1186 lines
57 KiB
C++
1186 lines
57 KiB
C++
/*
|
|
* Vulkan Example - Basic indexed triangle rendering
|
|
*
|
|
* Note:
|
|
* This is a "pedal to the metal" example to show off how to get Vulkan up and displaying something
|
|
* Contrary to the other examples, this one won't make use of helper functions or initializers
|
|
* Except in a few cases (swap chain setup e.g.)
|
|
*
|
|
* Copyright (C) 2016-2025 by Sascha Willems - www.saschawillems.de
|
|
*
|
|
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <fstream>
|
|
#include <vector>
|
|
#include <exception>
|
|
|
|
#define GLM_FORCE_RADIANS
|
|
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
|
|
#include <glm/glm.hpp>
|
|
#include <glm/gtc/matrix_transform.hpp>
|
|
|
|
#include <vulkan/vulkan.h>
|
|
#include "vulkanexamplebase.h"
|
|
|
|
// We want to keep GPU and CPU busy. To do that we may start building a new command buffer while the previous one is still being executed
|
|
// This number defines how many frames may be worked on simultaneously at once
|
|
// Increasing this number may improve performance but will also introduce additional latency
|
|
#define MAX_CONCURRENT_FRAMES 2
|
|
|
|
class VulkanExample : public VulkanExampleBase
|
|
{
|
|
public:
|
|
// Vertex layout used in this example
|
|
struct Vertex {
|
|
float position[3];
|
|
float color[3];
|
|
};
|
|
|
|
// Vertex buffer and attributes
|
|
struct {
|
|
VkDeviceMemory memory{ VK_NULL_HANDLE }; // Handle to the device memory for this buffer
|
|
VkBuffer buffer{ VK_NULL_HANDLE }; // Handle to the Vulkan buffer object that the memory is bound to
|
|
} vertices;
|
|
|
|
// Index buffer
|
|
struct {
|
|
VkDeviceMemory memory{ VK_NULL_HANDLE };
|
|
VkBuffer buffer{ VK_NULL_HANDLE };
|
|
uint32_t count{ 0 };
|
|
} indices;
|
|
|
|
// Uniform buffer block object
|
|
struct UniformBuffer {
|
|
VkDeviceMemory memory{ VK_NULL_HANDLE };
|
|
VkBuffer buffer{ VK_NULL_HANDLE };
|
|
// The descriptor set stores the resources bound to the binding points in a shader
|
|
// It connects the binding points of the different shaders with the buffers and images used for those bindings
|
|
VkDescriptorSet descriptorSet{ VK_NULL_HANDLE };
|
|
// We keep a pointer to the mapped buffer, so we can easily update it's contents via a memcpy
|
|
uint8_t* mapped{ nullptr };
|
|
};
|
|
// We use one UBO per frame, so we can have a frame overlap and make sure that uniforms aren't updated while still in use
|
|
std::array<UniformBuffer, MAX_CONCURRENT_FRAMES> uniformBuffers;
|
|
|
|
// For simplicity we use the same uniform block layout as in the shader:
|
|
//
|
|
// layout(set = 0, binding = 0) uniform UBO
|
|
// {
|
|
// mat4 projectionMatrix;
|
|
// mat4 modelMatrix;
|
|
// mat4 viewMatrix;
|
|
// } ubo;
|
|
//
|
|
// This way we can just memcopy the ubo data to the ubo
|
|
// Note: You should use data types that align with the GPU in order to avoid manual padding (vec4, mat4)
|
|
struct ShaderData {
|
|
glm::mat4 projectionMatrix;
|
|
glm::mat4 modelMatrix;
|
|
glm::mat4 viewMatrix;
|
|
};
|
|
|
|
// The pipeline layout is used by a pipeline to access the descriptor sets
|
|
// It defines interface (without binding any actual data) between the shader stages used by the pipeline and the shader resources
|
|
// A pipeline layout can be shared among multiple pipelines as long as their interfaces match
|
|
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
|
|
|
|
// Pipelines (often called "pipeline state objects") are used to bake all states that affect a pipeline
|
|
// While in OpenGL every state can be changed at (almost) any time, Vulkan requires to layout the graphics (and compute) pipeline states upfront
|
|
// So for each combination of non-dynamic pipeline states you need a new pipeline (there are a few exceptions to this not discussed here)
|
|
// Even though this adds a new dimension of planning ahead, it's a great opportunity for performance optimizations by the driver
|
|
VkPipeline pipeline{ VK_NULL_HANDLE };
|
|
|
|
// The descriptor set layout describes the shader binding layout (without actually referencing descriptor)
|
|
// Like the pipeline layout it's pretty much a blueprint and can be used with different descriptor sets as long as their layout matches
|
|
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
|
|
|
|
// Synchronization primitives
|
|
// Synchronization is an important concept of Vulkan that OpenGL mostly hid away. Getting this right is crucial to using Vulkan.
|
|
|
|
// Semaphores are used to coordinate operations within the graphics queue and ensure correct command ordering
|
|
std::vector<VkSemaphore> presentCompleteSemaphores{};
|
|
std::vector<VkSemaphore> renderCompleteSemaphores{};
|
|
|
|
VkCommandPool commandPool{ VK_NULL_HANDLE };
|
|
std::array<VkCommandBuffer, MAX_CONCURRENT_FRAMES> commandBuffers{};
|
|
std::array<VkFence, MAX_CONCURRENT_FRAMES> waitFences{};
|
|
|
|
// To select the correct sync and command objects, we need to keep track of the current frame and (swapchain) image index
|
|
uint32_t currentFrame{ 0 };
|
|
uint32_t currentSemaphore{ 0 };
|
|
|
|
VulkanExample() : VulkanExampleBase()
|
|
{
|
|
title = "Basic indexed triangle";
|
|
// To keep things simple, we don't use the UI overlay from the framework
|
|
settings.overlay = false;
|
|
// Setup a default look-at camera
|
|
camera.type = Camera::CameraType::lookat;
|
|
camera.setPosition(glm::vec3(0.0f, 0.0f, -2.5f));
|
|
camera.setRotation(glm::vec3(0.0f));
|
|
camera.setPerspective(60.0f, (float)width / (float)height, 1.0f, 256.0f);
|
|
// Values not set here are initialized in the base class constructor
|
|
}
|
|
|
|
~VulkanExample() override
|
|
{
|
|
// Clean up used Vulkan resources
|
|
// Note: Inherited destructor cleans up resources stored in base class
|
|
if (device) {
|
|
vkDestroyPipeline(device, pipeline, nullptr);
|
|
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
|
|
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
|
|
vkDestroyBuffer(device, vertices.buffer, nullptr);
|
|
vkFreeMemory(device, vertices.memory, nullptr);
|
|
vkDestroyBuffer(device, indices.buffer, nullptr);
|
|
vkFreeMemory(device, indices.memory, nullptr);
|
|
vkDestroyCommandPool(device, commandPool, nullptr);
|
|
for (size_t i = 0; i < presentCompleteSemaphores.size(); i++) {
|
|
vkDestroySemaphore(device, presentCompleteSemaphores[i], nullptr);
|
|
}
|
|
for (size_t i = 0; i < renderCompleteSemaphores.size(); i++) {
|
|
vkDestroySemaphore(device, renderCompleteSemaphores[i], nullptr);
|
|
}
|
|
for (uint32_t i = 0; i < MAX_CONCURRENT_FRAMES; i++) {
|
|
vkDestroyFence(device, waitFences[i], nullptr);
|
|
vkDestroyBuffer(device, uniformBuffers[i].buffer, nullptr);
|
|
vkFreeMemory(device, uniformBuffers[i].memory, nullptr);
|
|
}
|
|
}
|
|
}
|
|
|
|
// This function is used to request a device memory type that supports all the property flags we request (e.g. device local, host visible)
|
|
// Upon success it will return the index of the memory type that fits our requested memory properties
|
|
// This is necessary as implementations can offer an arbitrary number of memory types with different
|
|
// memory properties.
