procedural-3d-engine/examples/hdr/hdr.cpp
Sascha Willems a465bad5aa Cleaned up includes
Fixed typos
2020-08-09 13:16:35 +02:00

894 lines
37 KiB
C++

/*
* Vulkan Example - High dynamic range rendering
*
* Note: Requires the separate asset pack (see data/README.md)
*
* Copyright by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkanexamplebase.h"
#include "VulkanglTFModel.h"
#define ENABLE_VALIDATION false
class VulkanExample : public VulkanExampleBase
{
public:
bool bloom = true;
bool displaySkybox = true;
struct {
vks::TextureCubeMap envmap;
} textures;
struct Models {
vkglTF::Model skybox;
std::vector<vkglTF::Model> objects;
int32_t objectIndex = 1;
} models;
struct {
vks::Buffer matrices;
vks::Buffer params;
} uniformBuffers;
struct UBOVS {
glm::mat4 projection;
glm::mat4 modelview;
glm::mat4 inverseModelview;
} uboVS;
struct UBOParams {
float exposure = 1.0f;
} uboParams;
struct {
VkPipeline skybox;
VkPipeline reflect;
VkPipeline composition;
VkPipeline bloom[2];
} pipelines;
struct {
VkPipelineLayout models;
VkPipelineLayout composition;
VkPipelineLayout bloomFilter;
} pipelineLayouts;
struct {
VkDescriptorSet object;
VkDescriptorSet skybox;
VkDescriptorSet composition;
VkDescriptorSet bloomFilter;
} descriptorSets;
struct {
VkDescriptorSetLayout models;
VkDescriptorSetLayout composition;
VkDescriptorSetLayout bloomFilter;
} descriptorSetLayouts;
// Framebuffer for offscreen rendering
struct FrameBufferAttachment {
VkImage image;
VkDeviceMemory mem;
VkImageView view;
VkFormat format;
void destroy(VkDevice device)
{
vkDestroyImageView(device, view, nullptr);
vkDestroyImage(device, image, nullptr);
vkFreeMemory(device, mem, nullptr);
}
};
struct FrameBuffer {
int32_t width, height;
VkFramebuffer frameBuffer;
FrameBufferAttachment color[2];
FrameBufferAttachment depth;
VkRenderPass renderPass;
VkSampler sampler;
} offscreen;
struct {
int32_t width, height;
VkFramebuffer frameBuffer;
FrameBufferAttachment color[1];
VkRenderPass renderPass;
VkSampler sampler;
} filterPass;
std::vector<std::string> objectNames;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "High dynamic range rendering";
camera.type = Camera::CameraType::lookat;
camera.setPosition(glm::vec3(0.0f, 0.0f, -6.0f));
camera.setRotation(glm::vec3(0.0f, 0.0f, 0.0f));
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
settings.overlay = true;
}
~VulkanExample()
{
vkDestroyPipeline(device, pipelines.skybox, nullptr);
vkDestroyPipeline(device, pipelines.reflect, nullptr);
vkDestroyPipeline(device, pipelines.composition, nullptr);
vkDestroyPipeline(device, pipelines.bloom[0], nullptr);
vkDestroyPipeline(device, pipelines.bloom[1], nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.models, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.composition, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.bloomFilter, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.models, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.composition, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.bloomFilter, nullptr);
vkDestroyRenderPass(device, offscreen.renderPass, nullptr);
vkDestroyRenderPass(device, filterPass.renderPass, nullptr);
vkDestroyFramebuffer(device, offscreen.frameBuffer, nullptr);
vkDestroyFramebuffer(device, filterPass.frameBuffer, nullptr);
vkDestroySampler(device, offscreen.sampler, nullptr);
vkDestroySampler(device, filterPass.sampler, nullptr);
offscreen.depth.destroy(device);
offscreen.color[0].destroy(device);
offscreen.color[1].destroy(device);
filterPass.color[0].destroy(device);
uniformBuffers.matrices.destroy();
uniformBuffers.params.destroy();
textures.envmap.destroy();
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 0.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
VkViewport viewport;
VkRect2D scissor;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
{
/*
First pass: Render scene to offscreen framebuffer
*/
std::array<VkClearValue, 3> clearValues;
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 0.0f } };
clearValues[1].color = { { 0.0f, 0.0f, 0.0f, 0.0f } };
clearValues[2].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = offscreen.renderPass;
renderPassBeginInfo.framebuffer = offscreen.frameBuffer;
renderPassBeginInfo.renderArea.extent.width = offscreen.width;
renderPassBeginInfo.renderArea.extent.height = offscreen.height;
renderPassBeginInfo.clearValueCount = 3;
renderPassBeginInfo.pClearValues = clearValues.data();
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)offscreen.width, (float)offscreen.height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(offscreen.width, offscreen.height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
// Skybox
if (displaySkybox)
{
