procedural-3d-engine/examples/particlesystem/particlesystem.cpp
2024-01-14 12:17:41 +01:00

565 lines
23 KiB
C++

/*
* Vulkan Example - CPU based particle system
*
* This sample renders a particle system that is updated on the host (by the CPU) and rendered by the GPU using a vertex buffer
*
* Copyright (C) 2016-2023 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkanexamplebase.h"
#include "VulkanglTFModel.h"
#define PARTICLE_COUNT 512
#define FLAME_RADIUS 8.0f
// The particle system is made from two different particle types
// That type defines how a particle is rendered
#define PARTICLE_TYPE_FLAME 0
#define PARTICLE_TYPE_SMOKE 1
struct Particle {
glm::vec4 pos;
glm::vec4 color;
float alpha;
float size;
float rotation;
uint32_t type;
glm::vec4 vel;
float rotationSpeed;
};
class VulkanExample : public VulkanExampleBase
{
public:
struct {
struct {
vks::Texture2D smoke;
vks::Texture2D fire;
// Use a custom sampler to change sampler attributes required for rotating the uvs in the shader for alpha blended textures
VkSampler sampler;
} particles;
struct {
vks::Texture2D colorMap;
vks::Texture2D normalMap;
} floor;
} textures{};
vkglTF::Model environment;
// These parameters define the particle system behaviour
glm::vec3 emitterPos = glm::vec3(0.0f, -FLAME_RADIUS + 2.0f, 0.0f);
glm::vec3 minVel = glm::vec3(-3.0f, 0.5f, -3.0f);
glm::vec3 maxVel = glm::vec3(3.0f, 7.0f, 3.0f);
struct Particles {
VkBuffer buffer{ VK_NULL_HANDLE };
VkDeviceMemory memory{ VK_NULL_HANDLE };
// Store the mapped address of the particle data for reuse
void *mappedMemory;
// Size of the particle buffer in bytes
size_t size{ 0 };
} particles;
struct {
vks::Buffer particles;
vks::Buffer environment;
} uniformBuffers;
struct UniformDataParticles {
glm::mat4 projection;
glm::mat4 modelView;
// The viewport dimension is used by the particle system vertex shader
// to calculate the absolute point size based on the current viewport size
glm::vec2 viewportDim;
// This is the base point size for all particles
float pointSize{ 10.0f };
} uniformDataParticles;
struct UniformDataEnvironment {
glm::mat4 projection;
glm::mat4 modelView;
glm::mat4 normal;
glm::vec4 lightPos = glm::vec4(0.0f, 0.0f, 0.0f, 0.0f);
} uniformDataEnvironment;
struct {
VkPipeline particles{ VK_NULL_HANDLE };
VkPipeline environment{ VK_NULL_HANDLE };
} pipelines;
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
struct {
VkDescriptorSet particles{ VK_NULL_HANDLE };
VkDescriptorSet environment{ VK_NULL_HANDLE };
} descriptorSets;
std::vector<Particle> particleBuffer{};
std::default_random_engine rndEngine;
VulkanExample() : VulkanExampleBase()
{
title = "CPU based particle system";
camera.type = Camera::CameraType::lookat;
camera.setPosition(glm::vec3(0.0f, 0.0f, -75.0f));
camera.setRotation(glm::vec3(-15.0f, 45.0f, 0.0f));
camera.setPerspective(60.0f, (float)width / (float)height, 1.0f, 256.0f);
timerSpeed *= 8.0f;
rndEngine.seed(benchmark.active ? 0 : (unsigned)time(nullptr));
}
~VulkanExample()
{
if (device) {
textures.particles.smoke.destroy();
textures.particles.fire.destroy();
textures.floor.colorMap.destroy();
textures.floor.normalMap.destroy();
vkDestroyPipeline(device, pipelines.particles, nullptr);
vkDestroyPipeline(device, pipelines.environment, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vkUnmapMemory(device, particles.memory);
vkDestroyBuffer(device, particles.buffer, nullptr);
vkFreeMemory(device, particles.memory, nullptr);
uniformBuffers.environment.destroy();
uniformBuffers.particles.destroy();
vkDestroySampler(device, textures.particles.sampler, nullptr);
}
}
virtual void getEnabledFeatures()
{
// Enable anisotropic filtering if supported
if (deviceFeatures.samplerAnisotropy) {
enabledFeatures.samplerAnisotropy = VK_TRUE;
};
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0,0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
// Environment
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.environment, 0, nullptr);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.environment);
environment.draw(drawCmdBuffers[i]);
// Particle system (no index buffer)
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.particles, 0, nullptr);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.particles);
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &particles.buffer, offsets);
