461 lines
21 KiB
C++
461 lines
21 KiB
C++
/*
|
|
* Vulkan Example - Host image copy using VK_EXT_host_image_copy
|
|
*
|
|
* This sample shows how to use host image copies to directly upload an image to the devic without having to use staging
|
|
|
|
* Copyright (C) 2024 by Sascha Willems - www.saschawillems.de
|
|
*
|
|
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
|
*/
|
|
|
|
#include "vulkanexamplebase.h"
|
|
#include "VulkanglTFModel.h"
|
|
#include <ktx.h>
|
|
#include <ktxvulkan.h>
|
|
|
|
class VulkanExample : public VulkanExampleBase
|
|
{
|
|
public:
|
|
// Pointers for functions added by the host image copy extension;
|
|
PFN_vkCopyMemoryToImageEXT vkCopyMemoryToImageEXT{ nullptr };
|
|
PFN_vkTransitionImageLayoutEXT vkTransitionImageLayoutEXT{ nullptr };
|
|
// Used to check feature image format support for host image copies
|
|
PFN_vkGetPhysicalDeviceFormatProperties2 vkGetPhysicalDeviceFormatProperties2{ nullptr };
|
|
|
|
VkPhysicalDeviceHostImageCopyFeaturesEXT enabledPhysicalDeviceHostImageCopyFeaturesEXT{};
|
|
|
|
// Contains all Vulkan objects that are required to store and use a texture
|
|
struct Texture {
|
|
VkSampler sampler{ VK_NULL_HANDLE };
|
|
VkImage image{ VK_NULL_HANDLE };
|
|
VkDeviceMemory deviceMemory{ VK_NULL_HANDLE };
|
|
VkImageView view{ VK_NULL_HANDLE };
|
|
uint32_t width{ 0 };
|
|
uint32_t height{ 0 };
|
|
uint32_t mipLevels{ 0 };
|
|
} texture;
|
|
|
|
vkglTF::Model plane;
|
|
|
|
struct UniformData {
|
|
glm::mat4 projection;
|
|
glm::mat4 modelView;
|
|
glm::vec4 viewPos;
|
|
float lodBias = 0.0f;
|
|
} uniformData;
|
|
vks::Buffer uniformBuffer;
|
|
|
|
VkPipeline pipeline{ VK_NULL_HANDLE };
|
|
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
|
|
VkDescriptorSet descriptorSet{ VK_NULL_HANDLE };
|
|
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
|
|
|
|
VulkanExample() : VulkanExampleBase()
|
|
{
|
|
title = "Host image copy";
|
|
camera.type = Camera::CameraType::lookat;
|
|
camera.setPosition(glm::vec3(0.0f, 0.0f, -1.5f));
|
|
camera.setRotation(glm::vec3(0.0f, 15.0f, 0.0f));
|
|
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
|
|
|
|
// Enable required extensions
|
|
enabledInstanceExtensions.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
|
|
enabledDeviceExtensions.push_back(VK_KHR_FORMAT_FEATURE_FLAGS_2_EXTENSION_NAME);
|
|
enabledDeviceExtensions.push_back(VK_KHR_COPY_COMMANDS_2_EXTENSION_NAME);
|
|
enabledDeviceExtensions.push_back(VK_EXT_HOST_IMAGE_COPY_EXTENSION_NAME);
|
|
|
|
// Enable host image copy feature
|
|
enabledPhysicalDeviceHostImageCopyFeaturesEXT.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_IMAGE_COPY_FEATURES_EXT;
|
|
enabledPhysicalDeviceHostImageCopyFeaturesEXT.hostImageCopy = VK_TRUE;
|
|
deviceCreatepNextChain = &enabledPhysicalDeviceHostImageCopyFeaturesEXT;
|
|
}
|
|
|
|
~VulkanExample()
|
|
{
|
|
if (device) {
|
|
destroyTextureImage(texture);
|
|
vkDestroyPipeline(device, pipeline, nullptr);
|
|
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
|
|
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
|
|
uniformBuffer.destroy();
|
|
}
|
|
}
|
|
|
|
// Enable physical device features required for this example
|
|
virtual void getEnabledFeatures()
|
|
{
|
|
// Enable anisotropic filtering if supported
|
|
if (deviceFeatures.samplerAnisotropy) {
|
|
enabledFeatures.samplerAnisotropy = VK_TRUE;
|
|
};
|
|
}
|
|
|
|
/*
|
|
Upload texture image data to the GPU
|
|
|
|
Unlike the texture(3d/array/etc) samples, this one uses the VK_EXT_host_image_copy to drasticly simplify the process
|
|
of uploading an image from the host to the GPU. This new extension adds a way of directly uploading image data from
|
|
host memory to an optimal tiled image on the device (GPU). This no longer requires a staging buffer in between, as we can
|
|
now directly copy data stored in host memory to the image. The extension also adds new functionality to simplfy image barriers
|
|
*/
|
|
void loadTexture()
|
|
{
|
