648 lines
No EOL
19 KiB
C++
648 lines
No EOL
19 KiB
C++
/*
|
|
* Mesh loader for creating Vulkan resources from models loaded with ASSIMP
|
|
*
|
|
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
|
|
*
|
|
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <stdlib.h>
|
|
#include <string>
|
|
#include <fstream>
|
|
#include <assert.h>
|
|
#include <stdio.h>
|
|
#include <vector>
|
|
#include <map>
|
|
#ifdef _WIN32
|
|
#include <windows.h>
|
|
#include <fcntl.h>
|
|
#include <io.h>
|
|
#else
|
|
#endif
|
|
|
|
#include "vulkan/vulkan.h"
|
|
|
|
#include <assimp/Importer.hpp>
|
|
#include <assimp/scene.h>
|
|
#include <assimp/postprocess.h>
|
|
#include <assimp/cimport.h>
|
|
|
|
#include <glm/glm.hpp>
|
|
#include <glm/gtc/matrix_transform.hpp>
|
|
#include <glm/gtc/type_ptr.hpp>
|
|
|
|
#include "vulkandevice.hpp"
|
|
|
|
#if defined(__ANDROID__)
|
|
#include <android/asset_manager.h>
|
|
#endif
|
|
|
|
namespace vkMeshLoader
|
|
{
|
|
typedef enum VertexLayout {
|
|
VERTEX_LAYOUT_POSITION = 0x0,
|
|
VERTEX_LAYOUT_NORMAL = 0x1,
|
|
VERTEX_LAYOUT_COLOR = 0x2,
|
|
VERTEX_LAYOUT_UV = 0x3,
|
|
VERTEX_LAYOUT_TANGENT = 0x4,
|
|
VERTEX_LAYOUT_BITANGENT = 0x5,
|
|
VERTEX_LAYOUT_DUMMY_FLOAT = 0x6,
|
|
VERTEX_LAYOUT_DUMMY_VEC4 = 0x7
|
|
} VertexLayout;
|
|
|
|
struct MeshBufferInfo
|
|
{
|
|
VkBuffer buf = VK_NULL_HANDLE;
|
|
VkDeviceMemory mem = VK_NULL_HANDLE;
|
|
size_t size = 0;
|
|
};
|
|
|
|
/** @brief Stores a mesh's vertex and index descriptions */
|
|
struct MeshDescriptor
|
|
{
|
|
uint32_t vertexCount;
|
|
uint32_t indexBase;
|
|
uint32_t indexCount;
|
|
};
|
|
|
|
/** @brief Mesh representation storing all data required to generate buffers */
|
|
struct MeshBuffer
|
|
{
|
|
VkDevice device = VK_NULL_HANDLE;
|
|
std::vector<MeshDescriptor> meshDescriptors;
|
|
MeshBufferInfo vertices;
|
|
MeshBufferInfo indices;
|
|
uint32_t indexCount;
|
|
glm::vec3 dim;
|
|
/** @brief Release all Vulkan resources held by this texture */
|
|
void destroy()
|
|
{
|
|
vkDestroyBuffer(device, vertices.buf, nullptr);
|
|
vkFreeMemory(device, vertices.mem, nullptr);
|
|
if (indices.buf != VK_NULL_HANDLE)
|
|
{
|
|
vkDestroyBuffer(device, indices.buf, nullptr);
|
|
vkFreeMemory(device, indices.mem, nullptr);
|
|
}
|
|
}
|
|
};
|
|
|
|
/** @brief Holds parameters for mesh creation */
|
|
struct MeshCreateInfo
|
|
{
|
|
glm::vec3 center;
|
|
glm::vec3 scale;
|
|
glm::vec2 uvscale;
|
|
};
|
|
|
|
/**
|
|
* Get the size of a vertex layout
|
|
*
|
|
* @param layout VertexLayout to get the size for
|
|
*
|
|
* @return Size of the vertex layout in bytes
|
|
*/
|
|
static uint32_t vertexSize(std::vector<vkMeshLoader::VertexLayout> layout)
|
|
{
|
|
uint32_t vSize = 0;
|
|
for (auto& layoutDetail : layout)
|
|
{
|
|
switch (layoutDetail)
|
|
{
|
|
// UV only has two components
|
|
case VERTEX_LAYOUT_UV:
|
|
vSize += 2 * sizeof(float);
|
|
break;
|
|
default:
|
|
vSize += 3 * sizeof(float);
|
|
}
|
|
}
|
|
return vSize;
|
|
}
|
|
|
|
/**
|
|
* Generate vertex attribute descriptions for a layout at the given binding point
|
|
*
|
|
* @param layout VertexLayout from which to generate the descriptions
|
|
* @param attributeDescriptions Refernce to a vector of the descriptions to generate
|
|
* @param binding Index of the attribute description binding point
|
|
*
|
|