|
|
// You can check https://vulkan.gpuinfo.org/ for details on different memory configurations
|
|
uint32_t getMemoryTypeIndex(uint32_t typeBits, VkMemoryPropertyFlags properties)
|
|
{
|
|
// Iterate over all memory types available for the device used in this example
|
|
for (uint32_t i = 0; i < deviceMemoryProperties.memoryTypeCount; i++)
|
|
{
|
|
if ((typeBits & 1) == 1)
|
|
{
|
|
if ((deviceMemoryProperties.memoryTypes[i].propertyFlags & properties) == properties)
|
|
{
|
|
return i;
|
|
}
|
|
}
|
|
typeBits >>= 1;
|
|
}
|
|
|
|
throw "Could not find a suitable memory type!";
|
|
}
|
|
|
|
// Create the per-frame (in flight) Vulkan synchronization primitives used in this example
|
|
void createSynchronizationPrimitives()
|
|
{
|
|
// Fences are used to check draw command buffer completion on the host
|
|
for (uint32_t i = 0; i < MAX_CONCURRENT_FRAMES; i++) {
|
|
VkFenceCreateInfo fenceCI{};
|
|
fenceCI.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
|
|
// Create the fences in signaled state (so we don't wait on first render of each command buffer)
|
|
fenceCI.flags = VK_FENCE_CREATE_SIGNALED_BIT;
|
|
// Fence used to ensure that command buffer has completed exection before using it again
|
|
VK_CHECK_RESULT(vkCreateFence(device, &fenceCI, nullptr, &waitFences[i]));
|
|
}
|
|
// Semaphores are per swapchain image
|
|
presentCompleteSemaphores.resize(swapChain.images.size());
|
|
renderCompleteSemaphores.resize(swapChain.images.size());
|
|
for (size_t i = 0; i < swapChain.images.size(); i++) {
|
|
// Semaphores are used for correct command ordering within a queue
|
|
VkSemaphoreCreateInfo semaphoreCI{ VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO };
|
|
// Semaphore used to ensure that image presentation is complete before starting to submit again
|
|
VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCI, nullptr, &presentCompleteSemaphores[i]));
|
|
// Semaphore used to ensure that all commands submitted have been finished before submitting the image to the queue
|
|
VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCI, nullptr, &renderCompleteSemaphores[i]));
|
|
}
|
|
}
|
|
|
|
void createCommandBuffers()
|
|
{
|
|
// All command buffers are allocated from a command pool
|
|
VkCommandPoolCreateInfo commandPoolCI{};
|
|
commandPoolCI.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
|
|
commandPoolCI.queueFamilyIndex = swapChain.queueNodeIndex;
|
|
commandPoolCI.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
|
|
VK_CHECK_RESULT(vkCreateCommandPool(device, &commandPoolCI, nullptr, &commandPool));
|
|
|
|
// Allocate one command buffer per max. concurrent frame from above pool
|
|
VkCommandBufferAllocateInfo cmdBufAllocateInfo = vks::initializers::commandBufferAllocateInfo(commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, MAX_CONCURRENT_FRAMES);
|
|
VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, commandBuffers.data()));
|
|
}
|
|
|
|
// Prepare vertex and index buffers for an indexed triangle
|
|
// Also uploads them to device local memory using staging and initializes vertex input and attribute binding to match the vertex shader
|
|
void createVertexBuffer()
|
|
{
|
|
// A note on memory management in Vulkan in general:
|
|
// This is a very complex topic and while it's fine for an example application to small individual memory allocations that is not
|
|
// what should be done a real-world application, where you should allocate large chunks of memory at once instead.
|
|
|
|
// Setup vertices
|
|
std::vector<Vertex> vertexBuffer{
|
|
{ { 1.0f, 1.0f, 0.0f }, { 1.0f, 0.0f, 0.0f } },
|
|
{ { -1.0f, 1.0f, 0.0f }, { 0.0f, 1.0f, 0.0f } },
|
|
{ { 0.0f, -1.0f, 0.0f }, { 0.0f, 0.0f, 1.0f } }
|
|
};
|
|
uint32_t vertexBufferSize = static_cast<uint32_t>(vertexBuffer.size()) * sizeof(Vertex);
|
|
|
|
// Setup indices
|
|
std::vector<uint32_t> indexBuffer{ 0, 1, 2 };
|
|
indices.count = static_cast<uint32_t>(indexBuffer.size());
|
|
uint32_t indexBufferSize = indices.count * sizeof(uint32_t);
|
|
|
|
VkMemoryAllocateInfo memAlloc{};
|
|
memAlloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
|
|
VkMemoryRequirements memReqs;
|
|
|
|
// Static data like vertex and index buffer should be stored on the device memory for optimal (and fastest) access by the GPU
|
|
//
|
|
// To achieve this we use so-called "staging buffers" :
|
|
// - Create a buffer that's visible to the host (and can be mapped)
|
|
// - Copy the data to this buffer
|
|
// - Create another buffer that's local on the device (VRAM) with the same size
|
|
// - Copy the data from the host to the device using a command buffer
|
|
// - Delete the host visible (staging) buffer
|
|
// - Use the device local buffers for rendering
|
|
//
|
|
// Note: On unified memory architectures where host (CPU) and GPU share the same memory, staging is not necessary
|
|
// To keep this sample easy to follow, there is no check for that in place
|
|
|
|
struct StagingBuffer {
|
|
VkDeviceMemory memory;
|
|
VkBuffer buffer;
|
|
};
|
|
|
|
struct {
|
|
StagingBuffer vertices;
|
|
StagingBuffer indices;
|
|
} stagingBuffers{};
|
|
|
|
void* data;
|
|
|
|
// Vertex buffer
|
|
VkBufferCreateInfo vertexBufferInfoCI{};
|
|
vertexBufferInfoCI.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
|
|
vertexBufferInfoCI.size = vertexBufferSize;
|
|
// Buffer is used as the copy source
|
|
vertexBufferInfoCI.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
|
|
// Create a host-visible buffer to copy the vertex data to (staging buffer)
|
|
VK_CHECK_RESULT(vkCreateBuffer(device, &vertexBufferInfoCI, nullptr, &stagingBuffers.vertices.buffer));
|
|
vkGetBufferMemoryRequirements(device, stagingBuffers.vertices.buffer, &memReqs);
|
|
memAlloc.allocationSize = memReqs.size;
|
|
// Request a host visible memory type that can be used to copy our data to
|
|
// Also request it to be coherent, so that writes are visible to the GPU right after unmapping the buffer
|
|
memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
|
|
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &stagingBuffers.vertices.memory));
|
|
// Map and copy
|
|
VK_CHECK_RESULT(vkMapMemory(device, stagingBuffers.vertices.memory, 0, memAlloc.allocationSize, 0, &data));
|
|
memcpy(data, vertexBuffer.data(), vertexBufferSize);
|
|
vkUnmapMemory(device, stagingBuffers.vertices.memory);
|
|
VK_CHECK_RESULT(vkBindBufferMemory(device, stagingBuffers.vertices.buffer, stagingBuffers.vertices.memory, 0));
