procedural-3d-engine/examples/specializationconstants/specializationconstants.cpp
SRSaunders 9a562a5426
Macos ios fixes (#1192)
* Configure MoltenVK to use a dedicated compute queue for compute[*] examples with sync barriers

* Modify descriptorindexing example for iOS and variable descriptor count limitations on MoltenVK

* Remove obsolete macOS #ifdefs no longer needed for modern MoltenVK versions

* Update iOS project to fix missing vkloader.c reference and revise example list

* Set required features and API version for VVL in debugprintf example

* Remove unnecessary Apple-specific code from descriptorindexing example

* Add Layer Settings capability to VulkanExampleBase::createInstance()

* Replace setenv() in examples with Layer Settings configuration for macOS/iOS

* Update comments in examples.h and fix missing initializer in computeraytracing example

* Update imgui overlay and example to support iOS Simulator

* Update more comments in examples.h and remove redundant initializers in deferred* examples

* Separate variable descriptor count declarations for apple and non-apple platforms

* Consolidate variable descriptor count declarations for apple vs. non-apple platforms

* Configure MoltenVK with a dedicated compute queue in VulkanExampleBase() and remove from samples
2025-03-29 16:21:37 +01:00

286 lines
12 KiB
C++

/*
* Vulkan Example - Shader specialization constants
*
* This samples uses specialization constants to define shader constants at pipeline creation
* These are used to compile shaders with different execution paths and settings
* With these constants one can create different shader configurations from a single shader file
* See uber.frag for how such a shader can look
*
* For details see https://www.khronos.org/registry/vulkan/specs/misc/GL_KHR_vulkan_glsl.txt
*
* Copyright (C) 2016-2023 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkanexamplebase.h"
#include "VulkanglTFModel.h"
class VulkanExample: public VulkanExampleBase
{
public:
vkglTF::Model scene;
vks::Texture2D colormap;
struct UniformData {
glm::mat4 projection;
glm::mat4 modelView;
glm::vec4 lightPos{ 0.0f, -2.0f, 1.0f, 0.0f };
} uniformData;
vks::Buffer uniformBuffer;
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
VkDescriptorSet descriptorSet{ VK_NULL_HANDLE };
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
struct Pipelines{
VkPipeline phong{ VK_NULL_HANDLE };
VkPipeline toon{ VK_NULL_HANDLE };
VkPipeline textured{ VK_NULL_HANDLE };
} pipelines;
VulkanExample() : VulkanExampleBase()
{
title = "Specialization constants";
camera.type = Camera::CameraType::lookat;
camera.setPerspective(60.0f, ((float)width / 3.0f) / (float)height, 0.1f, 512.0f);
camera.setRotation(glm::vec3(-40.0f, -90.0f, 0.0f));
camera.setTranslation(glm::vec3(0.0f, 0.0f, -2.0f));
}
~VulkanExample()
{
if (device) {
vkDestroyPipeline(device, pipelines.phong, nullptr);
vkDestroyPipeline(device, pipelines.textured, nullptr);
vkDestroyPipeline(device, pipelines.toon, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
colormap.destroy();
uniformBuffer.destroy();
}
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
// Left
VkViewport viewport = vks::initializers::viewport((float) width / 3.0f, (float) height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.phong);
scene.draw(drawCmdBuffers[i]);
// Center
viewport.x = (float)width / 3.0f;
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.toon);
scene.draw(drawCmdBuffers[i]);
// Right
viewport.x = (float)width / 3.0f + (float)width / 3.0f;
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.textured);
scene.draw(drawCmdBuffers[i]);
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void loadAssets()
{
scene.loadFromFile(getAssetPath() + "models/color_teapot_spheres.gltf", vulkanDevice, queue , vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY);
colormap.loadFromFile(getAssetPath() + "textures/metalplate_nomips_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
}
void setupDescriptors()
{
// Pool
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 1);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
// Layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
// Set
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffer.descriptor),
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &colormap.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
// Layout
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout));
// Pipeline
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, VK_DYNAMIC_STATE_LINE_WIDTH };
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
pipelineCI.pInputAssemblyState = &inputAssemblyState;
pipelineCI.pRasterizationState = &rasterizationState;
pipelineCI.pColorBlendState = &colorBlendState;
pipelineCI.pMultisampleState = &multisampleState;
pipelineCI.pViewportState = &viewportState;
pipelineCI.pDepthStencilState = &depthStencilState;
pipelineCI.pDynamicState = &dynamicState;
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCI.pStages = shaderStages.data();
pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position, vkglTF::VertexComponent::Normal, vkglTF::VertexComponent::UV, vkglTF::VertexComponent::Color });
// Prepare specialization constants data
// Host data to take specialization constants from
struct SpecializationData {
// Sets the lighting model used in the fragment "uber" shader
uint32_t lightingModel{ 0 };
// Parameter for the toon shading part of the fragment shader
float toonDesaturationFactor{ 0.5f };
} specializationData;
// Each shader constant of a shader stage corresponds to one map entry
std::array<VkSpecializationMapEntry, 2> specializationMapEntries;
// Shader bindings based on specialization constants are marked by the new "constant_id" layout qualifier:
// layout (constant_id = 0) const int LIGHTING_MODEL = 0;
// layout (constant_id = 1) const float PARAM_TOON_DESATURATION = 0.0f;
// Map entry for the lighting model to be used by the fragment shader
specializationMapEntries[0].constantID = 0;
specializationMapEntries[0].size = sizeof(specializationData.lightingModel);
specializationMapEntries[0].offset = 0;
// Map entry for the toon shader parameter
specializationMapEntries[1].constantID = 1;
specializationMapEntries[1].size = sizeof(specializationData.toonDesaturationFactor);
specializationMapEntries[1].offset = offsetof(SpecializationData, toonDesaturationFactor);
// Prepare specialization info block for the shader stage
VkSpecializationInfo specializationInfo{};
specializationInfo.dataSize = sizeof(specializationData);
specializationInfo.mapEntryCount = static_cast<uint32_t>(specializationMapEntries.size());
specializationInfo.pMapEntries = specializationMapEntries.data();
specializationInfo.pData = &specializationData;
// Create pipelines
// All pipelines will use the same "uber" shader and specialization constants to change branching and parameters of that shader
shaderStages[0] = loadShader(getShadersPath() + "specializationconstants/uber.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "specializationconstants/uber.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// Specialization info is assigned is part of the shader stage (modul) and must be set after creating the module and before creating the pipeline
shaderStages[1].pSpecializationInfo = &specializationInfo;
// Solid phong shading
specializationData.lightingModel = 0;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.phong));
// Phong and textured
specializationData.lightingModel = 1;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.toon));
// Textured discard
specializationData.lightingModel = 2;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.textured));
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Create the vertex shader uniform buffer block
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffer, sizeof(UniformData)));
VK_CHECK_RESULT(uniformBuffer.map());
}
void updateUniformBuffers()
{
camera.setPerspective(60.0f, ((float)width / 3.0f) / (float)height, 0.1f, 512.0f);
uniformData.projection = camera.matrices.perspective;
uniformData.modelView = camera.matrices.view;
memcpy(uniformBuffer.mapped, &uniformData, sizeof(UniformData));
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
prepareUniformBuffers();
setupDescriptors();
preparePipelines();
buildCommandBuffers();
prepared = true;
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
virtual void render()
{
if (!prepared) {
return;
}
updateUniformBuffers();
draw();
}
};
VULKAN_EXAMPLE_MAIN()