procedural-3d-engine/examples/descriptorindexing/descriptorindexing.cpp
SRSaunders 9a562a5426
Macos ios fixes (#1192)
* Configure MoltenVK to use a dedicated compute queue for compute[*] examples with sync barriers

* Modify descriptorindexing example for iOS and variable descriptor count limitations on MoltenVK

* Remove obsolete macOS #ifdefs no longer needed for modern MoltenVK versions

* Update iOS project to fix missing vkloader.c reference and revise example list

* Set required features and API version for VVL in debugprintf example

* Remove unnecessary Apple-specific code from descriptorindexing example

* Add Layer Settings capability to VulkanExampleBase::createInstance()

* Replace setenv() in examples with Layer Settings configuration for macOS/iOS

* Update comments in examples.h and fix missing initializer in computeraytracing example

* Update imgui overlay and example to support iOS Simulator

* Update more comments in examples.h and remove redundant initializers in deferred* examples

* Separate variable descriptor count declarations for apple and non-apple platforms

* Consolidate variable descriptor count declarations for apple vs. non-apple platforms

* Configure MoltenVK with a dedicated compute queue in VulkanExampleBase() and remove from samples
2025-03-29 16:21:37 +01:00

461 lines
21 KiB
C++

/*
* Vulkan Example - Descriptor indexing (VK_EXT_descriptor_indexing)
*
* Demonstrates use of descriptor indexing to dynamically index into a variable sized array of images
*
* The sample renders multiple objects with the index of the texture (descriptor) to use passed as a vertex attribute (aka "descriptor indexing")
*
* Relevant code parts are marked with [POI]
*
* Copyright (C) 2021-2023 Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkanexamplebase.h"
class VulkanExample : public VulkanExampleBase
{
public:
// We will be dynamically indexing into an array of images
std::vector<vks::Texture2D> textures;
vks::Buffer vertexBuffer;
vks::Buffer indexBuffer;
uint32_t indexCount{ 0 };
struct UniformData {
glm::mat4 projection;
glm::mat4 view;
glm::mat4 model;
} uniformData;
vks::Buffer uniformBuffer;
VkPipeline pipeline{ VK_NULL_HANDLE };
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
VkDescriptorSet descriptorSet{ VK_NULL_HANDLE };
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
VkPhysicalDeviceDescriptorIndexingFeaturesEXT physicalDeviceDescriptorIndexingFeatures{};
struct Vertex {
float pos[3];
float uv[2];
int32_t textureIndex;
};
VulkanExample() : VulkanExampleBase()
{
title = "Descriptor indexing";
camera.type = Camera::CameraType::lookat;
camera.setPosition(glm::vec3(0.0f, 0.0f, -10.0f));
camera.setRotation(glm::vec3(-35.0f, 0.0f, 0.0f));
camera.setPerspective(45.0f, (float)width / (float)height, 0.1f, 256.0f);
// [POI] Enable required extensions
enabledInstanceExtensions.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_KHR_MAINTENANCE1_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_KHR_MAINTENANCE3_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_EXT_DESCRIPTOR_INDEXING_EXTENSION_NAME);
// [POI] Enable required extension features
physicalDeviceDescriptorIndexingFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT;
physicalDeviceDescriptorIndexingFeatures.shaderSampledImageArrayNonUniformIndexing = VK_TRUE;
physicalDeviceDescriptorIndexingFeatures.runtimeDescriptorArray = VK_TRUE;
physicalDeviceDescriptorIndexingFeatures.descriptorBindingVariableDescriptorCount = VK_TRUE;
deviceCreatepNextChain = &physicalDeviceDescriptorIndexingFeatures;
#if (defined(VK_USE_PLATFORM_IOS_MVK) || defined(VK_USE_PLATFORM_MACOS_MVK) || defined(VK_USE_PLATFORM_METAL_EXT))
// Use layer settings extension to configure MoltenVK
enabledInstanceExtensions.push_back(VK_EXT_LAYER_SETTINGS_EXTENSION_NAME);
// Configure MoltenVK to use Metal argument buffers (needed for descriptor indexing)
VkLayerSettingEXT layerSetting;
layerSetting.pLayerName = "MoltenVK";
layerSetting.pSettingName = "MVK_CONFIG_USE_METAL_ARGUMENT_BUFFERS";
layerSetting.type = VK_LAYER_SETTING_TYPE_BOOL32_EXT;
layerSetting.valueCount = 1;
// Make this static so layer setting reference remains valid after leaving constructor scope
static const VkBool32 layerSettingOn = VK_TRUE;
layerSetting.pValues = &layerSettingOn;