|
|
|
|
// Create a device local buffer to which the (host local) vertex data will be copied and which will be used for rendering
|
|
vertexBufferInfoCI.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
|
|
VK_CHECK_RESULT(vkCreateBuffer(device, &vertexBufferInfoCI, nullptr, &vertices.buffer));
|
|
vkGetBufferMemoryRequirements(device, vertices.buffer, &memReqs);
|
|
memAlloc.allocationSize = memReqs.size;
|
|
memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
|
|
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &vertices.memory));
|
|
VK_CHECK_RESULT(vkBindBufferMemory(device, vertices.buffer, vertices.memory, 0));
|
|
|
|
// Index buffer
|
|
VkBufferCreateInfo indexbufferCI{};
|
|
indexbufferCI.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
|
|
indexbufferCI.size = indexBufferSize;
|
|
indexbufferCI.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
|
|
// Copy index data to a buffer visible to the host (staging buffer)
|
|
VK_CHECK_RESULT(vkCreateBuffer(device, &indexbufferCI, nullptr, &stagingBuffers.indices.buffer));
|
|
vkGetBufferMemoryRequirements(device, stagingBuffers.indices.buffer, &memReqs);
|
|
memAlloc.allocationSize = memReqs.size;
|
|
memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
|
|
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &stagingBuffers.indices.memory));
|
|
VK_CHECK_RESULT(vkMapMemory(device, stagingBuffers.indices.memory, 0, indexBufferSize, 0, &data));
|
|
memcpy(data, indexBuffer.data(), indexBufferSize);
|
|
vkUnmapMemory(device, stagingBuffers.indices.memory);
|
|
VK_CHECK_RESULT(vkBindBufferMemory(device, stagingBuffers.indices.buffer, stagingBuffers.indices.memory, 0));
|
|
|
|
// Create destination buffer with device only visibility
|
|
indexbufferCI.usage = VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
|
|
VK_CHECK_RESULT(vkCreateBuffer(device, &indexbufferCI, nullptr, &indices.buffer));
|
|
vkGetBufferMemoryRequirements(device, indices.buffer, &memReqs);
|
|
memAlloc.allocationSize = memReqs.size;
|
|
memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
|
|
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &indices.memory));
|
|
VK_CHECK_RESULT(vkBindBufferMemory(device, indices.buffer, indices.memory, 0));
|
|
|
|
// Buffer copies have to be submitted to a queue, so we need a command buffer for them
|
|
// Note: Some devices offer a dedicated transfer queue (with only the transfer bit set) that may be faster when doing lots of copies
|
|
VkCommandBuffer copyCmd;
|
|
|
|
VkCommandBufferAllocateInfo cmdBufAllocateInfo{};
|
|
cmdBufAllocateInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
|
|
cmdBufAllocateInfo.commandPool = commandPool;
|
|
cmdBufAllocateInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
|
|
cmdBufAllocateInfo.commandBufferCount = 1;
|
|
VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, ©Cmd));
|
|
|
|
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
|
VK_CHECK_RESULT(vkBeginCommandBuffer(copyCmd, &cmdBufInfo));
|
|
// Put buffer region copies into command buffer
|
|
VkBufferCopy copyRegion{};
|
|
// Vertex buffer
|
|
copyRegion.size = vertexBufferSize;
|
|
vkCmdCopyBuffer(copyCmd, stagingBuffers.vertices.buffer, vertices.buffer, 1, ©Region);
|
|
// Index buffer
|
|
copyRegion.size = indexBufferSize;
|
|
vkCmdCopyBuffer(copyCmd, stagingBuffers.indices.buffer, indices.buffer, 1, ©Region);
|
|
VK_CHECK_RESULT(vkEndCommandBuffer(copyCmd));
|
|
|
|
// Submit the command buffer to the queue to finish the copy
|
|
VkSubmitInfo submitInfo{};
|
|
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = ©Cmd;
|
|
|
|
// Create fence to ensure that the command buffer has finished executing
|
|
VkFenceCreateInfo fenceCI{};
|
|
fenceCI.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
|
|
fenceCI.flags = 0;
|
|
VkFence fence;
|
|
VK_CHECK_RESULT(vkCreateFence(device, &fenceCI, nullptr, &fence));
|
|
|
|
// Submit to the queue
|
|
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, fence));
|
|
// Wait for the fence to signal that command buffer has finished executing
|
|
VK_CHECK_RESULT(vkWaitForFences(device, 1, &fence, VK_TRUE, DEFAULT_FENCE_TIMEOUT));
|
|
|
|
vkDestroyFence(device, fence, nullptr);
|
|
vkFreeCommandBuffers(device, commandPool, 1, ©Cmd);
|
|
|
|
// Destroy staging buffers
|
|
// Note: Staging buffer must not be deleted before the copies have been submitted and executed
|
|
vkDestroyBuffer(device, stagingBuffers.vertices.buffer, nullptr);
|
|
vkFreeMemory(device, stagingBuffers.vertices.memory, nullptr);
|
|
vkDestroyBuffer(device, stagingBuffers.indices.buffer, nullptr);
|
|
vkFreeMemory(device, stagingBuffers.indices.memory, nullptr);
|
|
}
|
|
|
|
// Descriptors are allocated from a pool, that tells the implementation how many and what types of descriptors we are going to use (at maximum)
|
|
void createDescriptorPool()
|
|
{
|
|
// We need to tell the API the number of max. requested descriptors per type
|
|
VkDescriptorPoolSize descriptorTypeCounts[1]{};
|
|
// This example only one descriptor type (uniform buffer)
|
|
descriptorTypeCounts[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
|
|
// We have one buffer (and as such descriptor) per frame
|
|
descriptorTypeCounts[0].descriptorCount = MAX_CONCURRENT_FRAMES;
|
|
// For additional types you need to add new entries in the type count list
|
|
// E.g. for two combined image samplers :
|
|
// typeCounts[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
|
|
// typeCounts[1].descriptorCount = 2;
|
|
|
|
// Create the global descriptor pool
|
|
// All descriptors used in this example are allocated from this pool
|
|
VkDescriptorPoolCreateInfo descriptorPoolCI{};
|
|
descriptorPoolCI.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
|
|
descriptorPoolCI.pNext = nullptr;
|
|
descriptorPoolCI.poolSizeCount = 1;
|
|
descriptorPoolCI.pPoolSizes = descriptorTypeCounts;
|
|
// Set the max. number of descriptor sets that can be requested from this pool (requesting beyond this limit will result in an error)
|
|
// Our sample will create one set per uniform buffer per frame
|
|
descriptorPoolCI.maxSets = MAX_CONCURRENT_FRAMES;
|
|
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCI, nullptr, &descriptorPool));
|
|
}
|
|
|
|
// Descriptor set layouts define the interface between our application and the shader
|
|
// Basically connects the different shader stages to descriptors for binding uniform buffers, image samplers, etc.