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.models, 0, 1, &descriptorSets.skybox, 0, NULL);
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &models.skybox.vertices.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.skybox.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.skybox);
models.skybox.draw(drawCmdBuffers[i]);
}
// 3D object
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.models, 0, 1, &descriptorSets.object, 0, NULL);
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &models.objects[models.objectIndex].vertices.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.objects[models.objectIndex].indices.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.reflect);
models.objects[models.objectIndex].draw(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
}
/*
Second render pass: First bloom pass
*/
if (bloom) {
VkClearValue clearValues[2];
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 0.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
// Bloom filter
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.framebuffer = filterPass.frameBuffer;
renderPassBeginInfo.renderPass = filterPass.renderPass;
renderPassBeginInfo.clearValueCount = 1;
renderPassBeginInfo.renderArea.extent.width = filterPass.width;
renderPassBeginInfo.renderArea.extent.height = filterPass.height;
renderPassBeginInfo.pClearValues = clearValues;
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)filterPass.width, (float)filterPass.height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(filterPass.width, filterPass.height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.bloomFilter, 0, 1, &descriptorSets.bloomFilter, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.bloom[1]);
vkCmdDraw(drawCmdBuffers[i], 3, 1, 0, 0);
vkCmdEndRenderPass(drawCmdBuffers[i]);
}
/*
Note: Explicit synchronization is not required between the render pass, as this is done implicit via sub pass dependencies
*/
/*
Third render pass: Scene rendering with applied second bloom pass (when enabled)
*/
{
VkClearValue clearValues[2];
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 0.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
// Final composition
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.framebuffer = frameBuffers[i];
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.pClearValues = clearValues;
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.composition, 0, 1, &descriptorSets.composition, 0, NULL);
// Scene
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.composition);
vkCmdDraw(drawCmdBuffers[i], 3, 1, 0, 0);
// Bloom
if (bloom) {
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.bloom[0]);
vkCmdDraw(drawCmdBuffers[i], 3, 1, 0, 0);
}
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
}
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void createAttachment(VkFormat format, VkImageUsageFlagBits usage, FrameBufferAttachment *attachment)
{
VkImageAspectFlags aspectMask = 0;
VkImageLayout imageLayout;
attachment->format = format;
if (usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
{
aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imageLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
}
if (usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)
{
aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
imageLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
}
assert(aspectMask > 0);
VkImageCreateInfo image = vks::initializers::imageCreateInfo();
image.imageType = VK_IMAGE_TYPE_2D;
image.format = format;
image.extent.width = offscreen.width;
image.extent.height = offscreen.height;
image.extent.depth = 1;
image.mipLevels = 1;
image.arrayLayers = 1;
image.samples = VK_SAMPLE_COUNT_1_BIT;
image.tiling = VK_IMAGE_TILING_OPTIMAL;
image.usage = usage | VK_IMAGE_USAGE_SAMPLED_BIT;
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &attachment->image));
vkGetImageMemoryRequirements(device, attachment->image, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &attachment->mem));
VK_CHECK_RESULT(vkBindImageMemory(device, attachment->image, attachment->mem, 0));
VkImageViewCreateInfo imageView = vks::initializers::imageViewCreateInfo();
imageView.viewType = VK_IMAGE_VIEW_TYPE_2D;
imageView.format = format;
imageView.subresourceRange = {};
imageView.subresourceRange.aspectMask = aspectMask;
imageView.subresourceRange.baseMipLevel = 0;
imageView.subresourceRange.levelCount = 1;
imageView.subresourceRange.baseArrayLayer = 0;
imageView.subresourceRange.layerCount = 1;
imageView.image = attachment->image;
VK_CHECK_RESULT(vkCreateImageView(device, &imageView, nullptr, &attachment->view));
}
// Prepare a new framebuffer and attachments for offscreen rendering (G-Buffer)
void prepareoffscreenfer()
{
{
offscreen.width = width;