* @note Always assumes float formats
|
|
*/
|
|
static void getVertexInputAttributeDescriptions(std::vector<vkMeshLoader::VertexLayout> layout, std::vector<VkVertexInputAttributeDescription> &attributeDescriptions, uint32_t binding)
|
|
{
|
|
uint32_t offset = 0;
|
|
uint32_t location = 0;
|
|
for (auto& layoutDetail : layout)
|
|
{
|
|
VkVertexInputAttributeDescription inputAttribDescription = {};
|
|
inputAttribDescription.binding = binding;
|
|
inputAttribDescription.location = location;
|
|
inputAttribDescription.offset = offset;
|
|
|
|
switch (layoutDetail)
|
|
{
|
|
// UV only has two components
|
|
case VERTEX_LAYOUT_UV:
|
|
offset += 2 * sizeof(float);
|
|
inputAttribDescription.format = VK_FORMAT_R32G32_SFLOAT;
|
|
break;
|
|
default:
|
|
offset += 3 * sizeof(float);
|
|
inputAttribDescription.format = VK_FORMAT_R32G32B32_SFLOAT;
|
|
}
|
|
attributeDescriptions.push_back(inputAttribDescription);
|
|
location++;
|
|
}
|
|
}
|
|
|
|
// Stores some additonal info and functions for
|
|
// specifying pipelines, vertex bindings, etc.
|
|
class Mesh
|
|
{
|
|
public:
|
|
MeshBuffer buffers;
|
|
|
|
VkPipelineLayout pipelineLayout = VK_NULL_HANDLE;
|
|
VkPipeline pipeline = VK_NULL_HANDLE;
|
|
VkDescriptorSet descriptorSet = VK_NULL_HANDLE;
|
|
|
|
uint32_t vertexBufferBinding = 0;
|
|
|
|
VkPipelineVertexInputStateCreateInfo vertexInputState;
|
|
VkVertexInputBindingDescription bindingDescription;
|
|
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
|
|
|
|
void setupVertexInputState(std::vector<vkMeshLoader::VertexLayout> layout)
|
|
{
|
|
bindingDescription = vkTools::initializers::vertexInputBindingDescription(
|
|
vertexBufferBinding,
|
|
vertexSize(layout),
|
|
VK_VERTEX_INPUT_RATE_VERTEX);
|
|
|
|
attributeDescriptions.clear();
|
|
uint32_t offset = 0;
|
|
uint32_t binding = 0;
|
|
for (auto& layoutDetail : layout)
|
|
{
|
|
// Format (layout)
|
|
VkFormat format = (layoutDetail == VERTEX_LAYOUT_UV) ? VK_FORMAT_R32G32_SFLOAT : VK_FORMAT_R32G32B32_SFLOAT;
|
|
|
|
attributeDescriptions.push_back(
|
|
vkTools::initializers::vertexInputAttributeDescription(
|
|
vertexBufferBinding,
|
|
binding,
|
|
format,
|
|
offset));
|
|
|
|
// Offset
|
|
offset += (layoutDetail == VERTEX_LAYOUT_UV) ? (2 * sizeof(float)) : (3 * sizeof(float));
|
|
binding++;
|
|
}
|
|
|
|
vertexInputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
|
|
vertexInputState.vertexBindingDescriptionCount = 1;
|
|
vertexInputState.pVertexBindingDescriptions = &bindingDescription;
|
|
vertexInputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(attributeDescriptions.size());
|
|
vertexInputState.pVertexAttributeDescriptions = attributeDescriptions.data();
|
|
}
|
|
|
|
void drawIndexed(VkCommandBuffer cmdBuffer)
|
|
{
|
|
VkDeviceSize offsets[1] = { 0 };
|
|
if (pipeline != VK_NULL_HANDLE)
|
|
{
|
|
vkCmdBindPipeline(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
|
|
}
|
|
if ((pipelineLayout != VK_NULL_HANDLE) && (descriptorSet != VK_NULL_HANDLE))
|
|
{
|
|
vkCmdBindDescriptorSets(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
|
|
}
|
|
vkCmdBindVertexBuffers(cmdBuffer, vertexBufferBinding, 1, &buffers.vertices.buf, offsets);
|
|
vkCmdBindIndexBuffer(cmdBuffer, buffers.indices.buf, 0, VK_INDEX_TYPE_UINT32);
|
|
vkCmdDrawIndexed(cmdBuffer, buffers.indexCount, 1, 0, 0, 0);
