procedural-3d-engine/examples/computeraytracing/computeraytracing.cpp
SRSaunders 9a562a5426
Macos ios fixes (#1192)
* Configure MoltenVK to use a dedicated compute queue for compute[*] examples with sync barriers

* Modify descriptorindexing example for iOS and variable descriptor count limitations on MoltenVK

* Remove obsolete macOS #ifdefs no longer needed for modern MoltenVK versions

* Update iOS project to fix missing vkloader.c reference and revise example list

* Set required features and API version for VVL in debugprintf example

* Remove unnecessary Apple-specific code from descriptorindexing example

* Add Layer Settings capability to VulkanExampleBase::createInstance()

* Replace setenv() in examples with Layer Settings configuration for macOS/iOS

* Update comments in examples.h and fix missing initializer in computeraytracing example

* Update imgui overlay and example to support iOS Simulator

* Update more comments in examples.h and remove redundant initializers in deferred* examples

* Separate variable descriptor count declarations for apple and non-apple platforms

* Consolidate variable descriptor count declarations for apple vs. non-apple platforms

* Configure MoltenVK with a dedicated compute queue in VulkanExampleBase() and remove from samples
2025-03-29 16:21:37 +01:00

630 lines
30 KiB
C++

/*
* Vulkan Example - Compute shader based ray tracing
*
* This samples implements a basic ray tracer with materials and reflections using a compute shader
* Shader storage buffers are used to pass geometry information for spheres and planes to the computer shader
* The compute shader then uses these as the scene geometry for ray tracing and outputs the results to a storage image
* The graphics part of the sample then displays that image full screen
* Not to be confused with actual hardware accelerated ray tracing
*
* Copyright (C) 2016-2023 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkanexamplebase.h"
class VulkanExample : public VulkanExampleBase
{
public:
// The compute shader will store the ray traced output to a storage image
vks::Texture storageImage{};
// Resources for the graphics part of the example. The graphics pipeline simply displays the compute shader output
struct Graphics {
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
VkDescriptorSet descriptorSet{ VK_NULL_HANDLE };
VkPipeline pipeline{ VK_NULL_HANDLE };
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
} graphics;
// Resources for the compute part of the example
struct Compute {
// Object properties for planes and spheres are passed via a shade storage buffer
// There is no vertex data, the compute shader calculates the primitives on the fly
vks::Buffer objectStorageBuffer;
vks::Buffer uniformBuffer; // Uniform buffer object containing scene parameters
VkQueue queue{ VK_NULL_HANDLE }; // Separate queue for compute commands (queue family may differ from the one used for graphics)
VkCommandPool commandPool{ VK_NULL_HANDLE }; // Use a separate command pool (queue family may differ from the one used for graphics)
VkCommandBuffer commandBuffer{ VK_NULL_HANDLE }; // Command buffer storing the dispatch commands and barriers
VkFence fence{ VK_NULL_HANDLE }; // Synchronization fence to avoid rewriting compute CB if still in use
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE }; // Compute shader binding layout
VkDescriptorSet descriptorSet{ VK_NULL_HANDLE }; // Compute shader bindings
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE }; // Layout of the compute pipeline
VkPipeline pipeline{ VK_NULL_HANDLE }; // Compute raytracing pipeline
struct UniformDataCompute { // Compute shader uniform block object
glm::vec3 lightPos;
float aspectRatio{ 1.0f };
glm::vec4 fogColor = glm::vec4(0.0f);
struct {
glm::vec3 pos = glm::vec3(0.0f, 0.0f, 4.0f);
glm::vec3 lookat = glm::vec3(0.0f, 0.5f, 0.0f);
float fov = 10.0f;
} camera;
glm::mat4 _pad;
} uniformData;
} compute;
// Definitions for scene objects
// The sample uses spheres and planes that are passed to the compute shader via a shader storage buffer
// The computer shader uses the object type to select different calculations
enum class SceneObjectType { Sphere = 0, Plane = 1 };
// Spheres and planes are described by different properties, we use a union for this
union SceneObjectProperty {
glm::vec4 positionAndRadius;
glm::vec4 normalAndDistance;
};
struct SceneObject {
SceneObjectProperty objectProperties{};
glm::vec3 diffuse;
float specular{ 1.0f };
uint32_t id{ 0 };
uint32_t objectType{ 0 };
// Due to alignment rules we need to pad to make the element align at 16-bytes
glm::ivec2 _pad;
};
VulkanExample() : VulkanExampleBase()
{
title = "Compute shader ray tracing";
timerSpeed *= 0.25f;