enabledLayerSettings.push_back(layerSetting);
#endif
}
~VulkanExample()
{
if (device) {
for (auto& texture : textures) {
texture.destroy();
}
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vertexBuffer.destroy();
indexBuffer.destroy();
uniformBuffer.destroy();
}
}
// Generate some random textures
void generateTextures()
{
textures.resize(32);
for (size_t i = 0; i < textures.size(); i++) {
std::random_device rndDevice;
std::default_random_engine rndEngine(benchmark.active ? 0 : rndDevice());
std::uniform_int_distribution<> rndDist(50, UCHAR_MAX);
const int32_t dim = 3;
const size_t bufferSize = dim * dim * 4;
std::vector<uint8_t> texture(bufferSize);
for (size_t i = 0; i < dim * dim; i++) {
texture[i * 4] = rndDist(rndEngine);
texture[i * 4 + 1] = rndDist(rndEngine);
texture[i * 4 + 2] = rndDist(rndEngine);
texture[i * 4 + 3] = 255;
}
textures[i].fromBuffer(texture.data(), bufferSize, VK_FORMAT_R8G8B8A8_UNORM, dim, dim, vulkanDevice, queue, VK_FILTER_NEAREST);
}
}
// Generates a line of cubes with randomized per-face texture indices and uploads them to the GPU
void generateCubes()
{
std::vector<Vertex> vertices;
std::vector<uint32_t> indices;
// Generate random per-face texture indices
std::random_device rndDevice;
std::default_random_engine rndEngine(benchmark.active ? 0 : rndDevice());
std::uniform_int_distribution<int32_t> rndDist(0, static_cast<uint32_t>(textures.size()) - 1);
// Generate cubes with random per-face texture indices
const uint32_t count = 5;
for (uint32_t i = 0; i < count; i++) {
// Push indices to buffer
const std::vector<uint32_t> cubeIndices = {
0,1,2,0,2,3,
4,5,6,4,6,7,
8,9,10,8,10,11,
12,13,14,12,14,15,
16,17,18,16,18,19,
20,21,22,20,22,23
};
for (auto& index : cubeIndices) {
indices.push_back(index + static_cast<uint32_t>(vertices.size()));
}
// Get random per-Face texture indices that the shader will sample from
int32_t textureIndices[6];
for (uint32_t j = 0; j < 6; j++) {
textureIndices[j] = rndDist(rndEngine);
}
// Push vertices to buffer
float pos = 2.5f * i - (count * 2.5f / 2.0f) + 1.25f;
const std::vector<Vertex> cube = {
{ { -1.0f + pos, -1.0f, 1.0f }, { 0.0f, 0.0f }, textureIndices[0] },
{ { 1.0f + pos, -1.0f, 1.0f }, { 1.0f, 0.0f }, textureIndices[0] },
{ { 1.0f + pos, 1.0f, 1.0f }, { 1.0f, 1.0f }, textureIndices[0] },
{ { -1.0f + pos, 1.0f, 1.0f }, { 0.0f, 1.0f }, textureIndices[0] },
{ { 1.0f + pos, 1.0f, 1.0f }, { 0.0f, 0.0f }, textureIndices[1] },
{ { 1.0f + pos, 1.0f, -1.0f }, { 1.0f, 0.0f }, textureIndices[1] },
{ { 1.0f + pos, -1.0f, -1.0f }, { 1.0f, 1.0f }, textureIndices[1] },
{ { 1.0f + pos, -1.0f, 1.0f }, { 0.0f, 1.0f }, textureIndices[1] },
{ { -1.0f + pos, -1.0f, -1.0f }, { 0.0f, 0.0f }, textureIndices[2] },
{ { 1.0f + pos, -1.0f, -1.0f }, { 1.0f, 0.0f }, textureIndices[2] },
{ { 1.0f + pos, 1.0f, -1.0f }, { 1.0f, 1.0f }, textureIndices[2] },
{ { -1.0f + pos, 1.0f, -1.0f }, { 0.0f, 1.0f }, textureIndices[2] },
{ { -1.0f + pos, -1.0f, -1.0f }, { 0.0f, 0.0f }, textureIndices[3] },
{ { -1.0f + pos, -1.0f, 1.0f }, { 1.0f, 0.0f }, textureIndices[3] },
{ { -1.0f + pos, 1.0f, 1.0f }, { 1.0f, 1.0f }, textureIndices[3] },
{ { -1.0f + pos, 1.0f, -1.0f }, { 0.0f, 1.0f }, textureIndices[3] },
{ { 1.0f + pos, 1.0f, 1.0f }, { 0.0f, 0.0f }, textureIndices[4] },
{ { -1.0f + pos, 1.0f, 1.0f }, { 1.0f, 0.0f }, textureIndices[4] },
{ { -1.0f + pos, 1.0f, -1.0f }, { 1.0f, 1.0f }, textureIndices[4] },
{ { 1.0f + pos, 1.0f, -1.0f }, { 0.0f, 1.0f }, textureIndices[4] },
{ { -1.0f + pos, -1.0f, -1.0f }, { 0.0f, 0.0f }, textureIndices[5] },
{ { 1.0f + pos, -1.0f, -1.0f }, { 1.0f, 0.0f }, textureIndices[5] },
{ { 1.0f + pos, -1.0f, 1.0f }, { 1.0f, 1.0f }, textureIndices[5] },
{ { -1.0f + pos, -1.0f, 1.0f }, { 0.0f, 1.0f }, textureIndices[5] },
};
for (auto& vertex : cube) {
vertices.push_back(vertex);
}
}
indexCount = static_cast<uint32_t>(indices.size());
// Create buffers and upload data to the GPU
struct StagingBuffers {
vks::Buffer vertices;
vks::Buffer indices;
} stagingBuffers;
// Host visible source buffers (staging)
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &stagingBuffers.vertices, vertices.size() * sizeof(Vertex), vertices.data()));
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &stagingBuffers.indices, indices.size() * sizeof(uint32_t), indices.data()));
// Device local destination buffers