|
|
// So every shader binding should map to one descriptor set layout binding
|
|
void createDescriptorSetLayout()
|
|
{
|
|
// Binding 0: Uniform buffer (Vertex shader)
|
|
VkDescriptorSetLayoutBinding layoutBinding{};
|
|
layoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
|
|
layoutBinding.descriptorCount = 1;
|
|
layoutBinding.stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
|
|
layoutBinding.pImmutableSamplers = nullptr;
|
|
|
|
VkDescriptorSetLayoutCreateInfo descriptorLayoutCI{};
|
|
descriptorLayoutCI.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
|
|
descriptorLayoutCI.pNext = nullptr;
|
|
descriptorLayoutCI.bindingCount = 1;
|
|
descriptorLayoutCI.pBindings = &layoutBinding;
|
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayoutCI, nullptr, &descriptorSetLayout));
|
|
}
|
|
|
|
// Shaders access data using descriptor sets that "point" at our uniform buffers
|
|
// The descriptor sets make use of the descriptor set layouts created above
|
|
void createDescriptorSets()
|
|
{
|
|
// Allocate one descriptor set per frame from the global descriptor pool
|
|
for (uint32_t i = 0; i < MAX_CONCURRENT_FRAMES; i++) {
|
|
VkDescriptorSetAllocateInfo allocInfo{};
|
|
allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
|
|
allocInfo.descriptorPool = descriptorPool;
|
|
allocInfo.descriptorSetCount = 1;
|
|
allocInfo.pSetLayouts = &descriptorSetLayout;
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &uniformBuffers[i].descriptorSet));
|
|
|
|
// Update the descriptor set determining the shader binding points
|
|
// For every binding point used in a shader there needs to be one
|
|
// descriptor set matching that binding point
|
|
VkWriteDescriptorSet writeDescriptorSet{};
|
|
|
|
// The buffer's information is passed using a descriptor info structure
|
|
VkDescriptorBufferInfo bufferInfo{};
|
|
bufferInfo.buffer = uniformBuffers[i].buffer;
|
|
bufferInfo.range = sizeof(ShaderData);
|
|
|
|
// Binding 0 : Uniform buffer
|
|
writeDescriptorSet.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
|
|
writeDescriptorSet.dstSet = uniformBuffers[i].descriptorSet;
|
|
writeDescriptorSet.descriptorCount = 1;
|
|
writeDescriptorSet.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
|
|
writeDescriptorSet.pBufferInfo = &bufferInfo;
|
|
writeDescriptorSet.dstBinding = 0;
|
|
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
|
|
}
|
|
}
|
|
|
|
// Create the depth (and stencil) buffer attachments used by our framebuffers
|
|
// Note: Override of virtual function in the base class and called from within VulkanExampleBase::prepare
|
|
void setupDepthStencil() override
|
|
{
|
|
// Create an optimal image used as the depth stencil attachment
|
|
VkImageCreateInfo imageCI{};
|
|
imageCI.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
|
|
imageCI.imageType = VK_IMAGE_TYPE_2D;
|
|
imageCI.format = depthFormat;
|
|
// Use example's height and width
|
|
imageCI.extent = { width, height, 1 };
|
|
imageCI.mipLevels = 1;
|
|
imageCI.arrayLayers = 1;
|
|
imageCI.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
imageCI.tiling = VK_IMAGE_TILING_OPTIMAL;
|
|
imageCI.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
|
|
imageCI.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
|
VK_CHECK_RESULT(vkCreateImage(device, &imageCI, nullptr, &depthStencil.image));
|
|
|
|
// Allocate memory for the image (device local) and bind it to our image
|
|
VkMemoryAllocateInfo memAlloc{};
|
|
memAlloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
|
|
VkMemoryRequirements memReqs;
|
|
vkGetImageMemoryRequirements(device, depthStencil.image, &memReqs);
|
|
memAlloc.allocationSize = memReqs.size;
|
|
memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
|
|
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &depthStencil.memory));
|
|
VK_CHECK_RESULT(vkBindImageMemory(device, depthStencil.image, depthStencil.memory, 0));
|
|
|
|
// Create a view for the depth stencil image
|
|
// Images aren't directly accessed in Vulkan, but rather through views described by a subresource range
|
|
// This allows for multiple views of one image with differing ranges (e.g. for different layers)
|
|
VkImageViewCreateInfo depthStencilViewCI{};
|
|
depthStencilViewCI.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
|
|
depthStencilViewCI.viewType = VK_IMAGE_VIEW_TYPE_2D;
|
|
depthStencilViewCI.format = depthFormat;
|
|
depthStencilViewCI.subresourceRange = {};
|
|
depthStencilViewCI.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
|
|
// Stencil aspect should only be set on depth + stencil formats (VK_FORMAT_D16_UNORM_S8_UINT..VK_FORMAT_D32_SFLOAT_S8_UINT)
|
|
if (depthFormat >= VK_FORMAT_D16_UNORM_S8_UINT) {
|
|
depthStencilViewCI.subresourceRange.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
|
|
}
|
|
depthStencilViewCI.subresourceRange.baseMipLevel = 0;
|
|
depthStencilViewCI.subresourceRange.levelCount = 1;
|
|
depthStencilViewCI.subresourceRange.baseArrayLayer = 0;
|
|
depthStencilViewCI.subresourceRange.layerCount = 1;
|
|
depthStencilViewCI.image = depthStencil.image;
|
|
VK_CHECK_RESULT(vkCreateImageView(device, &depthStencilViewCI, nullptr, &depthStencil.view));
|
|
}
|
|
|
|
// Create a frame buffer for each swap chain image
|
|
// Note: Override of virtual function in the base class and called from within VulkanExampleBase::prepare
|
|
void setupFrameBuffer() override
|
|
{
|
|
// Create a frame buffer for every image in the swapchain
|
|
frameBuffers.resize(swapChain.images.size());
|
|
for (size_t i = 0; i < frameBuffers.size(); i++)
|
|
{
|
|
std::array<VkImageView, 2> attachments{};
|
|
// Color attachment is the view of the swapchain image
|
|
attachments[0] = swapChain.imageViews[i];
|
|
// Depth/Stencil attachment is the same for all frame buffers due to how depth works with current GPUs
|
|
attachments[1] = depthStencil.view;
|
|
|
|
VkFramebufferCreateInfo frameBufferCI{};
|
|
frameBufferCI.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
|
|
// All frame buffers use the same renderpass setup
|
|
frameBufferCI.renderPass = renderPass;
|
|
frameBufferCI.attachmentCount = static_cast<uint32_t>(attachments.size());
|
|
frameBufferCI.pAttachments = attachments.data();
|
|
frameBufferCI.width = width;
|
|
frameBufferCI.height = height;
|
|
frameBufferCI.layers = 1;
|
|
// Create the framebuffer
|
|
VK_CHECK_RESULT(vkCreateFramebuffer(device, &frameBufferCI, nullptr, &frameBuffers[i]));
|
|
}
|
|
}
|
|
|
|
// Render pass setup
|
|
// Render passes are a new concept in Vulkan. They describe the attachments used during rendering and may contain multiple subpasses with attachment dependencies
|
|
// This allows the driver to know up-front what the rendering will look like and is a good opportunity to optimize especially on tile-based renderers (with multiple subpasses)
|
|
// Using sub pass dependencies also adds implicit layout transitions for the attachment used, so we don't need to add explicit image memory barriers to transform them
|
|
// Note: Override of virtual function in the base class and called from within VulkanExampleBase::prepare
|
|
void setupRenderPass() override
|
|
{
|
|
// This example will use a single render pass with one subpass
|
|
|
|
// Descriptors for the attachments used by this renderpass
|
|
std::array<VkAttachmentDescription, 2> attachments{};
|
|
|
|
// Color attachment
|
|
attachments[0].format = swapChain.colorFormat; // Use the color format selected by the swapchain
|
|
attachments[0].samples = VK_SAMPLE_COUNT_1_BIT; // We don't use multi sampling in this example
|
|
attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; // Clear this attachment at the start of the render pass
|
|
attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE; // Keep its contents after the render pass is finished (for displaying it)
|
|
attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; // We don't use stencil, so don't care for load
|
|
attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; // Same for store
|
|
attachments[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; // Layout at render pass start. Initial doesn't matter, so we use undefined
|
|
attachments[0].finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; // Layout to which the attachment is transitioned when the render pass is finished
|
|
// As we want to present the color buffer to the swapchain, we transition to PRESENT_KHR
|
|
// Depth attachment
|
|
attachments[1].format = depthFormat; // A proper depth format is selected in the example base
|
|
attachments[1].samples = VK_SAMPLE_COUNT_1_BIT;
|
|
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; // Clear depth at start of first subpass
|
|
attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; // We don't need depth after render pass has finished (DONT_CARE may result in better performance)
|
|
attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; // No stencil
|
|
attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; // No Stencil
|
|
attachments[1].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; // Layout at render pass start. Initial doesn't matter, so we use undefined
|
|
attachments[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; // Transition to depth/stencil attachment
|
|
|
|
// Setup attachment references
|
|
VkAttachmentReference colorReference{};
|
|
colorReference.attachment = 0; // Attachment 0 is color
|
|