vkCmdDraw(drawCmdBuffers[i], static_cast<uint32_t>(particles.size), 1, 0, 0);
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
float rnd(float range)
{
std::uniform_real_distribution<float> rndDist(0.0f, range);
return rndDist(rndEngine);
}
void initParticle(Particle *particle, glm::vec3 emitterPos)
{
particle->vel = glm::vec4(0.0f, minVel.y + rnd(maxVel.y - minVel.y), 0.0f, 0.0f);
particle->alpha = rnd(0.75f);
particle->size = 1.0f + rnd(0.5f);
particle->color = glm::vec4(1.0f);
particle->type = PARTICLE_TYPE_FLAME;
particle->rotation = rnd(2.0f * float(M_PI));
particle->rotationSpeed = rnd(2.0f) - rnd(2.0f);
// Get random sphere point
float theta = rnd(2.0f * float(M_PI));
float phi = rnd(float(M_PI)) - float(M_PI) / 2.0f;
float r = rnd(FLAME_RADIUS);
particle->pos.x = r * cos(theta) * cos(phi);
particle->pos.y = r * sin(phi);
particle->pos.z = r * sin(theta) * cos(phi);
particle->pos += glm::vec4(emitterPos, 0.0f);
}
// Change the type of a particle, e.g. from flame to smoke
void transitionParticle(Particle *particle)
{
switch (particle->type)
{
case PARTICLE_TYPE_FLAME:
// Flame particles have a chance of turning into smoke
if (rnd(1.0f) < 0.05f)
{
particle->alpha = 0.0f;
particle->color = glm::vec4(0.25f + rnd(0.25f));
particle->pos.x *= 0.5f;
particle->pos.z *= 0.5f;
particle->vel = glm::vec4(rnd(1.0f) - rnd(1.0f), (minVel.y * 2) + rnd(maxVel.y - minVel.y), rnd(1.0f) - rnd(1.0f), 0.0f);
particle->size = 1.0f + rnd(0.5f);
particle->rotationSpeed = rnd(1.0f) - rnd(1.0f);
particle->type = PARTICLE_TYPE_SMOKE;
}
else
{
initParticle(particle, emitterPos);
}
break;
case PARTICLE_TYPE_SMOKE:
// Respawn at end of life
initParticle(particle, emitterPos);
break;
}
}
// Initialize the particle system and create a vertex buffer for rendering the particles
void prepareParticles()
{
particleBuffer.resize(PARTICLE_COUNT);
for (auto& particle : particleBuffer)
{
initParticle(&particle, emitterPos);
particle.alpha = 1.0f - (abs(particle.pos.y) / (FLAME_RADIUS * 2.0f));
}
particles.size = particleBuffer.size() * sizeof(Particle);
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
particles.size,
&particles.buffer,
&particles.memory,
particleBuffer.data()));
// Map the memory and store the pointer for reuse
VK_CHECK_RESULT(vkMapMemory(device, particles.memory, 0, particles.size, 0, &particles.mappedMemory));
}
// Update the state of all particles
void updateParticles()
{
float particleTimer = frameTimer * 0.45f;
for (auto& particle : particleBuffer)
{
switch (particle.type)
{
case PARTICLE_TYPE_FLAME:
particle.pos.y -= particle.vel.y * particleTimer * 3.5f;
particle.alpha += particleTimer * 2.5f;
particle.size -= particleTimer * 0.5f;
break;
case PARTICLE_TYPE_SMOKE:
particle.pos -= particle.vel * frameTimer * 1.0f;
particle.alpha += particleTimer * 1.25f;
particle.size += particleTimer * 0.125f;
particle.color -= particleTimer * 0.05f;
break;
}
particle.rotation += particleTimer * particle.rotationSpeed;
// If a particle has faded out, turn it into the other type (e.g. flame to smoke and vice versa)
if (particle.alpha > 2.0f)
{
transitionParticle(&particle);
}
}
// Copy the updated particles to the vertex buffer
size_t size = particleBuffer.size() * sizeof(Particle);
memcpy(particles.mappedMemory, particleBuffer.data(), size);
}
void loadAssets()
{
// Particles
textures.particles.smoke.loadFromFile(getAssetPath() + "textures/particle_smoke.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
textures.particles.fire.loadFromFile(getAssetPath() + "textures/particle_fire.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
// Floor
textures.floor.colorMap.loadFromFile(getAssetPath() + "textures/fireplace_colormap_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
textures.floor.normalMap.loadFromFile(getAssetPath() + "textures/fireplace_normalmap_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
// Create a custom sampler to be used with the particle textures
// Create sampler
VkSamplerCreateInfo samplerCreateInfo = vks::initializers::samplerCreateInfo();
samplerCreateInfo.magFilter = VK_FILTER_LINEAR;
samplerCreateInfo.minFilter = VK_FILTER_LINEAR;
samplerCreateInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
// Different address mode
samplerCreateInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
samplerCreateInfo.addressModeV = samplerCreateInfo.addressModeU;
samplerCreateInfo.addressModeW = samplerCreateInfo.addressModeU;
samplerCreateInfo.mipLodBias = 0.0f;
samplerCreateInfo.compareOp = VK_COMPARE_OP_NEVER;
samplerCreateInfo.minLod = 0.0f;
// Both particle textures have the same number of mip maps
samplerCreateInfo.maxLod = float(textures.particles.fire.mipLevels);
if (vulkanDevice->features.samplerAnisotropy)
{
// Enable anisotropic filtering
samplerCreateInfo.maxAnisotropy = 8.0f;
samplerCreateInfo.anisotropyEnable = VK_TRUE;
}
// Use a different border color (than the normal texture loader) for additive blending
samplerCreateInfo.borderColor = VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK;
VK_CHECK_RESULT(vkCreateSampler(device, &samplerCreateInfo, nullptr, &textures.particles.sampler));
const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY;
environment.loadFromFile(getAssetPath() + "models/fireplace.gltf", vulkanDevice, queue, glTFLoadingFlags);
}
void setupDescriptors()
{
// Pool
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 4)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
// Layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
// Binding 1 : Fragment shader image sampler
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1),
// Binding 1 : Fragment shader image sampler
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT,2)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
// Sets
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.particles));
// Image descriptor for the color map texture
VkDescriptorImageInfo texDescriptorSmoke = vks::initializers::descriptorImageInfo(textures.particles.sampler, textures.particles.smoke.view, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
VkDescriptorImageInfo texDescriptorFire = vks::initializers::descriptorImageInfo(textures.particles.sampler, textures.particles.fire.view, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
writeDescriptorSets = {
// Binding 0: Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSets.particles, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.particles.descriptor),
// Binding 1: Smoke texture
vks::initializers::writeDescriptorSet(descriptorSets.particles, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptorSmoke),
// Binding 1: Fire texture array
vks::initializers::writeDescriptorSet(descriptorSets.particles, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &texDescriptorFire)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
// Environment
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.environment));
writeDescriptorSets = {
// Binding 0: Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSets.environment, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.environment.descriptor),
// Binding 1: Color map
vks::initializers::writeDescriptorSet(descriptorSets.environment, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textures.floor.colorMap.descriptor),
// Binding 2: Normal map
vks::initializers::writeDescriptorSet(descriptorSets.environment, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &textures.floor.normalMap.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
}
void preparePipelines()
{
// Layout
VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout));
// Pipelines
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_POINT_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = {VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR};
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass);
pipelineCI.pInputAssemblyState = &inputAssemblyState;
pipelineCI.pRasterizationState = &rasterizationState;
pipelineCI.pColorBlendState = &colorBlendState;
pipelineCI.pMultisampleState = &multisampleState;
pipelineCI.pViewportState = &viewportState;
pipelineCI.pDepthStencilState = &depthStencilState;
pipelineCI.pDynamicState = &dynamicState;
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCI.pStages = shaderStages.data();
// Particle rendering pipeline
{
// Vertex input state
VkVertexInputBindingDescription vertexInputBinding =
vks::initializers::vertexInputBindingDescription(0, sizeof(Particle), VK_VERTEX_INPUT_RATE_VERTEX);
std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32A32_SFLOAT, offsetof(Particle, pos)), // Location 0: Position