camera.type = Camera::CameraType::lookat;
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
camera.setRotation(glm::vec3(0.0f, 0.0f, 0.0f));
camera.setTranslation(glm::vec3(0.0f, 0.0f, -4.0f));
camera.rotationSpeed = 0.0f;
camera.movementSpeed = 2.5f;
}
~VulkanExample()
{
if (device) {
// Graphics
vkDestroyPipeline(device, graphics.pipeline, nullptr);
vkDestroyPipelineLayout(device, graphics.pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, graphics.descriptorSetLayout, nullptr);
// Compute
vkDestroyPipeline(device, compute.pipeline, nullptr);
vkDestroyPipelineLayout(device, compute.pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, compute.descriptorSetLayout, nullptr);
vkDestroyFence(device, compute.fence, nullptr);
vkDestroyCommandPool(device, compute.commandPool, nullptr);
compute.uniformBuffer.destroy();
compute.objectStorageBuffer.destroy();
storageImage.destroy();
}
}
// Prepare a storage image that is used to store the compute shader ray tracing output
void prepareStorageImage()
{
#if defined(__ANDROID__)
// Use a smaller image on Android for performance reasons
const uint32_t textureSize = 1024;
#else
const uint32_t textureSize = 2048;
#endif
const VkFormat format = VK_FORMAT_R8G8B8A8_UNORM;
// Get device properties for the requested texture format
VkFormatProperties formatProperties;
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
// Check if requested image format supports image storage operations required for storing pixel from the compute shader
assert(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT);
// Prepare blit target texture
storageImage.width = textureSize;
storageImage.height = textureSize;
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.extent = { textureSize, textureSize, 1 };
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
// Image will be sampled in the fragment shader and used as storage target in the compute shader
imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT;
imageCreateInfo.flags = 0;
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &storageImage.image));
vkGetImageMemoryRequirements(device, storageImage.image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &storageImage.deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device, storageImage.image, storageImage.deviceMemory, 0));
VkCommandBuffer layoutCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
storageImage.imageLayout = VK_IMAGE_LAYOUT_GENERAL;
vks::tools::setImageLayout(layoutCmd, storageImage.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, storageImage.imageLayout);
// Add an initial release barrier to the graphics queue,
// so that when the compute command buffer executes for the first time
// it doesn't complain about a lack of a corresponding "release" to its "acquire"
if (vulkanDevice->queueFamilyIndices.graphics != vulkanDevice->queueFamilyIndices.compute)
{
VkImageMemoryBarrier imageMemoryBarrier = {};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_GENERAL;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
imageMemoryBarrier.image = storageImage.image;
imageMemoryBarrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
imageMemoryBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
imageMemoryBarrier.dstAccessMask = 0;
imageMemoryBarrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
imageMemoryBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
vkCmdPipelineBarrier(
layoutCmd,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
VK_FLAGS_NONE,
0, nullptr,
0, nullptr,
1, &imageMemoryBarrier);
}
vulkanDevice->flushCommandBuffer(layoutCmd, queue, true);
// Create sampler
VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo();
sampler.magFilter = VK_FILTER_LINEAR;
sampler.minFilter = VK_FILTER_LINEAR;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
sampler.addressModeV = sampler.addressModeU;
sampler.addressModeW = sampler.addressModeU;
sampler.mipLodBias = 0.0f;
sampler.maxAnisotropy = 1.0f;
sampler.compareOp = VK_COMPARE_OP_NEVER;
sampler.minLod = 0.0f;
sampler.maxLod = 0.0f;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &storageImage.sampler));
// Create image view
VkImageViewCreateInfo view = vks::initializers::imageViewCreateInfo();
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
view.format = format;
view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
view.image = storageImage.image;
VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &storageImage.view));
// Initialize a descriptor for later use
storageImage.descriptor.imageLayout = storageImage.imageLayout;
storageImage.descriptor.imageView = storageImage.view;
storageImage.descriptor.sampler = storageImage.sampler;
storageImage.device = vulkanDevice;