colorReference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; // Attachment layout used as color during the subpass
|
|
|
|
VkAttachmentReference depthReference{};
|
|
depthReference.attachment = 1; // Attachment 1 is color
|
|
depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; // Attachment used as depth/stencil used during the subpass
|
|
|
|
// Setup a single subpass reference
|
|
VkSubpassDescription subpassDescription{};
|
|
subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
|
|
subpassDescription.colorAttachmentCount = 1; // Subpass uses one color attachment
|
|
subpassDescription.pColorAttachments = &colorReference; // Reference to the color attachment in slot 0
|
|
subpassDescription.pDepthStencilAttachment = &depthReference; // Reference to the depth attachment in slot 1
|
|
subpassDescription.inputAttachmentCount = 0; // Input attachments can be used to sample from contents of a previous subpass
|
|
subpassDescription.pInputAttachments = nullptr; // (Input attachments not used by this example)
|
|
subpassDescription.preserveAttachmentCount = 0; // Preserved attachments can be used to loop (and preserve) attachments through subpasses
|
|
subpassDescription.pPreserveAttachments = nullptr; // (Preserve attachments not used by this example)
|
|
subpassDescription.pResolveAttachments = nullptr; // Resolve attachments are resolved at the end of a sub pass and can be used for e.g. multi sampling
|
|
|
|
// Setup subpass dependencies
|
|
// These will add the implicit attachment layout transitions specified by the attachment descriptions
|
|
// The actual usage layout is preserved through the layout specified in the attachment reference
|
|
// Each subpass dependency will introduce a memory and execution dependency between the source and dest subpass described by
|
|
// srcStageMask, dstStageMask, srcAccessMask, dstAccessMask (and dependencyFlags is set)
|
|
// Note: VK_SUBPASS_EXTERNAL is a special constant that refers to all commands executed outside of the actual renderpass)
|
|
std::array<VkSubpassDependency, 2> dependencies{};
|
|
|
|
// Does the transition from final to initial layout for the depth an color attachments
|
|
// Depth attachment
|
|
dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL;
|
|
dependencies[0].dstSubpass = 0;
|
|
dependencies[0].srcStageMask = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
|
|
dependencies[0].dstStageMask = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
|
|
dependencies[0].srcAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
|
|
dependencies[0].dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT;
|
|
dependencies[0].dependencyFlags = 0;
|
|
// Color attachment
|
|
dependencies[1].srcSubpass = VK_SUBPASS_EXTERNAL;
|
|
dependencies[1].dstSubpass = 0;
|
|
dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
|
|
dependencies[1].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
|
|
dependencies[1].srcAccessMask = 0;
|
|
dependencies[1].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT;
|
|
dependencies[1].dependencyFlags = 0;
|
|
|
|
// Create the actual renderpass
|
|
VkRenderPassCreateInfo renderPassCI{};
|
|
renderPassCI.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
|
|
renderPassCI.attachmentCount = static_cast<uint32_t>(attachments.size()); // Number of attachments used by this render pass
|
|
renderPassCI.pAttachments = attachments.data(); // Descriptions of the attachments used by the render pass
|
|
renderPassCI.subpassCount = 1; // We only use one subpass in this example
|
|
renderPassCI.pSubpasses = &subpassDescription; // Description of that subpass
|
|
renderPassCI.dependencyCount = static_cast<uint32_t>(dependencies.size()); // Number of subpass dependencies
|
|
renderPassCI.pDependencies = dependencies.data(); // Subpass dependencies used by the render pass
|
|
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCI, nullptr, &renderPass));
|
|
}
|
|
|
|
// Vulkan loads its shaders from an immediate binary representation called SPIR-V
|
|
// Shaders are compiled offline from e.g. GLSL using the reference glslang compiler
|
|
// This function loads such a shader from a binary file and returns a shader module structure
|
|
VkShaderModule loadSPIRVShader(const std::string& filename)
|
|
{
|
|
size_t shaderSize;
|
|
char* shaderCode{ nullptr };
|
|
|
|
#if defined(__ANDROID__)
|
|
// Load shader from compressed asset
|
|
AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, filename.c_str(), AASSET_MODE_STREAMING);
|
|
assert(asset);
|
|
shaderSize = AAsset_getLength(asset);
|
|
assert(shaderSize > 0);
|
|
|
|
shaderCode = new char[shaderSize];
|
|
AAsset_read(asset, shaderCode, shaderSize);
|
|
AAsset_close(asset);
|
|
#else
|
|
std::ifstream is(filename, std::ios::binary | std::ios::in | std::ios::ate);
|
|
|
|
if (is.is_open())
|
|
{
|
|
shaderSize = is.tellg();
|
|
is.seekg(0, std::ios::beg);
|
|
// Copy file contents into a buffer
|
|
shaderCode = new char[shaderSize];
|
|
is.read(shaderCode, shaderSize);
|
|
is.close();
|
|
assert(shaderSize > 0);
|
|
}
|
|
#endif
|
|
if (shaderCode)
|
|
{
|
|
// Create a new shader module that will be used for pipeline creation
|
|
VkShaderModuleCreateInfo shaderModuleCI{};
|
|
shaderModuleCI.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
|
|
shaderModuleCI.codeSize = shaderSize;
|
|
shaderModuleCI.pCode = (uint32_t*)shaderCode;
|
|
|
|
VkShaderModule shaderModule;
|
|
VK_CHECK_RESULT(vkCreateShaderModule(device, &shaderModuleCI, nullptr, &shaderModule));
|
|
|
|
delete[] shaderCode;
|
|
|
|
return shaderModule;
|
|
}
|
|
else
|
|
{
|
|
std::cerr << "Error: Could not open shader file \"" << filename << "\"" << std::endl;
|
|
return VK_NULL_HANDLE;
|
|
}
|
|
}
|
|
|
|
void createPipelines()
|
|
{
|
|
// Create the pipeline layout that is used to generate the rendering pipelines that are based on this descriptor set layout
|
|
// In a more complex scenario you would have different pipeline layouts for different descriptor set layouts that could be reused
|
|
VkPipelineLayoutCreateInfo pipelineLayoutCI{};
|
|
pipelineLayoutCI.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
|
|
pipelineLayoutCI.pNext = nullptr;
|
|
pipelineLayoutCI.setLayoutCount = 1;
|
|
pipelineLayoutCI.pSetLayouts = &descriptorSetLayout;
|
|
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout));
|
|
|
|
// Create the graphics pipeline used in this example
|
|
// Vulkan uses the concept of rendering pipelines to encapsulate fixed states, replacing OpenGL's complex state machine
|
|
// A pipeline is then stored and hashed on the GPU making pipeline changes very fast
|
|
// Note: There are still a few dynamic states that are not directly part of the pipeline (but the info that they are used is)
|
|
|
|
VkGraphicsPipelineCreateInfo pipelineCI{};
|
|
pipelineCI.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
|
|
// The layout used for this pipeline (can be shared among multiple pipelines using the same layout)
|
|
pipelineCI.layout = pipelineLayout;
|
|
// Renderpass this pipeline is attached to
|
|
pipelineCI.renderPass = renderPass;
|
|
|
|
// Construct the different states making up the pipeline
|
|
|
|
// Input assembly state describes how primitives are assembled
|
|
// This pipeline will assemble vertex data as a triangle lists (though we only use one triangle)
|
|
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI{};
|
|
inputAssemblyStateCI.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
|
|
inputAssemblyStateCI.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
|
|
|
|
// Rasterization state
|
|
VkPipelineRasterizationStateCreateInfo rasterizationStateCI{};
|
|
rasterizationStateCI.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
|
|
rasterizationStateCI.polygonMode = VK_POLYGON_MODE_FILL;
|
|
rasterizationStateCI.cullMode = VK_CULL_MODE_NONE;
|
|
rasterizationStateCI.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
|
|
rasterizationStateCI.depthClampEnable = VK_FALSE;
|
|
rasterizationStateCI.rasterizerDiscardEnable = VK_FALSE;
|
|
rasterizationStateCI.depthBiasEnable = VK_FALSE;
|
|
rasterizationStateCI.lineWidth = 1.0f;
|
|
|
|
// Color blend state describes how blend factors are calculated (if used)
|
|
// We need one blend attachment state per color attachment (even if blending is not used)
|
|
VkPipelineColorBlendAttachmentState blendAttachmentState{};
|
|
blendAttachmentState.colorWriteMask = 0xf;
|
|
blendAttachmentState.blendEnable = VK_FALSE;
|
|
VkPipelineColorBlendStateCreateInfo colorBlendStateCI{};
|
|
colorBlendStateCI.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
|
|
colorBlendStateCI.attachmentCount = 1;
|
|
colorBlendStateCI.pAttachments = &blendAttachmentState;
|
|
|
|
// Viewport state sets the number of viewports and scissor used in this pipeline
|
|
// Note: This is actually overridden by the dynamic states (see below)
|
|
VkPipelineViewportStateCreateInfo viewportStateCI{};
|
|
viewportStateCI.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
|
|
viewportStateCI.viewportCount = 1;
|
|
viewportStateCI.scissorCount = 1;
|
|
|
|
// Enable dynamic states
|
|
// Most states are baked into the pipeline, but there are still a few dynamic states that can be changed within a command buffer
|
|
// To be able to change these we need do specify which dynamic states will be changed using this pipeline. Their actual states are set later on in the command buffer.