|
// We use the Khronos texture format (https://www.khronos.org/opengles/sdk/tools/KTX/file_format_spec/)
|
|
std::string filename = getAssetPath() + "textures/metalplate01_rgba.ktx";
|
|
|
|
ktxResult result;
|
|
ktxTexture* ktxTexture;
|
|
|
|
#if defined(__ANDROID__)
|
|
// Textures are stored inside the apk on Android (compressed)
|
|
// So they need to be loaded via the asset manager
|
|
AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, filename.c_str(), AASSET_MODE_STREAMING);
|
|
if (!asset) {
|
|
vks::tools::exitFatal("Could not load texture from " + filename + "\n\nMake sure the assets submodule has been checked out and is up-to-date.", -1);
|
|
}
|
|
size_t size = AAsset_getLength(asset);
|
|
assert(size > 0);
|
|
|
|
ktx_uint8_t *textureData = new ktx_uint8_t[size];
|
|
AAsset_read(asset, textureData, size);
|
|
AAsset_close(asset);
|
|
result = ktxTexture_CreateFromMemory(textureData, size, KTX_TEXTURE_CREATE_LOAD_IMAGE_DATA_BIT, &ktxTexture);
|
|
delete[] textureData;
|
|
#else
|
|
if (!vks::tools::fileExists(filename)) {
|
|
vks::tools::exitFatal("Could not load texture from " + filename + "\n\nMake sure the assets submodule has been checked out and is up-to-date.", -1);
|
|
}
|
|
result = ktxTexture_CreateFromNamedFile(filename.c_str(), KTX_TEXTURE_CREATE_LOAD_IMAGE_DATA_BIT, &ktxTexture);
|
|
#endif
|
|
assert(result == KTX_SUCCESS);
|
|
|
|
// Get properties required for using and upload texture data from the ktx texture object
|
|
texture.width = ktxTexture->baseWidth;
|
|
texture.height = ktxTexture->baseHeight;
|
|
texture.mipLevels = ktxTexture->numLevels;
|
|
ktx_uint8_t *ktxTextureData = ktxTexture_GetData(ktxTexture);
|
|
ktx_size_t ktxTextureSize = ktxTexture_GetSize(ktxTexture);
|
|
|
|
const VkFormat imageFormat = VK_FORMAT_R8G8B8A8_UNORM;
|
|
|
|
// Check if the image format supports the host image copy flag
|
|
// Note: All formats that support sampling are required to support this flag
|
|
// So for the format used here (R8G8B8A8_UNORM) we could skip this check
|
|
// The flag we need to check is an extension flag, so we need to go through VkFormatProperties3
|
|
VkFormatProperties3 formatProperties3{};
|
|
formatProperties3.sType = VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_3_KHR;
|
|
// Properties3 need to be chained into Properties2
|
|
VkFormatProperties2 formatProperties2{};
|
|
formatProperties2.sType = VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2;
|
|
formatProperties2.pNext = &formatProperties3;
|
|
vkGetPhysicalDeviceFormatProperties2(physicalDevice, imageFormat, &formatProperties2);
|
|
|
|
if ((formatProperties3.optimalTilingFeatures & VK_FORMAT_FEATURE_2_HOST_IMAGE_TRANSFER_BIT_EXT) == 0) {
|
|
vks::tools::exitFatal("The selected image format does not support the required host transfer bit.", -1);
|
|
}
|
|
|
|
// Create optimal tiled target image on the device
|
|
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
|
|
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
|
|
imageCreateInfo.format = imageFormat;
|
|
imageCreateInfo.mipLevels = texture.mipLevels;
|
|
imageCreateInfo.arrayLayers = 1;
|
|
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
|
|
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
|
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
|
imageCreateInfo.extent = { texture.width, texture.height, 1 };
|
|
// For images that use host image copy we need to specify the VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT usage flag
|
|
imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT;
|
|
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &texture.image));
|
|
|
|
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();
|
|
VkMemoryRequirements memReqs = {};
|
|
vkGetImageMemoryRequirements(device, texture.image, &memReqs);
|
|
memAllocInfo.allocationSize = memReqs.size;
|
|
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
|
|
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &texture.deviceMemory));