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &vertexBuffer, vertices.size() * sizeof(Vertex)));
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &indexBuffer, indices.size() * sizeof(uint32_t)));
// Copy from host do device
vulkanDevice->copyBuffer(&stagingBuffers.vertices, &vertexBuffer, queue);
vulkanDevice->copyBuffer(&stagingBuffers.indices, &indexBuffer, queue);
// Clean up
stagingBuffers.vertices.destroy();
stagingBuffers.indices.destroy();
}
// [POI] Set up descriptor sets and set layout
void setupDescriptors()
{
// Descriptor pool
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, static_cast<uint32_t>(textures.size()))
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
#if (defined(VK_USE_PLATFORM_IOS_MVK) || defined(VK_USE_PLATFORM_MACOS_MVK) || defined(VK_USE_PLATFORM_METAL_EXT))
// Increase the per-stage descriptor samplers limit on macOS/iOS (maxPerStageDescriptorUpdateAfterBindSamplers > maxPerStageDescriptorSamplers)
descriptorPoolInfo.flags = VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT;
#endif
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
// Descriptor set layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
// [POI] Binding 1 contains a texture array that is dynamically non-uniform sampled from in the fragment shader:
// outFragColor = texture(textures[nonuniformEXT(inTexIndex)], inUV);
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1, static_cast<uint32_t>(textures.size()))
};
// [POI] The fragment shader will be using an unsized array of samplers, which has to be marked with the VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT_EXT
VkDescriptorSetLayoutBindingFlagsCreateInfoEXT setLayoutBindingFlags{};
setLayoutBindingFlags.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO_EXT;
setLayoutBindingFlags.bindingCount = 2;
// Binding 0 is the vertex shader uniform buffer, which does not use indexing
// Binding 1 are the fragment shader images, which use indexing
// In the fragment shader:
// layout (set = 0, binding = 1) uniform sampler2D textures[];
#if (defined(VK_USE_PLATFORM_IOS_MVK) || defined(VK_USE_PLATFORM_MACOS_MVK) || defined(VK_USE_PLATFORM_METAL_EXT))
// Disable variable descriptor count feature on macOS/iOS until MoltenVK supports this feature when using combined image sampler textures
// Note we are using only 1 descriptor set with a fixed descriptor count/pool size, so we can simply turn off the capability for now
std::vector<VkDescriptorBindingFlagsEXT> descriptorBindingFlags = {
0,
0
};
setLayoutBindingFlags.pBindingFlags = descriptorBindingFlags.data();
VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
// Increase the per-stage descriptor samplers limit on macOS/iOS (maxPerStageDescriptorUpdateAfterBindSamplers > maxPerStageDescriptorSamplers)
descriptorSetLayoutCI.flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT;
descriptorSetLayoutCI.pNext = &setLayoutBindingFlags;
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayout));
// [POI] Descriptor sets
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
allocInfo.pNext = nullptr;
#else
// Enable variable descriptor count feature on platforms other than macOS/iOS
std::vector<VkDescriptorBindingFlagsEXT> descriptorBindingFlags = {
0,
VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT_EXT
};
setLayoutBindingFlags.pBindingFlags = descriptorBindingFlags.data();
VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
descriptorSetLayoutCI.pNext = &setLayoutBindingFlags;
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayout));
// [POI] Descriptor sets
// We need to provide the descriptor counts for bindings with variable counts using a new structure
std::vector<uint32_t> variableDesciptorCounts = {
static_cast<uint32_t>(textures.size())
};
VkDescriptorSetVariableDescriptorCountAllocateInfoEXT variableDescriptorCountAllocInfo = {};
variableDescriptorCountAllocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_ALLOCATE_INFO_EXT;
variableDescriptorCountAllocInfo.descriptorSetCount = static_cast<uint32_t>(variableDesciptorCounts.size());
variableDescriptorCountAllocInfo.pDescriptorCounts = variableDesciptorCounts.data();
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
allocInfo.pNext = &variableDescriptorCountAllocInfo;
#endif
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets(2);