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
// Image memory barrier to make sure that compute shader writes are finished before sampling from the texture
VkImageMemoryBarrier imageMemoryBarrier = {};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_GENERAL;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
imageMemoryBarrier.image = storageImage.image;
imageMemoryBarrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
if (vulkanDevice->queueFamilyIndices.graphics != vulkanDevice->queueFamilyIndices.compute)
{
// Acquire barrier for graphics queue
imageMemoryBarrier.srcAccessMask = 0;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
imageMemoryBarrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
imageMemoryBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
vkCmdPipelineBarrier(
drawCmdBuffers[i],
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
VK_FLAGS_NONE,
0, nullptr,
0, nullptr,
1, &imageMemoryBarrier);
}
else
{
// Combined barrier on single queue family
imageMemoryBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
imageMemoryBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
imageMemoryBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
vkCmdPipelineBarrier(
drawCmdBuffers[i],
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
VK_FLAGS_NONE,
0, nullptr,
0, nullptr,
1, &imageMemoryBarrier);
}
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
// Display ray traced image generated by compute shader as a full screen quad
// Quad vertices are generated in the vertex shader
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelineLayout, 0, 1, &graphics.descriptorSet, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipeline);
vkCmdDraw(drawCmdBuffers[i], 3, 1, 0, 0);
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
if (vulkanDevice->queueFamilyIndices.graphics != vulkanDevice->queueFamilyIndices.compute)
{
// Release barrier from graphics queue
imageMemoryBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
imageMemoryBarrier.dstAccessMask = 0;
imageMemoryBarrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
imageMemoryBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
vkCmdPipelineBarrier(
drawCmdBuffers[i],
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
VK_FLAGS_NONE,
0, nullptr,
0, nullptr,
1, &imageMemoryBarrier);
}
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void buildComputeCommandBuffer()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VK_CHECK_RESULT(vkBeginCommandBuffer(compute.commandBuffer, &cmdBufInfo));
VkImageMemoryBarrier imageMemoryBarrier = {};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_GENERAL;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
imageMemoryBarrier.image = storageImage.image;
imageMemoryBarrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
if (vulkanDevice->queueFamilyIndices.graphics != vulkanDevice->queueFamilyIndices.compute)
{
// Acquire barrier for compute queue
imageMemoryBarrier.srcAccessMask = 0;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
imageMemoryBarrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
imageMemoryBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
vkCmdPipelineBarrier(
compute.commandBuffer,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_FLAGS_NONE,
0, nullptr,
0, nullptr,
1, &imageMemoryBarrier);
}
vkCmdBindPipeline(compute.commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipeline);
vkCmdBindDescriptorSets(compute.commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipelineLayout, 0, 1, &compute.descriptorSet, 0, 0);
vkCmdDispatch(compute.commandBuffer, storageImage.width / 16, storageImage.height / 16, 1);
if (vulkanDevice->queueFamilyIndices.graphics != vulkanDevice->queueFamilyIndices.compute)
{
// Release barrier from compute queue
imageMemoryBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
imageMemoryBarrier.dstAccessMask = 0;
imageMemoryBarrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
imageMemoryBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
vkCmdPipelineBarrier(
compute.commandBuffer,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
VK_FLAGS_NONE,
0, nullptr,
0, nullptr,
1, &imageMemoryBarrier);
}
vkEndCommandBuffer(compute.commandBuffer);
}
// Setup and fill the compute shader storage buffes containing object definitions for the raytraced scene
void prepareStorageBuffers()
{
// Id used to identify objects by the ray tracing shader
uint32_t currentId = 0;
std::vector<SceneObject> sceneObjects{};
// Add some spheres to the scene
//std::vector<Sphere> spheres;
// Lambda to simplify object creation
auto addSphere = [&sceneObjects, &currentId](glm::vec3 pos, float radius, glm::vec3 diffuse, float specular) {
SceneObject sphere{};