offscreen.height = height;
// Color attachments
// Two floating point color buffers
createAttachment(VK_FORMAT_R32G32B32A32_SFLOAT, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, &offscreen.color[0]);
createAttachment(VK_FORMAT_R32G32B32A32_SFLOAT, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, &offscreen.color[1]);
// Depth attachment
createAttachment(depthFormat, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, &offscreen.depth);
// Set up separate renderpass with references to the color and depth attachments
std::array<VkAttachmentDescription, 3> attachmentDescs = {};
// Init attachment properties
for (uint32_t i = 0; i < 3; ++i)
{
attachmentDescs[i].samples = VK_SAMPLE_COUNT_1_BIT;
attachmentDescs[i].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachmentDescs[i].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachmentDescs[i].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachmentDescs[i].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
if (i == 2)
{
attachmentDescs[i].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachmentDescs[i].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
}
else
{
attachmentDescs[i].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachmentDescs[i].finalLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
}
}
// Formats
attachmentDescs[0].format = offscreen.color[0].format;
attachmentDescs[1].format = offscreen.color[1].format;
attachmentDescs[2].format = offscreen.depth.format;
std::vector<VkAttachmentReference> colorReferences;
colorReferences.push_back({ 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL });
colorReferences.push_back({ 1, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL });
VkAttachmentReference depthReference = {};
depthReference.attachment = 2;
depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.pColorAttachments = colorReferences.data();
subpass.colorAttachmentCount = 2;
subpass.pDepthStencilAttachment = &depthReference;
// Use subpass dependencies for attachment layout transitions
std::array<VkSubpassDependency, 2> dependencies;
dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL;
dependencies[0].dstSubpass = 0;
dependencies[0].srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
dependencies[1].srcSubpass = 0;
dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL;
dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[1].dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[1].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
VkRenderPassCreateInfo renderPassInfo = {};
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
renderPassInfo.pAttachments = attachmentDescs.data();
renderPassInfo.attachmentCount = static_cast<uint32_t>(attachmentDescs.size());
renderPassInfo.subpassCount = 1;
renderPassInfo.pSubpasses = &subpass;
renderPassInfo.dependencyCount = 2;
renderPassInfo.pDependencies = dependencies.data();
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassInfo, nullptr, &offscreen.renderPass));
std::array<VkImageView, 3> attachments;
attachments[0] = offscreen.color[0].view;
attachments[1] = offscreen.color[1].view;
attachments[2] = offscreen.depth.view;
VkFramebufferCreateInfo fbufCreateInfo = {};
fbufCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
fbufCreateInfo.pNext = NULL;
fbufCreateInfo.renderPass = offscreen.renderPass;
fbufCreateInfo.pAttachments = attachments.data();
fbufCreateInfo.attachmentCount = static_cast<uint32_t>(attachments.size());
fbufCreateInfo.width = offscreen.width;
fbufCreateInfo.height = offscreen.height;
fbufCreateInfo.layers = 1;
VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offscreen.frameBuffer));
// Create sampler to sample from the color attachments
VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo();
sampler.magFilter = VK_FILTER_NEAREST;
sampler.minFilter = VK_FILTER_NEAREST;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
sampler.addressModeV = sampler.addressModeU;
sampler.addressModeW = sampler.addressModeU;
sampler.mipLodBias = 0.0f;
sampler.maxAnisotropy = 1.0f;
sampler.minLod = 0.0f;
sampler.maxLod = 1.0f;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &offscreen.sampler));
}
// Bloom separable filter pass
{
filterPass.width = width;
filterPass.height = height;
// Color attachments
// Two floating point color buffers
createAttachment(VK_FORMAT_R32G32B32A32_SFLOAT, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, &filterPass.color[0]);
// Set up separate renderpass with references to the color and depth attachments
std::array<VkAttachmentDescription, 1> attachmentDescs = {};
// Init attachment properties
attachmentDescs[0].samples = VK_SAMPLE_COUNT_1_BIT;