|
|
// For this example we will set the viewport and scissor using dynamic states
|
|
std::vector<VkDynamicState> dynamicStateEnables;
|
|
dynamicStateEnables.push_back(VK_DYNAMIC_STATE_VIEWPORT);
|
|
dynamicStateEnables.push_back(VK_DYNAMIC_STATE_SCISSOR);
|
|
VkPipelineDynamicStateCreateInfo dynamicStateCI{};
|
|
dynamicStateCI.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
|
|
dynamicStateCI.pDynamicStates = dynamicStateEnables.data();
|
|
dynamicStateCI.dynamicStateCount = static_cast<uint32_t>(dynamicStateEnables.size());
|
|
|
|
// Depth and stencil state containing depth and stencil compare and test operations
|
|
// We only use depth tests and want depth tests and writes to be enabled and compare with less or equal
|
|
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI{};
|
|
depthStencilStateCI.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
|
|
depthStencilStateCI.depthTestEnable = VK_TRUE;
|
|
depthStencilStateCI.depthWriteEnable = VK_TRUE;
|
|
depthStencilStateCI.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL;
|
|
depthStencilStateCI.depthBoundsTestEnable = VK_FALSE;
|
|
depthStencilStateCI.back.failOp = VK_STENCIL_OP_KEEP;
|
|
depthStencilStateCI.back.passOp = VK_STENCIL_OP_KEEP;
|
|
depthStencilStateCI.back.compareOp = VK_COMPARE_OP_ALWAYS;
|
|
depthStencilStateCI.stencilTestEnable = VK_FALSE;
|
|
depthStencilStateCI.front = depthStencilStateCI.back;
|
|
|
|
// Multi sampling state
|
|
// This example does not make use of multi sampling (for anti-aliasing), the state must still be set and passed to the pipeline
|
|
VkPipelineMultisampleStateCreateInfo multisampleStateCI{};
|
|
multisampleStateCI.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
|
|
multisampleStateCI.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
|
|
multisampleStateCI.pSampleMask = nullptr;
|
|
|
|
// Vertex input descriptions
|
|
// Specifies the vertex input parameters for a pipeline
|
|
|
|
// Vertex input binding
|
|
// This example uses a single vertex input binding at binding point 0 (see vkCmdBindVertexBuffers)
|
|
VkVertexInputBindingDescription vertexInputBinding{};
|
|
vertexInputBinding.binding = 0;
|
|
vertexInputBinding.stride = sizeof(Vertex);
|
|
vertexInputBinding.inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
|
|
|
|
// Input attribute bindings describe shader attribute locations and memory layouts
|
|
std::array<VkVertexInputAttributeDescription, 2> vertexInputAttributs{};
|
|
// These match the following shader layout (see triangle.vert):
|
|
// layout (location = 0) in vec3 inPos;
|
|
// layout (location = 1) in vec3 inColor;
|
|
// Attribute location 0: Position
|
|
vertexInputAttributs[0].binding = 0;
|
|
vertexInputAttributs[0].location = 0;
|
|
// Position attribute is three 32 bit signed (SFLOAT) floats (R32 G32 B32)
|
|
vertexInputAttributs[0].format = VK_FORMAT_R32G32B32_SFLOAT;
|
|
vertexInputAttributs[0].offset = offsetof(Vertex, position);
|
|
// Attribute location 1: Color
|
|
vertexInputAttributs[1].binding = 0;
|
|
vertexInputAttributs[1].location = 1;
|
|
// Color attribute is three 32 bit signed (SFLOAT) floats (R32 G32 B32)
|
|
vertexInputAttributs[1].format = VK_FORMAT_R32G32B32_SFLOAT;
|
|
vertexInputAttributs[1].offset = offsetof(Vertex, color);
|
|
|
|
// Vertex input state used for pipeline creation
|
|
VkPipelineVertexInputStateCreateInfo vertexInputStateCI{};
|
|
vertexInputStateCI.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
|
|
vertexInputStateCI.vertexBindingDescriptionCount = 1;
|
|
vertexInputStateCI.pVertexBindingDescriptions = &vertexInputBinding;
|
|
vertexInputStateCI.vertexAttributeDescriptionCount = 2;
|
|
vertexInputStateCI.pVertexAttributeDescriptions = vertexInputAttributs.data();
|
|
|
|
// Shaders
|
|
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages{};
|
|
|
|
// Vertex shader
|
|
shaderStages[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
|
|
// Set pipeline stage for this shader
|
|
shaderStages[0].stage = VK_SHADER_STAGE_VERTEX_BIT;
|
|
// Load binary SPIR-V shader
|
|
shaderStages[0].module = loadSPIRVShader(getShadersPath() + "triangle/triangle.vert.spv");
|
|
// Main entry point for the shader
|
|
shaderStages[0].pName = "main";
|
|
assert(shaderStages[0].module != VK_NULL_HANDLE);
|
|
|
|
// Fragment shader
|
|
shaderStages[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
|
|
// Set pipeline stage for this shader
|
|
shaderStages[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT;
|
|
// Load binary SPIR-V shader
|
|
shaderStages[1].module = loadSPIRVShader(getShadersPath() + "triangle/triangle.frag.spv");
|
|
// Main entry point for the shader
|
|
shaderStages[1].pName = "main";
|
|
assert(shaderStages[1].module != VK_NULL_HANDLE);
|
|
|
|
// Set pipeline shader stage info
|
|
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
|
|
pipelineCI.pStages = shaderStages.data();
|
|
|
|
// Assign the pipeline states to the pipeline creation info structure
|
|
pipelineCI.pVertexInputState = &vertexInputStateCI;
|
|
pipelineCI.pInputAssemblyState = &inputAssemblyStateCI;
|
|
pipelineCI.pRasterizationState = &rasterizationStateCI;
|
|
pipelineCI.pColorBlendState = &colorBlendStateCI;
|
|
pipelineCI.pMultisampleState = &multisampleStateCI;
|
|
pipelineCI.pViewportState = &viewportStateCI;
|
|
pipelineCI.pDepthStencilState = &depthStencilStateCI;
|
|
pipelineCI.pDynamicState = &dynamicStateCI;
|
|
|
|
// Create rendering pipeline using the specified states
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline));
|
|
|
|
// Shader modules are no longer needed once the graphics pipeline has been created
|
|
vkDestroyShaderModule(device, shaderStages[0].module, nullptr);
|
|
vkDestroyShaderModule(device, shaderStages[1].module, nullptr);
|
|
}
|
|
|
|
void createUniformBuffers()
|
|
{
|
|
// Prepare and initialize the per-frame uniform buffer blocks containing shader uniforms
|
|
// Single uniforms like in OpenGL are no longer present in Vulkan. All hader uniforms are passed via uniform buffer blocks
|
|
VkMemoryRequirements memReqs;
|
|
|
|
// Vertex shader uniform buffer block
|
|
VkBufferCreateInfo bufferInfo{};
|
|
VkMemoryAllocateInfo allocInfo{};
|
|
allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
|
|
allocInfo.pNext = nullptr;
|
|
allocInfo.allocationSize = 0;
|
|
allocInfo.memoryTypeIndex = 0;
|
|
|
|
bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
|
|
bufferInfo.size = sizeof(ShaderData);
|
|
// This buffer will be used as a uniform buffer
|
|
bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
|
|
|
|
// Create the buffers
|
|
for (uint32_t i = 0; i < MAX_CONCURRENT_FRAMES; i++) {
|
|
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferInfo, nullptr, &uniformBuffers[i].buffer));
|
|
// Get memory requirements including size, alignment and memory type
|
|
vkGetBufferMemoryRequirements(device, uniformBuffers[i].buffer, &memReqs);
|
|
allocInfo.allocationSize = memReqs.size;
|
|
// Get the memory type index that supports host visible memory access
|
|
// Most implementations offer multiple memory types and selecting the correct one to allocate memory from is crucial
|
|
// We also want the buffer to be host coherent so we don't have to flush (or sync after every update.