|
|
}
|
|
};
|
|
|
|
static void freeMeshBufferResources(VkDevice device, vkMeshLoader::MeshBuffer *meshBuffer)
|
|
{
|
|
vkDestroyBuffer(device, meshBuffer->vertices.buf, nullptr);
|
|
vkFreeMemory(device, meshBuffer->vertices.mem, nullptr);
|
|
if (meshBuffer->indices.buf != VK_NULL_HANDLE)
|
|
{
|
|
vkDestroyBuffer(device, meshBuffer->indices.buf, nullptr);
|
|
vkFreeMemory(device, meshBuffer->indices.mem, nullptr);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Simple mesh class for getting all the necessary stuff from models loaded via ASSIMP
|
|
class VulkanMeshLoader
|
|
{
|
|
private:
|
|
vk::VulkanDevice *vulkanDevice;
|
|
|
|
static const int defaultFlags = aiProcess_FlipWindingOrder | aiProcess_Triangulate | aiProcess_PreTransformVertices | aiProcess_CalcTangentSpace | aiProcess_GenSmoothNormals;
|
|
|
|
struct Vertex
|
|
{
|
|
glm::vec3 m_pos;
|
|
glm::vec2 m_tex;
|
|
glm::vec3 m_normal;
|
|
glm::vec3 m_color;
|
|
glm::vec3 m_tangent;
|
|
glm::vec3 m_binormal;
|
|
|
|
Vertex() {}
|
|
|
|
Vertex(const glm::vec3& pos, const glm::vec2& tex, const glm::vec3& normal, const glm::vec3& tangent, const glm::vec3& bitangent, const glm::vec3& color)
|
|
{
|
|
m_pos = pos;
|
|
m_tex = tex;
|
|
m_normal = normal;
|
|
m_color = color;
|
|
m_tangent = tangent;
|
|
m_binormal = bitangent;
|
|
}
|
|
};
|
|
|
|
struct MeshEntry {
|
|
uint32_t NumIndices;
|
|
uint32_t MaterialIndex;
|
|
uint32_t vertexBase;
|
|
std::vector<Vertex> Vertices;
|
|
std::vector<unsigned int> Indices;
|
|
};
|
|
|
|
public:
|
|
#if defined(__ANDROID__)
|
|
AAssetManager* assetManager = nullptr;
|
|
#endif
|
|
|
|
std::vector<MeshEntry> m_Entries;
|
|
|
|
struct Dimension
|
|
{
|
|
glm::vec3 min = glm::vec3(FLT_MAX);
|
|
glm::vec3 max = glm::vec3(-FLT_MAX);
|
|
glm::vec3 size;
|
|
} dim;
|
|
|
|
uint32_t numVertices = 0;
|
|
|
|
Assimp::Importer Importer;
|
|
const aiScene* pScene;
|
|
|
|
/**
|
|
* Default constructor
|
|
*
|
|
* @param vulkanDevice Pointer to a valid VulkanDevice
|
|
*/
|
|
VulkanMeshLoader(vk::VulkanDevice *vulkanDevice)
|
|
{
|
|
assert(vulkanDevice != nullptr);
|
|
this->vulkanDevice = vulkanDevice;
|
|
}
|
|
|
|
/**
|
|
* Default destructor
|
|
*
|
|
* @note Does not free any Vulkan resources
|
|
*/
|
|
~VulkanMeshLoader()
|
|
{
|
|
m_Entries.clear();
|
|
}
|
|
|
|
/**
|
|
* Load a scene from a supported 3D file format
|
|
*
|
|
* @param filename Name of the file (or asset) to load
|
|
* @param flags (Optional) Set of ASSIMP processing flags
|
|
*
|
|
* @return Returns true if the scene has been loaded
|
|
*/
|
|
bool LoadMesh(const std::string& filename, int flags = defaultFlags)
|
|
{
|
|
#if defined(__ANDROID__)
|
|
// Meshes are stored inside the apk on Android (compressed)
|
|
// So they need to be loaded via the asset manager
|
|
|
|
AAsset* asset = AAssetManager_open(assetManager, filename.c_str(), AASSET_MODE_STREAMING);
|
|
assert(asset);
|
|
size_t size = AAsset_getLength(asset);
|
|
|
|
assert(size > 0);
|
|
|
|
void *meshData = malloc(size);
|
|
AAsset_read(asset, meshData, size);
|
|
AAsset_close(asset);
|
|
|
|
pScene = Importer.ReadFileFromMemory(meshData, size, flags);
|
|
|
|
free(meshData);
|
|
#else
|
|
pScene = Importer.ReadFile(filename.c_str(), flags);
|
|
#endif
|
|
|
|
if (pScene)
|
|
{
|
|
m_Entries.clear();
|
|