sphere.id = currentId++;
sphere.objectProperties.positionAndRadius = glm::vec4(pos, radius);
sphere.diffuse = diffuse;
sphere.specular = specular;
sphere.objectType = (uint32_t)SceneObjectType::Sphere;
sceneObjects.push_back(sphere);
};
auto addPlane = [&sceneObjects, &currentId](glm::vec3 normal, float distance, glm::vec3 diffuse, float specular) {
SceneObject plane{};
plane.id = currentId++;
plane.objectProperties.normalAndDistance = glm::vec4(normal, distance);
plane.diffuse = diffuse;
plane.specular = specular;
plane.objectType = (uint32_t)SceneObjectType::Plane;
sceneObjects.push_back(plane);
};
addSphere(glm::vec3(1.75f, -0.5f, 0.0f), 1.0f, glm::vec3(0.0f, 1.0f, 0.0f), 32.0f);
addSphere(glm::vec3(0.0f, 1.0f, -0.5f), 1.0f, glm::vec3(0.65f, 0.77f, 0.97f), 32.0f);
addSphere(glm::vec3(-1.75f, -0.75f, -0.5f), 1.25f, glm::vec3(0.9f, 0.76f, 0.46f), 32.0f);
const float roomDim = 4.0f;
addPlane(glm::vec3(0.0f, 1.0f, 0.0f), roomDim, glm::vec3(1.0f), 32.0f);
addPlane(glm::vec3(0.0f, -1.0f, 0.0f), roomDim, glm::vec3(1.0f), 32.0f);
addPlane(glm::vec3(0.0f, 0.0f, 1.0f), roomDim, glm::vec3(1.0f), 32.0f);
addPlane(glm::vec3(0.0f, 0.0f, -1.0f), roomDim, glm::vec3(0.0f), 32.0f);
addPlane(glm::vec3(-1.0f, 0.0f, 0.0f), roomDim, glm::vec3(1.0f, 0.0f, 0.0f), 32.0f);
addPlane(glm::vec3(1.0f, 0.0f, 0.0f), roomDim, glm::vec3(0.0f, 1.0f, 0.0f), 32.0f);
VkDeviceSize storageBufferSize = sceneObjects.size() * sizeof(SceneObject);
// Copy the data to the device
vks::Buffer stagingBuffer;
vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &stagingBuffer, storageBufferSize, sceneObjects.data());
vulkanDevice->createBuffer(VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &compute.objectStorageBuffer, storageBufferSize);
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
VkBufferCopy copyRegion = { 0, 0, storageBufferSize};
vkCmdCopyBuffer(copyCmd, stagingBuffer.buffer, compute.objectStorageBuffer.buffer, 1, &copyRegion);
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
stagingBuffer.destroy();
}
// The descriptor pool will be shared between graphics and compute
void setupDescriptorPool()
{
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 4),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 2),
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 3);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
// Prepare the graphics resources used to display the ray traced output of the compute shader
void prepareGraphics()
{
// Setup descriptors
// The graphics pipeline uses one set and one binding
// Binding 0: Storage image with raytraced output as a sampled image for displaying it
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &graphics.descriptorSetLayout));
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &graphics.descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &graphics.descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
vks::initializers::writeDescriptorSet(graphics.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &storageImage.descriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
// Layout
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&graphics.descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &graphics.pipelineLayout));
// Pipeline
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_FRONT_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
std::array<VkPipelineShaderStageCreateInfo,2> shaderStages;
shaderStages[0] = loadShader(getShadersPath() + "computeraytracing/texture.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "computeraytracing/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkPipelineVertexInputStateCreateInfo emptyInputState{};
emptyInputState.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo(graphics.pipelineLayout, renderPass, 0);
pipelineCreateInfo.pVertexInputState = &emptyInputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCreateInfo.pStages = shaderStages.data();
pipelineCreateInfo.renderPass = renderPass;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &graphics.pipeline));
}
// Prepare the compute resources that generates the ray traced image
void prepareCompute()
{
// Create a compute capable device queue
// The VulkanDevice::createLogicalDevice functions finds a compute capable queue and prefers queue families that only support compute
// Depending on the implementation this may result in different queue family indices for graphics and computes,
// requiring proper synchronization (see the memory barriers in buildComputeCommandBuffer)
VkDeviceQueueCreateInfo queueCreateInfo = {};
queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueCreateInfo.pNext = NULL;
queueCreateInfo.queueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