|
|
// Note: This may affect performance so you might not want to do this in a real world application that updates buffers on a regular base
|
|
allocInfo.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
|
|
// Allocate memory for the uniform buffer
|
|
VK_CHECK_RESULT(vkAllocateMemory(device, &allocInfo, nullptr, &(uniformBuffers[i].memory)));
|
|
// Bind memory to buffer
|
|
VK_CHECK_RESULT(vkBindBufferMemory(device, uniformBuffers[i].buffer, uniformBuffers[i].memory, 0));
|
|
// We map the buffer once, so we can update it without having to map it again
|
|
VK_CHECK_RESULT(vkMapMemory(device, uniformBuffers[i].memory, 0, sizeof(ShaderData), 0, (void**)&uniformBuffers[i].mapped));
|
|
}
|
|
|
|
}
|
|
|
|
void prepare() override
|
|
{
|
|
VulkanExampleBase::prepare();
|
|
createSynchronizationPrimitives();
|
|
createCommandBuffers();
|
|
createVertexBuffer();
|
|
createUniformBuffers();
|
|
createDescriptorSetLayout();
|
|
createDescriptorPool();
|
|
createDescriptorSets();
|
|
createPipelines();
|
|
prepared = true;
|
|
}
|
|
|
|
void render() override
|
|
{
|
|
if (!prepared)
|
|
return;
|
|
|
|
// Use a fence to wait until the command buffer has finished execution before using it again
|
|
vkWaitForFences(device, 1, &waitFences[currentFrame], VK_TRUE, UINT64_MAX);
|
|
VK_CHECK_RESULT(vkResetFences(device, 1, &waitFences[currentFrame]));
|
|
|
|
// Get the next swap chain image from the implementation
|
|
// Note that the implementation is free to return the images in any order, so we must use the acquire function and can't just cycle through the images/imageIndex on our own
|
|
uint32_t imageIndex;
|
|
VkResult result = vkAcquireNextImageKHR(device, swapChain.swapChain, UINT64_MAX, presentCompleteSemaphores[currentSemaphore], VK_NULL_HANDLE, &imageIndex);
|
|
if (result == VK_ERROR_OUT_OF_DATE_KHR) {
|
|
windowResize();
|
|
return;
|
|
}
|
|
else if ((result != VK_SUCCESS) && (result != VK_SUBOPTIMAL_KHR)) {
|
|
throw "Could not acquire the next swap chain image!";
|
|
}
|
|
|
|
// Update the uniform buffer for the next frame
|
|
ShaderData shaderData{};
|
|
shaderData.projectionMatrix = camera.matrices.perspective;
|
|
shaderData.viewMatrix = camera.matrices.view;
|
|
shaderData.modelMatrix = glm::mat4(1.0f);
|
|
|
|
// Copy the current matrices to the current frame's uniform buffer
|
|
// Note: Since we requested a host coherent memory type for the uniform buffer, the write is instantly visible to the GPU
|
|
memcpy(uniformBuffers[currentFrame].mapped, &shaderData, sizeof(ShaderData));
|
|
|
|
// Build the command buffer
|
|
// Unlike in OpenGL all rendering commands are recorded into command buffers that are then submitted to the queue
|
|
// This allows to generate work upfront in a separate thread
|
|
// For basic command buffers (like in this sample), recording is so fast that there is no need to offload this
|
|
|
|
vkResetCommandBuffer(commandBuffers[currentFrame], 0);
|
|
|
|
VkCommandBufferBeginInfo cmdBufInfo{};
|
|
cmdBufInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
|
|
|
|
// Set clear values for all framebuffer attachments with loadOp set to clear
|
|
// We use two attachments (color and depth) that are cleared at the start of the subpass and as such we need to set clear values for both
|
|
VkClearValue clearValues[2]{};
|
|
clearValues[0].color = { { 0.0f, 0.0f, 0.2f, 1.0f } };
|
|
clearValues[1].depthStencil = { 1.0f, 0 };
|
|
|
|
VkRenderPassBeginInfo renderPassBeginInfo{};
|
|
renderPassBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
|
|
renderPassBeginInfo.pNext = nullptr;
|
|
renderPassBeginInfo.renderPass = renderPass;
|
|
renderPassBeginInfo.renderArea.offset.x = 0;
|
|
renderPassBeginInfo.renderArea.offset.y = 0;
|
|
renderPassBeginInfo.renderArea.extent.width = width;
|
|
renderPassBeginInfo.renderArea.extent.height = height;
|
|
renderPassBeginInfo.clearValueCount = 2;
|
|
renderPassBeginInfo.pClearValues = clearValues;
|
|
renderPassBeginInfo.framebuffer = frameBuffers[imageIndex];
|
|
|
|
const VkCommandBuffer commandBuffer = commandBuffers[currentFrame];
|
|
VK_CHECK_RESULT(vkBeginCommandBuffer(commandBuffer, &cmdBufInfo));
|
|
|
|
// Start the first sub pass specified in our default render pass setup by the base class
|
|
// This will clear the color and depth attachment
|
|
vkCmdBeginRenderPass(commandBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
|
// Update dynamic viewport state
|
|
VkViewport viewport{};
|
|
viewport.height = (float)height;
|
|
viewport.width = (float)width;
|
|
viewport.minDepth = (float)0.0f;
|
|
viewport.maxDepth = (float)1.0f;
|
|
vkCmdSetViewport(commandBuffer, 0, 1, &viewport);
|
|
// Update dynamic scissor state
|
|
VkRect2D scissor{};
|
|
scissor.extent.width = width;
|
|
scissor.extent.height = height;
|
|
scissor.offset.x = 0;
|
|
scissor.offset.y = 0;
|
|
vkCmdSetScissor(commandBuffer, 0, 1, &scissor);
|
|
// Bind descriptor set for the current frame's uniform buffer, so the shader uses the data from that buffer for this draw
|
|
vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &uniformBuffers[currentFrame].descriptorSet, 0, nullptr);
|
|
// Bind the rendering pipeline
|
|
// The pipeline (state object) contains all states of the rendering pipeline, binding it will set all the states specified at pipeline creation time
|
|
vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
|
|
// Bind triangle vertex buffer (contains position and colors)
|
|
VkDeviceSize offsets[1]{ 0 };
|
|
vkCmdBindVertexBuffers(commandBuffer, 0, 1, &vertices.buffer, offsets);
|
|
// Bind triangle index buffer
|
|
vkCmdBindIndexBuffer(commandBuffer, indices.buffer, 0, VK_INDEX_TYPE_UINT32);
|
|
// Draw indexed triangle
|
|
vkCmdDrawIndexed(commandBuffer, indices.count, 1, 0, 0, 0);
|
|
vkCmdEndRenderPass(commandBuffer);
|
|
// Ending the render pass will add an implicit barrier transitioning the frame buffer color attachment to
|
|
// VK_IMAGE_LAYOUT_PRESENT_SRC_KHR for presenting it to the windowing system
|
|
VK_CHECK_RESULT(vkEndCommandBuffer(commandBuffer));
|
|
|
|
// Submit the command buffer to the graphics queue
|
|
|
|
// Pipeline stage at which the queue submission will wait (via pWaitSemaphores)
|
|
VkPipelineStageFlags waitStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
|
|
// The submit info structure specifies a command buffer queue submission batch
|
|
VkSubmitInfo submitInfo{};
|
|
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