attachmentDescs[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachmentDescs[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachmentDescs[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachmentDescs[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachmentDescs[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachmentDescs[0].finalLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
attachmentDescs[0].format = filterPass.color[0].format;
std::vector<VkAttachmentReference> colorReferences;
colorReferences.push_back({ 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL });
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.pColorAttachments = colorReferences.data();
subpass.colorAttachmentCount = 1;
// Use subpass dependencies for attachment layout transitions
std::array<VkSubpassDependency, 2> dependencies;
dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL;
dependencies[0].dstSubpass = 0;
dependencies[0].srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
dependencies[1].srcSubpass = 0;
dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL;
dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[1].dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[1].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
VkRenderPassCreateInfo renderPassInfo = {};
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
renderPassInfo.pAttachments = attachmentDescs.data();
renderPassInfo.attachmentCount = static_cast<uint32_t>(attachmentDescs.size());
renderPassInfo.subpassCount = 1;
renderPassInfo.pSubpasses = &subpass;
renderPassInfo.dependencyCount = 2;
renderPassInfo.pDependencies = dependencies.data();
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassInfo, nullptr, &filterPass.renderPass));
std::array<VkImageView, 1> attachments;
attachments[0] = filterPass.color[0].view;
VkFramebufferCreateInfo fbufCreateInfo = {};
fbufCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
fbufCreateInfo.pNext = NULL;
fbufCreateInfo.renderPass = filterPass.renderPass;
fbufCreateInfo.pAttachments = attachments.data();
fbufCreateInfo.attachmentCount = static_cast<uint32_t>(attachments.size());
fbufCreateInfo.width = filterPass.width;
fbufCreateInfo.height = filterPass.height;
fbufCreateInfo.layers = 1;
VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &filterPass.frameBuffer));
// Create sampler to sample from the color attachments
VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo();
sampler.magFilter = VK_FILTER_NEAREST;
sampler.minFilter = VK_FILTER_NEAREST;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
sampler.addressModeV = sampler.addressModeU;
sampler.addressModeW = sampler.addressModeU;
sampler.mipLodBias = 0.0f;
sampler.maxAnisotropy = 1.0f;
sampler.minLod = 0.0f;
sampler.maxLod = 1.0f;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &filterPass.sampler));
}
}
void loadAssets()
{
// Load glTF models
const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::FlipY;
models.skybox.loadFromFile(getAssetPath() + "models/cube.gltf", vulkanDevice, queue, glTFLoadingFlags);
std::vector<std::string> filenames = { "sphere.gltf", "teapot.gltf", "torusknot.gltf", "venus.gltf" };
objectNames = { "Sphere", "Teapot", "Torusknot", "Venus" };
models.objects.resize(filenames.size());
for (size_t i = 0; i < filenames.size(); i++) {
models.objects[i].loadFromFile(getAssetPath() + "models/" + filenames[i], vulkanDevice, queue, glTFLoadingFlags);
}
// Load HDR cube map
textures.envmap.loadFromFile(getAssetPath() + "textures/hdr/uffizi_cube.ktx", VK_FORMAT_R16G16B16A16_SFLOAT, vulkanDevice, queue);
}
void setupDescriptorPool()
{
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 4),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 6)
};
uint32_t numDescriptorSets = 4;
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vks::initializers::descriptorPoolCreateInfo(static_cast<uint32_t>(poolSizes.size()), poolSizes.data(), numDescriptorSets);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_FRAGMENT_BIT, 2),
};
VkDescriptorSetLayoutCreateInfo descriptorLayoutInfo =
vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings.data(), static_cast<uint32_t>(setLayoutBindings.size()));
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayoutInfo, nullptr, &descriptorSetLayouts.models));
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo =
vks::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayouts.models,
1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayouts.models));
// Bloom filter
setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1),
};
descriptorLayoutInfo = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings.data(), static_cast<uint32_t>(setLayoutBindings.size()));
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayoutInfo, nullptr, &descriptorSetLayouts.bloomFilter));
pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayouts.bloomFilter, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayouts.bloomFilter));
// G-Buffer composition
setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1),
};
descriptorLayoutInfo = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings.data(), static_cast<uint32_t>(setLayoutBindings.size()));
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayoutInfo, nullptr, &descriptorSetLayouts.composition));
pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayouts.composition, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayouts.composition));
}
void setupDescriptorSets()
{
VkDescriptorSetAllocateInfo allocInfo =
vks::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayouts.models,
1);
// 3D object descriptor set
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.object));
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
vks::initializers::writeDescriptorSet(descriptorSets.object, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.matrices.descriptor),
vks::initializers::writeDescriptorSet(descriptorSets.object, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textures.envmap.descriptor),
vks::initializers::writeDescriptorSet(descriptorSets.object, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2, &uniformBuffers.params.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
// Sky box descriptor set
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.skybox));
writeDescriptorSets = {
vks::initializers::writeDescriptorSet(descriptorSets.skybox, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0,&uniformBuffers.matrices.descriptor),
vks::initializers::writeDescriptorSet(descriptorSets.skybox, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textures.envmap.descriptor),
vks::initializers::writeDescriptorSet(descriptorSets.skybox, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2, &uniformBuffers.params.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
// Bloom filter
allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.bloomFilter, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.bloomFilter));
std::vector<VkDescriptorImageInfo> colorDescriptors = {
vks::initializers::descriptorImageInfo(offscreen.sampler, offscreen.color[0].view, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL),
vks::initializers::descriptorImageInfo(offscreen.sampler, offscreen.color[1].view, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL),
};
writeDescriptorSets = {
vks::initializers::writeDescriptorSet(descriptorSets.bloomFilter, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &colorDescriptors[0]),
vks::initializers::writeDescriptorSet(descriptorSets.bloomFilter, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &colorDescriptors[1]),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
// Composition descriptor set
allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.composition, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.composition));
colorDescriptors = {
vks::initializers::descriptorImageInfo(offscreen.sampler, offscreen.color[0].view, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL),
vks::initializers::descriptorImageInfo(offscreen.sampler, filterPass.color[0].view, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL),
};
writeDescriptorSets = {
vks::initializers::writeDescriptorSet(descriptorSets.composition, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &colorDescriptors[0]),
vks::initializers::writeDescriptorSet(descriptorSets.composition, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &colorDescriptors[1]),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayouts.models, renderPass, 0);
pipelineCI.pInputAssemblyState = &inputAssemblyState;
pipelineCI.pRasterizationState = &rasterizationState;
pipelineCI.pColorBlendState = &colorBlendState;
pipelineCI.pMultisampleState = &multisampleState;
pipelineCI.pViewportState = &viewportState;
pipelineCI.pDepthStencilState = &depthStencilState;
pipelineCI.pDynamicState = &dynamicState;
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCI.pStages = shaderStages.data();
VkSpecializationInfo specializationInfo;
std::array<VkSpecializationMapEntry, 1> specializationMapEntries;
// Full screen pipelines
// Empty vertex input state, full screen triangles are generated by the vertex shader
VkPipelineVertexInputStateCreateInfo emptyInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
pipelineCI.pVertexInputState = &emptyInputState;
// Final fullscreen composition pass pipeline
std::vector<VkPipelineColorBlendAttachmentState> blendAttachmentStates = {
vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE),
vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE),
};
pipelineCI.layout = pipelineLayouts.composition;
pipelineCI.renderPass = renderPass;
rasterizationState.cullMode = VK_CULL_MODE_NONE;
colorBlendState.attachmentCount = 1;
colorBlendState.pAttachments = blendAttachmentStates.data();
shaderStages[0] = loadShader(getShadersPath() + "hdr/composition.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "hdr/composition.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.composition));
// Bloom pass
shaderStages[0] = loadShader(getShadersPath() + "hdr/bloom.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "hdr/bloom.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
colorBlendState.pAttachments = &blendAttachmentState;
blendAttachmentState.colorWriteMask = 0xF;
blendAttachmentState.blendEnable = VK_TRUE;
blendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD;
blendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_ONE;
blendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE;
blendAttachmentState.alphaBlendOp = VK_BLEND_OP_ADD;
blendAttachmentState.srcAlphaBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
blendAttachmentState.dstAlphaBlendFactor = VK_BLEND_FACTOR_DST_ALPHA;
// Set constant parameters via specialization constants
specializationMapEntries[0] = vks::initializers::specializationMapEntry(0, 0, sizeof(uint32_t));
uint32_t dir = 1;
specializationInfo = vks::initializers::specializationInfo(1, specializationMapEntries.data(), sizeof(dir), &dir);
shaderStages[1].pSpecializationInfo = &specializationInfo;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.bloom[0]));
// Second blur pass (into separate framebuffer)
pipelineCI.renderPass = filterPass.renderPass;
dir = 0;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.bloom[1]));
// Object rendering pipelines
// Use vertex input state from glTF model setup
pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position, vkglTF::VertexComponent::Normal });
blendAttachmentState.blendEnable = VK_FALSE;
pipelineCI.layout = pipelineLayouts.models;
pipelineCI.renderPass = offscreen.renderPass;
colorBlendState.attachmentCount = 2;
colorBlendState.pAttachments = blendAttachmentStates.data();
shaderStages[0] = loadShader(getShadersPath() + "hdr/gbuffer.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "hdr/gbuffer.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// Set constant parameters via specialization constants
specializationMapEntries[0] = vks::initializers::specializationMapEntry(0, 0, sizeof(uint32_t));
uint32_t shadertype = 0;
specializationInfo = vks::initializers::specializationInfo(1, specializationMapEntries.data(), sizeof(shadertype), &shadertype);
shaderStages[0].pSpecializationInfo = &specializationInfo;
shaderStages[1].pSpecializationInfo = &specializationInfo;
// Skybox pipeline (background cube)
rasterizationState.cullMode = VK_CULL_MODE_FRONT_BIT;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.skybox));
// Object rendering pipeline
shadertype = 1;
// Enable depth test and write
depthStencilState.depthWriteEnable = VK_TRUE;
depthStencilState.depthTestEnable = VK_TRUE;
// Flip cull mode
rasterizationState.cullMode = VK_CULL_MODE_BACK_BIT;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.reflect));
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Matrices vertex shader uniform buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.matrices,
sizeof(uboVS)));
// Params
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.params,
sizeof(uboParams)));
// Map persistent
VK_CHECK_RESULT(uniformBuffers.matrices.map());
VK_CHECK_RESULT(uniformBuffers.params.map());
updateUniformBuffers();
updateParams();
}
void updateUniformBuffers()
{
uboVS.projection = camera.matrices.perspective;
uboVS.modelview = camera.matrices.view;
uboVS.inverseModelview = glm::inverse(camera.matrices.view);
memcpy(uniformBuffers.matrices.mapped, &uboVS, sizeof(uboVS));
}
void updateParams()
{
memcpy(uniformBuffers.params.mapped, &uboParams, sizeof(uboParams));
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
prepareUniformBuffers();
prepareoffscreenfer();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSets();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
if (camera.updated)
updateUniformBuffers();
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Settings")) {
if (overlay->comboBox("Object type", &models.objectIndex, objectNames)) {
updateUniformBuffers();
buildCommandBuffers();
}
if (overlay->inputFloat("Exposure", &uboParams.exposure, 0.025f, 3)) {
updateParams();
}
if (overlay->checkBox("Bloom", &bloom)) {
buildCommandBuffers();
}
if (overlay->checkBox("Skybox", &displaySkybox)) {
buildCommandBuffers();
}
}
}
};
VULKAN_EXAMPLE_MAIN()