m_Entries.resize(pScene->mNumMeshes);
|
|
// Read in all meshes in the scene
|
|
for (auto i = 0; i < m_Entries.size(); i++)
|
|
{
|
|
m_Entries[i].vertexBase = numVertices;
|
|
numVertices += pScene->mMeshes[i]->mNumVertices;
|
|
const aiMesh* paiMesh = pScene->mMeshes[i];
|
|
InitMesh(&m_Entries[i], paiMesh, pScene);
|
|
}
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
printf("Error parsing '%s': '%s'\n", filename.c_str(), Importer.GetErrorString());
|
|
#if defined(__ANDROID__)
|
|
LOGE("Error parsing '%s': '%s'", filename.c_str(), Importer.GetErrorString());
|
|
#endif
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Read mesh data from ASSIMP mesh to an internal mesh representation that can be used to generate Vulkan buffers
|
|
*
|
|
* @param meshEntry Pointer to the target MeshEntry strucutre for the mesh data
|
|
* @param paiMesh ASSIMP mesh to get the data from
|
|
* @param pScene Scene file of the ASSIMP mesh
|
|
*/
|
|
void InitMesh(MeshEntry *meshEntry, const aiMesh* paiMesh, const aiScene* pScene)
|
|
{
|
|
meshEntry->MaterialIndex = paiMesh->mMaterialIndex;
|
|
|
|
aiColor3D pColor(0.f, 0.f, 0.f);
|
|
pScene->mMaterials[paiMesh->mMaterialIndex]->Get(AI_MATKEY_COLOR_DIFFUSE, pColor);
|
|
|
|
aiVector3D Zero3D(0.0f, 0.0f, 0.0f);
|
|
|
|
for (unsigned int i = 0; i < paiMesh->mNumVertices; i++)
|
|
{
|
|
aiVector3D* pPos = &(paiMesh->mVertices[i]);
|
|
aiVector3D* pNormal = &(paiMesh->mNormals[i]);
|
|
aiVector3D* pTexCoord = (paiMesh->HasTextureCoords(0)) ? &(paiMesh->mTextureCoords[0][i]) : &Zero3D;
|
|
aiVector3D* pTangent = (paiMesh->HasTangentsAndBitangents()) ? &(paiMesh->mTangents[i]) : &Zero3D;
|
|
aiVector3D* pBiTangent = (paiMesh->HasTangentsAndBitangents()) ? &(paiMesh->mBitangents[i]) : &Zero3D;
|
|
|
|
Vertex v(
|
|
glm::vec3(pPos->x, -pPos->y, pPos->z),
|
|
glm::vec2(pTexCoord->x , pTexCoord->y),
|
|
glm::vec3(pNormal->x, pNormal->y, pNormal->z),
|
|
glm::vec3(pTangent->x, pTangent->y, pTangent->z),
|
|
glm::vec3(pBiTangent->x, pBiTangent->y, pBiTangent->z),
|
|
glm::vec3(pColor.r, pColor.g, pColor.b)
|
|
);
|
|
|
|
dim.max.x = fmax(pPos->x, dim.max.x);
|
|
dim.max.y = fmax(pPos->y, dim.max.y);
|
|
dim.max.z = fmax(pPos->z, dim.max.z);
|
|
|
|
dim.min.x = fmin(pPos->x, dim.min.x);
|
|
dim.min.y = fmin(pPos->y, dim.min.y);
|
|
dim.min.z = fmin(pPos->z, dim.min.z);
|
|
|
|
meshEntry->Vertices.push_back(v);
|
|
}
|
|
|
|
dim.size = dim.max - dim.min;
|
|
|
|
uint32_t indexBase = static_cast<uint32_t>(meshEntry->Indices.size());
|
|
for (unsigned int i = 0; i < paiMesh->mNumFaces; i++)
|
|
{
|
|
const aiFace& Face = paiMesh->mFaces[i];
|
|
if (Face.mNumIndices != 3)
|
|
continue;
|
|
meshEntry->Indices.push_back(indexBase + Face.mIndices[0]);
|
|
meshEntry->Indices.push_back(indexBase + Face.mIndices[1]);
|
|
meshEntry->Indices.push_back(indexBase + Face.mIndices[2]);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Create Vulkan buffers for the index and vertex buffer using a vertex layout
|
|
*
|
|
* @note Only does staging if a valid command buffer and transfer queue are passed
|
|
*
|
|
* @param meshBuffer Pointer to the mesh buffer containing buffer handles and memory
|
|
* @param layout Vertex layout for the vertex buffer
|
|
* @param createInfo Structure containing information for mesh creation time (center, scaling, etc.)
