBuffer;
|
|
vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &stagingBuffer, storageBufferSize, sceneObjects.data());
|
|
vulkanDevice->createBuffer(VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &compute.objectStorageBuffer, storageBufferSize);
|
|
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
|
VkBufferCopy copyRegion = { 0, 0, storageBufferSize};
|
|
vkCmdCopyBuffer(copyCmd, stagingBuffer.buffer, compute.objectStorageBuffer.buffer, 1, ©Region);
|
|
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
|
|
|
|
stagingBuffer.destroy();
|
|
}
|
|
|
|
// The descriptor pool will be shared between graphics and compute
|
|
void setupDescriptorPool()
|
|
{
|
|
std::vector<VkDescriptorPoolSize> poolSizes = {
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2),
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 4),
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1),
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 2),
|
|
};
|
|
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 3);
|
|
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
|
|
}
|
|
|
|
// Prepare the graphics resources used to display the ray traced output of the compute shader
|
|
void prepareGraphics()
|
|
{
|
|
// Setup descriptors
|
|
|
|
// The graphics pipeline uses one set and one binding
|
|
// Binding 0: Storage image with raytraced output as a sampled image for displaying it
|
|
|
|
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
|
|
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0)
|
|
};
|
|
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
|
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &graphics.descriptorSetLayout));
|
|
|
|
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &graphics.descriptorSetLayout, 1);
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &graphics.descriptorSet));
|
|
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
|
|
vks::initializers::writeDescriptorSet(graphics.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &storageImage.descriptor)
|
|
};
|
|
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
|
|
|
|
// Layout
|
|
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&graphics.descriptorSetLayout, 1);
|
|
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &graphics.pipelineLayout));
|
|
|
|
// Pipeline
|
|
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
|
|
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_FRONT_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
|
|
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
|
|
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
|
|
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL);
|
|
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
|
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
|
|
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
|
|
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
|
|
std::array<VkPipelineShaderStageCreateInfo,2> shaderStages;
|
|
|
|
shaderStages[0] = loadShader(getShadersPath() + "computeraytracing/texture.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
|
shaderStages[1] = loadShader(getShadersPath() + "computeraytracing/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
|
|
|
VkPipelineVertexInputStateCreateInfo emptyInputState{};
|
|
emptyInputState.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
|
|
|
|
VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo(graphics.pipelineLayout, renderPass, 0);
|
|
pipelineCreateInfo.pVertexInputState = &emptyInputState;
|
|
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
|
|
pipelineCreateInfo.pRasterizationState = &rasterizationState;
|
|
pipelineCreateInfo.pColorBlendState = &colorBlendState;
|
|
pipelineCreateInfo.pMultisampleState = &multisampleState;
|
|
pipelineCreateInfo.pViewportState = &viewportState;
|
|
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
|
|
pipelineCreateInfo.pDynamicState = &dynamicState;
|
|
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
|
|
pipelineCreateInfo.pStages = shaderStages.data();
|
|
pipelineCreateInfo.renderPass = renderPass;
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &graphics.pipeline));
|
|
}
|
|
|
|
// Prepare the compute resources that generates the ray traced image
|
|
void prepareCompute()
|
|
{
|
|
// Create a compute capable device queue
|
|
// The VulkanDevice::createLogicalDevice functions finds a compute capable queue and prefers queue families that only support compute
|
|
// Depending on the implementation this may result in different queue family indices for graphics and computes,
|
|
// requiring proper synchronization (see the memory barriers in buildComputeCommandBuffer)
|
|
VkDeviceQueueCreateInfo queueCreateInfo = {};
|
|
queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
|
|
queueCreateInfo.pNext = NULL;
|
|
queueCreateInfo.queueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
|
|
queueCreateInfo.queueCount = 1;
|
|
vkGetDeviceQueue(device, vulkanDevice->queueFamilyIndices.compute, 0, &compute.queue);
|
|
|
|
// Setup descriptors
|
|
|
|
// The compute pipeline uses one set and four bindings
|
|
// Binding 0: Storage image for raytraced output