writeDescriptorSets[0] = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffer.descriptor);
// Image descriptors for the texture array
std::vector<VkDescriptorImageInfo> textureDescriptors(textures.size());
for (size_t i = 0; i < textures.size(); i++) {
textureDescriptors[i].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
textureDescriptors[i].sampler = textures[i].sampler;;
textureDescriptors[i].imageView = textures[i].view;
}
// [POI] Second and final descriptor is a texture array
// Unlike an array texture, these are adressed like typical arrays
writeDescriptorSets[1] = {};
writeDescriptorSets[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writeDescriptorSets[1].dstBinding = 1;
writeDescriptorSets[1].dstArrayElement = 0;
writeDescriptorSets[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
writeDescriptorSets[1].descriptorCount = static_cast<uint32_t>(textures.size());
writeDescriptorSets[1].pBufferInfo = 0;
writeDescriptorSets[1].dstSet = descriptorSet;
writeDescriptorSets[1].pImageInfo = textureDescriptors.data();
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
}
void preparePipelines()
{
// Layout
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout));
// Pipeline
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
// Vertex bindings and attributes
VkVertexInputBindingDescription vertexInputBinding = { 0, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX };
std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
{ 0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, pos) },
{ 1, 0, VK_FORMAT_R32G32_SFLOAT, offsetof(Vertex, uv) },
{ 2, 0, VK_FORMAT_R32_SINT, offsetof(Vertex, textureIndex) }
};
VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo();
vertexInputStateCI.vertexBindingDescriptionCount = 1;
vertexInputStateCI.pVertexBindingDescriptions = &vertexInputBinding;
vertexInputStateCI.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
vertexInputStateCI.pVertexAttributeDescriptions = vertexInputAttributes.data();
// Instacing pipeline
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
shaderStages[0] = loadShader(getShadersPath() + "descriptorindexing/descriptorindexing.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
// [POI] The fragment shader does non-uniform access into our sampler array, so we need to use nonuniformEXT: texture(textures[nonuniformEXT(inTexIndex)], inUV) in it (see descriptorindexing.frag)
shaderStages[1] = loadShader(getShadersPath() + "descriptorindexing/descriptorindexing.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
pipelineCI.pVertexInputState = &vertexInputStateCI;
pipelineCI.pInputAssemblyState = &inputAssemblyStateCI;
pipelineCI.pRasterizationState = &rasterizationStateCI;
pipelineCI.pColorBlendState = &colorBlendStateCI;
pipelineCI.pMultisampleState = &multisampleStateCI;
pipelineCI.pViewportState = &viewportStateCI;
pipelineCI.pDepthStencilState = &depthStencilStateCI;
pipelineCI.pDynamicState = &dynamicStateCI;
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCI.pStages = shaderStages.data();
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline));
}
void prepareUniformBuffers()
{
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffer, sizeof(UniformData)));
VK_CHECK_RESULT(uniformBuffer.map());
updateUniformBuffersCamera();
}
void updateUniformBuffersCamera()
{
uniformData.projection = camera.matrices.perspective;
uniformData.view = camera.matrices.view;
uniformData.model = glm::mat4(1.0f);
memcpy(uniformBuffer.mapped, &uniformData, sizeof(UniformData));
}
void buildCommandBuffers()
{
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
renderPassBeginInfo.framebuffer = frameBuffers[i];
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &vertexBuffer.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], indexBuffer.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], indexCount, 1, 0, 0, 0);
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void prepare()
{
VulkanExampleBase::prepare();
generateTextures();
generateCubes();
prepareUniformBuffers();
setupDescriptors();
preparePipelines();
buildCommandBuffers();
prepared = true;
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
virtual void render()
{
if (!prepared)
return;
updateUniformBuffersCamera();
draw();
}
};
VULKAN_EXAMPLE_MAIN()