|
|
submitInfo.pWaitDstStageMask = &waitStageMask; // Pointer to the list of pipeline stages that the semaphore waits will occur at
|
|
submitInfo.pCommandBuffers = &commandBuffer; // Command buffers(s) to execute in this batch (submission)
|
|
submitInfo.commandBufferCount = 1; // We submit a single command buffer
|
|
|
|
// Semaphore to wait upon before the submitted command buffer starts executing
|
|
submitInfo.pWaitSemaphores = &presentCompleteSemaphores[currentSemaphore];
|
|
submitInfo.waitSemaphoreCount = 1;
|
|
// Semaphore to be signaled when command buffers have completed
|
|
submitInfo.pSignalSemaphores = &renderCompleteSemaphores[currentSemaphore];
|
|
submitInfo.signalSemaphoreCount = 1;
|
|
|
|
// Submit to the graphics queue passing a wait fence
|
|
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, waitFences[currentFrame]));
|
|
|
|
// Present the current frame buffer to the swap chain
|
|
// Pass the semaphore signaled by the command buffer submission from the submit info as the wait semaphore for swap chain presentation
|
|
// This ensures that the image is not presented to the windowing system until all commands have been submitted
|
|
|
|
VkPresentInfoKHR presentInfo{};
|
|
presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
|
|
presentInfo.waitSemaphoreCount = 1;
|
|
presentInfo.pWaitSemaphores = &renderCompleteSemaphores[currentSemaphore];
|
|
presentInfo.swapchainCount = 1;
|
|
presentInfo.pSwapchains = &swapChain.swapChain;
|
|
presentInfo.pImageIndices = &imageIndex;
|
|
result = vkQueuePresentKHR(queue, &presentInfo);
|
|
|
|
if ((result == VK_ERROR_OUT_OF_DATE_KHR) || (result == VK_SUBOPTIMAL_KHR)) {
|
|
windowResize();
|
|
}
|
|
else if (result != VK_SUCCESS) {
|
|
throw "Could not present the image to the swap chain!";
|
|
}
|
|
|
|
// Select the next frame to render to, based on the max. no. of concurrent frames
|
|
currentFrame = (currentFrame + 1) % MAX_CONCURRENT_FRAMES;
|
|
// Similar for the semaphores, which need to be unique to the swapchain images
|
|
currentSemaphore = (currentSemaphore + 1) % swapChain.imageCount;
|
|
}
|
|
};
|
|
|
|
// OS specific main entry points
|
|
// Most of the code base is shared for the different supported operating systems, but stuff like message handling differs
|
|
|
|
#if defined(_WIN32)
|
|
// Windows entry point
|
|
VulkanExample *vulkanExample;
|
|
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
|
|
{
|
|
if (vulkanExample != NULL)
|
|
{
|
|
vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam);
|
|
}
|
|
return (DefWindowProc(hWnd, uMsg, wParam, lParam));
|
|
}
|
|
int APIENTRY WinMain(_In_ HINSTANCE hInstance, _In_opt_ HINSTANCE hPrevInstance, _In_ LPSTR, _In_ int)
|
|
{
|
|
for (size_t i = 0; i < __argc; i++) { VulkanExample::args.push_back(__argv[i]); };
|
|
vulkanExample = new VulkanExample();
|
|
vulkanExample->initVulkan();
|
|
vulkanExample->setupWindow(hInstance, WndProc);
|
|
vulkanExample->prepare();
|
|
vulkanExample->renderLoop();
|
|
delete(vulkanExample);
|
|
return 0;
|
|
}
|
|
|
|
#elif defined(__ANDROID__)
|
|
// Android entry point
|
|
VulkanExample *vulkanExample;
|
|
void android_main(android_app* state)
|
|
{
|
|
vulkanExample = new VulkanExample();
|
|
state->userData = vulkanExample;
|
|
state->onAppCmd = VulkanExample::handleAppCommand;
|
|
state->onInputEvent = VulkanExample::handleAppInput;
|
|
androidApp = state;
|
|
vulkanExample->renderLoop();
|
|
delete(vulkanExample);
|
|
}
|
|
#elif defined(_DIRECT2DISPLAY)
|
|
|
|
// Linux entry point with direct to display wsi
|
|
// Direct to Displays (D2D) is used on embedded platforms
|
|
VulkanExample *vulkanExample;
|
|
static void handleEvent()
|
|
{
|
|
}
|
|
int main(const int argc, const char *argv[])
|
|
{
|
|
for (size_t i = 0; i < argc; i++) { VulkanExample::args.push_back(argv[i]); };
|
|
vulkanExample = new VulkanExample();
|
|
vulkanExample->initVulkan();
|
|
vulkanExample->prepare();
|
|
vulkanExample->renderLoop();
|
|
delete(vulkanExample);
|
|
return 0;
|
|
}
|
|
#elif defined(VK_USE_PLATFORM_DIRECTFB_EXT)
|
|
VulkanExample *vulkanExample;
|
|
static void handleEvent(const DFBWindowEvent *event)
|
|
{
|
|
if (vulkanExample != NULL)
|
|
{
|
|
vulkanExample->handleEvent(event);
|
|
}
|
|
}
|
|
int main(const int argc, const char *argv[])
|
|
{
|
|
for (size_t i = 0; i < argc; i++) { VulkanExample::args.push_back(argv[i]); };
|
|
vulkanExample = new VulkanExample();
|
|
vulkanExample->initVulkan();
|
|
vulkanExample->setupWindow();
|
|
vulkanExample->prepare();
|
|
vulkanExample->renderLoop();
|
|
delete(vulkanExample);
|
|
return 0;
|
|
}
|
|
#elif defined(VK_USE_PLATFORM_WAYLAND_KHR)
|
|
VulkanExample *vulkanExample;
|
|
int main(const int argc, const char *argv[])
|
|
{
|
|
for (size_t i = 0; i < argc; i++) { VulkanExample::args.push_back(argv[i]); };
|
|
vulkanExample = new VulkanExample();
|
|
vulkanExample->initVulkan();
|
|
vulkanExample->setupWindow();
|
|
vulkanExample->prepare();
|
|
vulkanExample->renderLoop();
|
|
delete(vulkanExample);
|
|
return 0;
|
|
}
|
|
#elif defined(__linux__) || defined(__FreeBSD__)
|
|
|
|
// Linux entry point
|
|
VulkanExample *vulkanExample;
|
|
#if defined(VK_USE_PLATFORM_XCB_KHR)
|
|
static void handleEvent(const xcb_generic_event_t *event)
|
|
{
|
|
if (vulkanExample != NULL)
|
|
{
|
|
vulkanExample->handleEvent(event);
|
|
}
|
|
}
|
|
#else
|
|
static void handleEvent()
|
|
{
|
|
}
|
|
#endif
|
|
int main(const int argc, const char *argv[])
|
|
{
|
|
for (size_t i = 0; i < argc; i++) { VulkanExample::args.push_back(argv[i]); };
|
|
vulkanExample = new VulkanExample();
|
|
vulkanExample->initVulkan();
|
|
vulkanExample->setupWindow();
|
|
vulkanExample->prepare();
|
|
vulkanExample->renderLoop();
|
|
delete(vulkanExample);
|
|
return 0;
|
|
}
|
|
#elif (defined(VK_USE_PLATFORM_MACOS_MVK) || defined(VK_USE_PLATFORM_METAL_EXT)) && defined(VK_EXAMPLE_XCODE_GENERATED)
|
|
VulkanExample *vulkanExample;
|
|
int main(const int argc, const char *argv[])
|
|
{
|
|
@autoreleasepool
|
|
{
|
|
for (size_t i = 0; i < argc; i++) { VulkanExample::args.push_back(argv[i]); };
|
|
vulkanExample = new VulkanExample();
|
|
vulkanExample->initVulkan();
|
|
vulkanExample->setupWindow(nullptr);
|
|
vulkanExample->prepare();
|
|
vulkanExample->renderLoop();
|
|
delete(vulkanExample);
|
|
}
|
|
return 0;
|
|
}
|
|
#elif defined(VK_USE_PLATFORM_SCREEN_QNX)
|
|
VULKAN_EXAMPLE_MAIN()
|
|
#endif
|