|
|
* @param useStaging If true, buffers are staged to device local memory
|
|
* @param copyCmd (Required for staging) Command buffer to put the copy commands into
|
|
* @param copyQueue (Required for staging) Queue to put copys into
|
|
*/
|
|
void createBuffers(
|
|
vkMeshLoader::MeshBuffer *meshBuffer,
|
|
std::vector<vkMeshLoader::VertexLayout> layout,
|
|
vkMeshLoader::MeshCreateInfo *createInfo,
|
|
bool useStaging,
|
|
VkQueue copyQueue)
|
|
{
|
|
glm::vec3 scale;
|
|
glm::vec2 uvscale;
|
|
glm::vec3 center;
|
|
if (createInfo == nullptr)
|
|
{
|
|
scale = glm::vec3(1.0f);
|
|
uvscale = glm::vec2(1.0f);
|
|
center = glm::vec3(0.0f);
|
|
}
|
|
else
|
|
{
|
|
scale = createInfo->scale;
|
|
uvscale = createInfo->uvscale;
|
|
center = createInfo->center;
|
|
}
|
|
|
|
std::vector<float> vertexBuffer;
|
|
for (int m = 0; m < m_Entries.size(); m++)
|
|
{
|
|
for (int i = 0; i < m_Entries[m].Vertices.size(); i++)
|
|
{
|
|
// Push vertex data depending on layout
|
|
for (auto& layoutDetail : layout)
|
|
{
|
|
// Position
|
|
if (layoutDetail == vkMeshLoader::VERTEX_LAYOUT_POSITION)
|
|
{
|
|
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_pos.x * scale.x + center.x);
|
|
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_pos.y * scale.y + center.y);
|
|
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_pos.z * scale.z + center.z);
|
|
}
|
|
// Normal
|
|
if (layoutDetail == vkMeshLoader::VERTEX_LAYOUT_NORMAL)
|
|
{
|
|
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_normal.x);
|
|
vertexBuffer.push_back(-m_Entries[m].Vertices[i].m_normal.y);
|
|
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_normal.z);
|
|
}
|
|
// Texture coordinates
|
|
if (layoutDetail == vkMeshLoader::VERTEX_LAYOUT_UV)
|
|
{
|
|
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_tex.s * uvscale.s);
|
|
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_tex.t * uvscale.t);
|
|
}
|
|
// Color
|
|
if (layoutDetail == vkMeshLoader::VERTEX_LAYOUT_COLOR)
|
|
{
|
|
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_color.r);
|
|
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_color.g);
|
|
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_color.b);
|
|
}
|
|
// Tangent
|
|
if (layoutDetail == vkMeshLoader::VERTEX_LAYOUT_TANGENT)
|
|
{
|
|
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_tangent.x);
|
|
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_tangent.y);
|
|
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_tangent.z);
|
|
}
|
|
// Bitangent
|
|
if (layoutDetail == vkMeshLoader::VERTEX_LAYOUT_BITANGENT)
|
|
{
|
|
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_binormal.x);
|
|
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_binormal.y);
|
|
vertexBuffer.push_back(m_Entries[m].Vertices[i].m_binormal.z);
|
|
}
|
|
// Dummy layout components for padding
|
|
if (layoutDetail == vkMeshLoader::VERTEX_LAYOUT_DUMMY_FLOAT)
|
|
{
|
|
vertexBuffer.push_back(0.0f);
|
|
}
|
|
if (layoutDetail == vkMeshLoader::VERTEX_LAYOUT_DUMMY_VEC4)
|
|
{
|
|
vertexBuffer.push_back(0.0f);
|
|
vertexBuffer.push_back(0.0f);
|
|
vertexBuffer.push_back(0.0f);
|
|