|
|
// Binding 1: Uniform buffer with parameters
|
|
// Binding 2: Shader storage buffer with scene object definitions
|
|
|
|
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
|
|
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_SHADER_STAGE_COMPUTE_BIT, 0),
|
|
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT, 1),
|
|
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT, 2),
|
|
};
|
|
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
|
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &compute.descriptorSetLayout));
|
|
|
|
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &compute.descriptorSetLayout, 1);
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &compute.descriptorSet));
|
|
std::vector<VkWriteDescriptorSet> computeWriteDescriptorSets = {
|
|
vks::initializers::writeDescriptorSet(compute.descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 0, &storageImage.descriptor),
|
|
vks::initializers::writeDescriptorSet(compute.descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, &compute.uniformBuffer.descriptor),
|
|
vks::initializers::writeDescriptorSet(compute.descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 2, &compute.objectStorageBuffer.descriptor),
|
|
};
|
|
vkUpdateDescriptorSets(device, static_cast<uint32_t>(computeWriteDescriptorSets.size()), computeWriteDescriptorSets.data(), 0, nullptr);
|
|
|
|
// Create the compute shader pipeline
|
|
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&compute.descriptorSetLayout, 1);
|
|
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &compute.pipelineLayout));
|
|
|
|
VkComputePipelineCreateInfo computePipelineCreateInfo = vks::initializers::computePipelineCreateInfo(compute.pipelineLayout, 0);
|
|
computePipelineCreateInfo.stage = loadShader(getShadersPath() + "computeraytracing/raytracing.comp.spv", VK_SHADER_STAGE_COMPUTE_BIT);
|
|
VK_CHECK_RESULT(vkCreateComputePipelines(device, pipelineCache, 1, &computePipelineCreateInfo, nullptr, &compute.pipeline));
|
|
|
|
// Separate command pool as queue family for compute may be different from the graphics one
|
|
VkCommandPoolCreateInfo cmdPoolInfo = {};
|
|
cmdPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
|
|
cmdPoolInfo.queueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
|
|
cmdPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
|
|
VK_CHECK_RESULT(vkCreateCommandPool(device, &cmdPoolInfo, nullptr, &compute.commandPool));
|
|
|
|
// Create a command buffer for compute operations
|
|
VkCommandBufferAllocateInfo cmdBufAllocateInfo = vks::initializers::commandBufferAllocateInfo(compute.commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, 1);
|
|
VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &compute.commandBuffer));
|
|
|
|
// Fence for compute CB sync
|
|
VkFenceCreateInfo fenceCreateInfo = vks::initializers::fenceCreateInfo();
|
|
VK_CHECK_RESULT(vkCreateFence(device, &fenceCreateInfo, nullptr, &compute.fence));
|
|
|
|
// Build a single command buffer containing the compute dispatch commands
|
|
buildComputeCommandBuffer();
|
|
}
|
|
|
|
void prepareUniformBuffers()
|
|
{
|
|
// Compute shader parameter uniform buffer block
|
|
vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &compute.uniformBuffer, sizeof(Compute::UniformDataCompute));
|
|
}
|
|
|
|
void updateUniformBuffers()
|
|
{
|
|
compute.uniformData.aspectRatio = (float)width / (float)height;
|
|
compute.uniformData.lightPos.x = 0.0f + sin(glm::radians(timer * 360.0f)) * cos(glm::radians(timer * 360.0f)) * 2.0f;
|
|
compute.uniformData.lightPos.y = 0.0f + sin(glm::radians(timer * 360.0f)) * 2.0f;
|
|
compute.uniformData.lightPos.z = 0.0f + cos(glm::radians(timer * 360.0f)) * 2.0f;
|
|
compute.uniformData.camera.pos = camera.position * -1.0f;
|
|
VK_CHECK_RESULT(compute.uniformBuffer.map());
|
|
memcpy(compute.uniformBuffer.mapped, &compute.uniformData, sizeof(Compute::UniformDataCompute));
|
|
compute.uniformBuffer.unmap();
|
|
}
|
|
|
|
void prepare()
|
|
{
|
|
VulkanExampleBase::prepare();
|
|
prepareStorageImage();
|
|
prepareStorageBuffers();
|
|
prepareUniformBuffers();
|
|
setupDescriptorPool();
|
|
prepareGraphics();
|
|
prepareCompute();
|
|
buildCommandBuffers();
|
|
prepared = true;
|
|
}
|
|
|
|
void draw()
|
|
{
|
|
// Submit compute commands
|
|
// Use a fence to ensure that compute command buffer has finished executing before using it again
|
|
VkSubmitInfo computeSubmitInfo = vks::initializers::submitInfo();
|
|
computeSubmitInfo.commandBufferCount = 1;
|
|
computeSubmitInfo.pCommandBuffers = &compute.commandBuffer;
|
|
|
|
VK_CHECK_RESULT(vkQueueSubmit(compute.queue, 1, &computeSubmitInfo, compute.fence));
|
|
|
|
vkWaitForFences(device, 1, &compute.fence, VK_TRUE, UINT64_MAX);
|
|
vkResetFences(device, 1, &compute.fence);
|
|
|
|
VulkanExampleBase::prepareFrame();
|
|
|
|
// Command buffer to be submitted to the queue
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
|
|
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
|
|
|
|
VulkanExampleBase::submitFrame();
|
|
}
|
|
|
|
virtual void render()
|
|
{
|
|
if (!prepared)
|
|
return;
|
|
updateUniformBuffers();
|
|
draw();
|
|
}
|
|
};
|
|
|
|
VULKAN_EXAMPLE_MAIN()
|