queueCreateInfo.queueCount = 1;
vkGetDeviceQueue(device, vulkanDevice->queueFamilyIndices.compute, 0, &compute.queue);
// Setup descriptors
// The compute pipeline uses one set and four bindings
// Binding 0: Storage image for raytraced output
// Binding 1: Uniform buffer with parameters
// Binding 2: Shader storage buffer with scene object definitions
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_SHADER_STAGE_COMPUTE_BIT, 0),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT, 1),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT, 2),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &compute.descriptorSetLayout));
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &compute.descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &compute.descriptorSet));
std::vector<VkWriteDescriptorSet> computeWriteDescriptorSets = {
vks::initializers::writeDescriptorSet(compute.descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 0, &storageImage.descriptor),
vks::initializers::writeDescriptorSet(compute.descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, &compute.uniformBuffer.descriptor),
vks::initializers::writeDescriptorSet(compute.descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 2, &compute.objectStorageBuffer.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(computeWriteDescriptorSets.size()), computeWriteDescriptorSets.data(), 0, nullptr);
// Create the compute shader pipeline
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&compute.descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &compute.pipelineLayout));
VkComputePipelineCreateInfo computePipelineCreateInfo = vks::initializers::computePipelineCreateInfo(compute.pipelineLayout, 0);
computePipelineCreateInfo.stage = loadShader(getShadersPath() + "computeraytracing/raytracing.comp.spv", VK_SHADER_STAGE_COMPUTE_BIT);
VK_CHECK_RESULT(vkCreateComputePipelines(device, pipelineCache, 1, &computePipelineCreateInfo, nullptr, &compute.pipeline));
// Separate command pool as queue family for compute may be different from the graphics one
VkCommandPoolCreateInfo cmdPoolInfo = {};
cmdPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
cmdPoolInfo.queueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
cmdPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
VK_CHECK_RESULT(vkCreateCommandPool(device, &cmdPoolInfo, nullptr, &compute.commandPool));
// Create a command buffer for compute operations
VkCommandBufferAllocateInfo cmdBufAllocateInfo = vks::initializers::commandBufferAllocateInfo(compute.commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, 1);
VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &compute.commandBuffer));
// Fence for compute CB sync
VkFenceCreateInfo fenceCreateInfo = vks::initializers::fenceCreateInfo();
VK_CHECK_RESULT(vkCreateFence(device, &fenceCreateInfo, nullptr, &compute.fence));
// Build a single command buffer containing the compute dispatch commands
buildComputeCommandBuffer();
}
void prepareUniformBuffers()
{
// Compute shader parameter uniform buffer block
vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &compute.uniformBuffer, sizeof(Compute::UniformDataCompute));
}
void updateUniformBuffers()
{
compute.uniformData.aspectRatio = (float)width / (float)height;
compute.uniformData.lightPos.x = 0.0f + sin(glm::radians(timer * 360.0f)) * cos(glm::radians(timer * 360.0f)) * 2.0f;
compute.uniformData.lightPos.y = 0.0f + sin(glm::radians(timer * 360.0f)) * 2.0f;
compute.uniformData.lightPos.z = 0.0f + cos(glm::radians(timer * 360.0f)) * 2.0f;
compute.uniformData.camera.pos = camera.position * -1.0f;
VK_CHECK_RESULT(compute.uniformBuffer.map());
memcpy(compute.uniformBuffer.mapped, &compute.uniformData, sizeof(Compute::UniformDataCompute));
compute.uniformBuffer.unmap();
}
void prepare()
{
VulkanExampleBase::prepare();
prepareStorageImage();
prepareStorageBuffers();
prepareUniformBuffers();
setupDescriptorPool();
prepareGraphics();
prepareCompute();
buildCommandBuffers();
prepared = true;
}
void draw()
{
// Submit compute commands
// Use a fence to ensure that compute command buffer has finished executing before using it again
VkSubmitInfo computeSubmitInfo = vks::initializers::submitInfo();
computeSubmitInfo.commandBufferCount = 1;
computeSubmitInfo.pCommandBuffers = &compute.commandBuffer;
VK_CHECK_RESULT(vkQueueSubmit(compute.queue, 1, &computeSubmitInfo, compute.fence));
vkWaitForFences(device, 1, &compute.fence, VK_TRUE, UINT64_MAX);
vkResetFences(device, 1, &compute.fence);
VulkanExampleBase::prepareFrame();
// Command buffer to be submitted to the queue
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
virtual void render()
{
if (!prepared)
return;
updateUniformBuffers();
draw();
}
};
VULKAN_EXAMPLE_MAIN()