|
|
VK_CHECK_RESULT(vkBindImageMemory(device, texture.image, texture.deviceMemory, 0));
|
|
|
|
// With host image copy we can directly copy from the KTX image in host memory to the device
|
|
// This is pretty straight forward, as the KTX image is already tightly packed, doesn't need and swizzle and as such matches
|
|
// what the device expects
|
|
|
|
// Set up copy information for all mip levels stored in the image
|
|
std::vector<VkMemoryToImageCopyEXT> memoryToImageCopies{};
|
|
for (uint32_t i = 0; i < texture.mipLevels; i++) {
|
|
// Setup a buffer image copy structure for the current mip level
|
|
VkMemoryToImageCopyEXT memoryToImageCopy = {};
|
|
memoryToImageCopy.sType = VK_STRUCTURE_TYPE_MEMORY_TO_IMAGE_COPY_EXT;
|
|
memoryToImageCopy.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
memoryToImageCopy.imageSubresource.mipLevel = i;
|
|
memoryToImageCopy.imageSubresource.baseArrayLayer = 0;
|
|
memoryToImageCopy.imageSubresource.layerCount = 1;
|
|
memoryToImageCopy.imageExtent.width = ktxTexture->baseWidth >> i;
|
|
memoryToImageCopy.imageExtent.height = ktxTexture->baseHeight >> i;
|
|
memoryToImageCopy.imageExtent.depth = 1;
|
|
|
|
// This tells the implementation where to read the data from
|
|
// As the KTX file is tightly packed, we can simply offset into that buffer for the current mip level
|
|
ktx_size_t offset;
|
|
KTX_error_code ret = ktxTexture_GetImageOffset(ktxTexture, i, 0, 0, &offset);
|
|
assert(ret == KTX_SUCCESS);
|
|
memoryToImageCopy.pHostPointer = ktxTextureData + offset;
|
|
|
|
memoryToImageCopies.push_back(memoryToImageCopy);
|
|
}
|
|
|
|
VkImageSubresourceRange subresourceRange{};
|
|
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
subresourceRange.baseMipLevel = 0;
|
|
subresourceRange.levelCount = texture.mipLevels;
|
|
subresourceRange.layerCount = 1;
|
|
|
|
// VK_EXT_host_image_copy als introduces a simplified way of doing the required image transition on the host
|
|
// This no longer requires a dedicated command buffer to submit the barrier
|
|
// We also no longer need multiple transitions, and only have to do one for the final layout
|
|
VkHostImageLayoutTransitionInfoEXT hostImageLayoutTransitionInfo{};
|
|
hostImageLayoutTransitionInfo.sType = VK_STRUCTURE_TYPE_HOST_IMAGE_LAYOUT_TRANSITION_INFO_EXT;
|
|
hostImageLayoutTransitionInfo.image = texture.image;
|
|
hostImageLayoutTransitionInfo.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
|
hostImageLayoutTransitionInfo.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
|
hostImageLayoutTransitionInfo.subresourceRange = subresourceRange;
|
|
|
|
vkTransitionImageLayoutEXT(device, 1, &hostImageLayoutTransitionInfo);
|
|
|
|
// With the image in the correct layout and copy information for all mip levels setup, we can now issue the copy to our taget image from the host
|
|
// The implementation will then convert this to an implementation specific optimal tiling layout
|
|
VkCopyMemoryToImageInfoEXT copyMemoryInfo{};
|
|
copyMemoryInfo.sType = VK_STRUCTURE_TYPE_COPY_MEMORY_TO_IMAGE_INFO_EXT;
|
|
copyMemoryInfo.dstImage = texture.image;
|
|
copyMemoryInfo.dstImageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
|
copyMemoryInfo.regionCount = static_cast<uint32_t>(memoryToImageCopies.size());
|
|
copyMemoryInfo.pRegions = memoryToImageCopies.data();
|
|
|
|
vkCopyMemoryToImageEXT(device, ©MemoryInfo);
|
|
|
|
ktxTexture_Destroy(ktxTexture);
|
|
|
|
// Create a texture sampler
|
|
VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo();
|
|
sampler.magFilter = VK_FILTER_LINEAR;
|
|
sampler.minFilter = VK_FILTER_LINEAR;
|
|
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
|
|
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
|
|
sampler.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
|
|
sampler.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
|
|
sampler.mipLodBias = 0.0f;
|
|
sampler.compareOp = VK_COMPARE_OP_NEVER;
|
|
sampler.minLod = 0.0f;
|
|