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32A32_SFLOAT, offsetof(Particle, color)), // Location 1: Color
vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32_SFLOAT, offsetof(Particle, alpha)), // Location 2: Alpha
vks::initializers::vertexInputAttributeDescription(0, 3, VK_FORMAT_R32_SFLOAT, offsetof(Particle, size)), // Location 3: Size
vks::initializers::vertexInputAttributeDescription(0, 4, VK_FORMAT_R32_SFLOAT, offsetof(Particle, rotation)), // Location 4: Rotation
vks::initializers::vertexInputAttributeDescription(0, 5, VK_FORMAT_R32_SINT, offsetof(Particle, type)), // Location 5: Particle type
};
VkPipelineVertexInputStateCreateInfo vertexInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
vertexInputState.vertexBindingDescriptionCount = 1;
vertexInputState.pVertexBindingDescriptions = &vertexInputBinding;
vertexInputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
vertexInputState.pVertexAttributeDescriptions = vertexInputAttributes.data();
pipelineCI.pVertexInputState = &vertexInputState;
// Don t' write to depth buffer
depthStencilState.depthWriteEnable = VK_FALSE;
// Premulitplied alpha
blendAttachmentState.blendEnable = VK_TRUE;
blendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_ONE;
blendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
blendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD;
blendAttachmentState.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE;
blendAttachmentState.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO;
blendAttachmentState.alphaBlendOp = VK_BLEND_OP_ADD;
blendAttachmentState.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
shaderStages[0] = loadShader(getShadersPath() + "particlesystem/particle.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "particlesystem/particle.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.particles));
}
// Environment rendering pipeline (normal mapped)
{
// Vertex input state is taken from the glTF model loader
pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position, vkglTF::VertexComponent::UV, vkglTF::VertexComponent::Normal, vkglTF::VertexComponent::Tangent });
blendAttachmentState.blendEnable = VK_FALSE;
depthStencilState.depthWriteEnable = VK_TRUE;
inputAssemblyState.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
shaderStages[0] = loadShader(getShadersPath() + "particlesystem/normalmap.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "particlesystem/normalmap.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.environment));
}
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Vertex shader uniform buffer block
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.particles, sizeof(UniformDataParticles)));
// Vertex shader uniform buffer block
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.environment, sizeof(UniformDataEnvironment)));
// Map persistent
VK_CHECK_RESULT(uniformBuffers.particles.map());
VK_CHECK_RESULT(uniformBuffers.environment.map());
}
void updateUniformBuffers()
{
// Particle system fire
uniformDataParticles.projection = camera.matrices.perspective;
uniformDataParticles.modelView = camera.matrices.view;
uniformDataParticles.viewportDim = glm::vec2((float)width, (float)height);
memcpy(uniformBuffers.particles.mapped, &uniformDataParticles, sizeof(UniformDataParticles));
// Environment
uniformDataEnvironment.projection = camera.matrices.perspective;
uniformDataEnvironment.modelView = camera.matrices.view;
uniformDataEnvironment.normal = glm::inverseTranspose(uniformDataEnvironment.modelView);
// Update light position
if (!paused) {
uniformDataEnvironment.lightPos.x = sin(timer * 2.0f * float(M_PI)) * 1.5f;
uniformDataEnvironment.lightPos.y = 0.0f;
uniformDataEnvironment.lightPos.z = cos(timer * 2.0f * float(M_PI)) * 1.5f;
}
memcpy(uniformBuffers.environment.mapped, &uniformDataEnvironment, sizeof(UniformDataEnvironment));
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
prepareParticles();
prepareUniformBuffers();
setupDescriptors();
preparePipelines();
buildCommandBuffers();
prepared = true;
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
virtual void render()
{
if (!prepared)
return;
updateUniformBuffers();
if (!paused) {
updateParticles();
}
draw();
}
};
VULKAN_EXAMPLE_MAIN()