sampler.maxLod = (float)texture.mipLevels;
|
|
sampler.maxAnisotropy = vulkanDevice->properties.limits.maxSamplerAnisotropy;
|
|
sampler.anisotropyEnable = VK_TRUE;
|
|
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
|
|
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &texture.sampler));
|
|
|
|
// Create image view
|
|
VkImageViewCreateInfo view = vks::initializers::imageViewCreateInfo();
|
|
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
|
|
view.format = imageFormat;
|
|
view.subresourceRange = subresourceRange;
|
|
view.image = texture.image;
|
|
VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &texture.view));
|
|
}
|
|
|
|
// Free all Vulkan resources used by a texture object
|
|
void destroyTextureImage(Texture texture)
|
|
{
|
|
vkDestroyImageView(device, texture.view, nullptr);
|
|
vkDestroyImage(device, texture.image, nullptr);
|
|
vkDestroySampler(device, texture.sampler, nullptr);
|
|
vkFreeMemory(device, texture.deviceMemory, nullptr);
|
|
}
|
|
|
|
void buildCommandBuffers()
|
|
{
|
|
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
|
|
|
VkClearValue clearValues[2];
|
|
clearValues[0].color = defaultClearColor;
|
|
clearValues[1].depthStencil = { 1.0f, 0 };
|
|
|
|
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
|
|
renderPassBeginInfo.renderPass = renderPass;
|
|
renderPassBeginInfo.renderArea.offset.x = 0;
|
|
renderPassBeginInfo.renderArea.offset.y = 0;
|
|
renderPassBeginInfo.renderArea.extent.width = width;
|
|
renderPassBeginInfo.renderArea.extent.height = height;
|
|
renderPassBeginInfo.clearValueCount = 2;
|
|
renderPassBeginInfo.pClearValues = clearValues;
|
|
|
|
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
|
|
{
|
|
// Set target frame buffer
|
|
renderPassBeginInfo.framebuffer = frameBuffers[i];
|
|
|
|
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
|
|
|
|
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
|
|
|
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
|
|
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
|
|
|
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
|
|
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
|
|
|
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr);
|
|
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
|
|
|
|
plane.draw(drawCmdBuffers[i]);
|
|
|
|
drawUI(drawCmdBuffers[i]);
|
|
|
|
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
|
|
|
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
|
|
}
|
|
}
|
|
|
|
void setupDescriptors()
|
|
{
|
|
// Pool
|
|
std::vector<VkDescriptorPoolSize> poolSizes = {
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1)
|
|
};
|
|
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
|
|
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
|
|
|
|
// Layout
|
|
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
|
|
// Binding 0 : Vertex shader uniform buffer
|
|
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
|
|
// Binding 1 : Fragment shader image sampler
|
|
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1)
|
|
};
|
|
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
|
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
|
|
|
|
// Set
|
|
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
|
|
|
|
// Setup a descriptor image info for the current texture to be used as a combined image sampler
|
|
VkDescriptorImageInfo textureDescriptor;
|
|
textureDescriptor.imageView = texture.view;
|
|
textureDescriptor.sampler = texture.sampler;
|
|
textureDescriptor.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
|
|
|
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
|
|
// Binding 0 : Vertex shader uniform buffer
|
|
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffer.descriptor),
|
|
// Binding 1 : Fragment shader texture sampler
|
|
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textureDescriptor)
|
|
};
|
|
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
|
|
}
|
|
|
|
void preparePipelines()
|
|
{
|
|
// Layout
|
|
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
|
|
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout));
|
|
|
|
// Pipeline
|
|
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
|
|
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
|
|
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
|
|
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
|
|
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
|
|
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
|
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
|
|
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
|
|
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
|
|
std::array<VkPipelineShaderStageCreateInfo,2> shaderStages;
|
|
|
|
// Shaders
|
|
shaderStages[0] = loadShader(getShadersPath() + "texture/texture.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
|
shaderStages[1] = loadShader(getShadersPath() + "texture/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
|
|
|
VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
|
|
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
|
|
pipelineCreateInfo.pRasterizationState = &rasterizationState;
|
|
pipelineCreateInfo.pColorBlendState = &colorBlendState;
|
|
pipelineCreateInfo.pMultisampleState = &multisampleState;
|
|
pipelineCreateInfo.pViewportState = &viewportState;
|
|
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
|
|
pipelineCreateInfo.pDynamicState = &dynamicState;
|
|
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
|
|
pipelineCreateInfo.pStages = shaderStages.data();
|
|
pipelineCreateInfo.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position, vkglTF::VertexComponent::UV, vkglTF::VertexComponent::Normal });
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipeline));
|
|
}
|
|
|
|
// Prepare and initialize uniform buffer containing shader uniforms
|
|
void prepareUniformBuffers()
|
|
{
|
|
// Vertex shader uniform buffer block
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffer, sizeof(uniformData), &uniformData));
|
|
VK_CHECK_RESULT(uniformBuffer.map());
|
|
}
|
|
|
|
void updateUniformBuffers()
|
|
{
|
|
uniformData.projection = camera.matrices.perspective;
|
|
uniformData.modelView = camera.matrices.view;
|
|
uniformData.viewPos = camera.viewPos;
|
|
memcpy(uniformBuffer.mapped, &uniformData, sizeof(uniformData));
|
|
}
|
|
|
|
void loadAssets()
|
|
{
|
|
const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY;
|
|
plane.loadFromFile(getAssetPath() + "models/plane_z.gltf", vulkanDevice, queue, glTFLoadingFlags);
|
|
}
|
|
|
|
void prepare()
|
|
{
|
|
VulkanExampleBase::prepare();
|
|
|
|
// Get the function pointers required host image copies
|
|
vkCopyMemoryToImageEXT = reinterpret_cast<PFN_vkCopyMemoryToImageEXT>(vkGetDeviceProcAddr(device, "vkCopyMemoryToImageEXT"));
|
|
vkTransitionImageLayoutEXT = reinterpret_cast<PFN_vkTransitionImageLayoutEXT>(vkGetDeviceProcAddr(device, "vkTransitionImageLayoutEXT"));
|
|
vkGetPhysicalDeviceFormatProperties2 = reinterpret_cast<PFN_vkGetPhysicalDeviceFormatProperties2>(vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceFormatProperties2"));
|
|
|
|
loadAssets();
|
|
loadTexture();
|
|
prepareUniformBuffers();
|
|
setupDescriptors();
|
|
preparePipelines();
|
|
buildCommandBuffers();
|
|
prepared = true;
|
|
}
|
|
|
|
void draw()
|
|
{
|
|
VulkanExampleBase::prepareFrame();
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
|
|
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
|
|
VulkanExampleBase::submitFrame();
|
|
}
|
|
|
|
virtual void render()
|
|
{
|
|
if (!prepared)
|
|
return;
|
|
updateUniformBuffers();
|
|
draw();
|
|
}
|
|
|
|
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
|
|
{
|
|
if (overlay->header("Settings")) {
|
|
if (overlay->sliderFloat("LOD bias", &uniformData.lodBias, 0.0f, (float)texture.mipLevels)) {
|
|
updateUniformBuffers();
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
VULKAN_EXAMPLE_MAIN()
|