vertexBuffer.push_back(0.0f);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
meshBuffer->vertices.size = vertexBuffer.size() * sizeof(float);
|
|
|
|
dim.min *= scale;
|
|
dim.max *= scale;
|
|
dim.size *= scale;
|
|
|
|
std::vector<uint32_t> indexBuffer;
|
|
for (uint32_t m = 0; m < m_Entries.size(); m++)
|
|
{
|
|
uint32_t indexBase = static_cast<uint32_t>(indexBuffer.size());
|
|
for (uint32_t i = 0; i < m_Entries[m].Indices.size(); i++)
|
|
{
|
|
indexBuffer.push_back(m_Entries[m].Indices[i] + indexBase);
|
|
}
|
|
vkMeshLoader::MeshDescriptor descriptor{};
|
|
descriptor.indexBase = indexBase;
|
|
descriptor.indexCount = static_cast<uint32_t>(m_Entries[m].Indices.size());
|
|
descriptor.vertexCount = static_cast<uint32_t>(m_Entries[m].Vertices.size());
|
|
meshBuffer->meshDescriptors.push_back(descriptor);
|
|
}
|
|
meshBuffer->indices.size = indexBuffer.size() * sizeof(uint32_t);
|
|
meshBuffer->indexCount = static_cast<uint32_t>(indexBuffer.size());
|
|
meshBuffer->device = vulkanDevice->logicalDevice;
|
|
|
|
// Use staging buffer to move vertex and index buffer to device local memory
|
|
if (useStaging && copyQueue != VK_NULL_HANDLE)
|
|
{
|
|
// Create staging buffers
|
|
struct {
|
|
VkBuffer buffer;
|
|
VkDeviceMemory memory;
|
|
} vertexStaging, indexStaging;
|
|
|
|
// Vertex buffer
|
|
vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
|
|
meshBuffer->vertices.size,
|
|
&vertexStaging.buffer,
|
|
&vertexStaging.memory,
|
|
vertexBuffer.data());
|
|
|
|
// Index buffer
|
|
vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
|
|
meshBuffer->indices.size,
|
|
&indexStaging.buffer,
|
|
&indexStaging.memory,
|
|
indexBuffer.data());
|
|
|
|
// Create device local target buffers
|
|
// Vertex buffer
|
|
vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
|
|
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
|
|
meshBuffer->vertices.size,
|
|
&meshBuffer->vertices.buf,
|
|
&meshBuffer->vertices.mem);
|
|
|
|
// Index buffer
|
|
vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
|
|
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
|
|
meshBuffer->indices.size,
|
|
&meshBuffer->indices.buf,
|
|
&meshBuffer->indices.mem);
|
|
|
|
// Copy from staging buffers
|
|
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
|
|
|
VkBufferCopy copyRegion = {};
|
|
|
|
copyRegion.size = meshBuffer->vertices.size;
|
|
vkCmdCopyBuffer(
|
|
copyCmd,
|
|
vertexStaging.buffer,
|
|
meshBuffer->vertices.buf,
|
|
1,
|
|
©Region);
|
|
|
|
copyRegion.size = meshBuffer->indices.size;
|
|
vkCmdCopyBuffer(
|
|
copyCmd,
|
|
indexStaging.buffer,
|
|
meshBuffer->indices.buf,
|
|
1,
|
|
©Region);
|
|
|
|
vulkanDevice->flushCommandBuffer(copyCmd, copyQueue);
|
|
|
|
vkDestroyBuffer(vulkanDevice->logicalDevice, vertexStaging.buffer, nullptr);
|
|
vkFreeMemory(vulkanDevice->logicalDevice, vertexStaging.memory, nullptr);
|
|
vkDestroyBuffer(vulkanDevice->logicalDevice, indexStaging.buffer, nullptr);
|
|
vkFreeMemory(vulkanDevice->logicalDevice, indexStaging.memory, nullptr);
|
|
}
|
|
else
|
|
{
|
|
// Generate vertex buffer
|
|
vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
|
|
meshBuffer->vertices.size,
|
|
&meshBuffer->vertices.buf,
|
|
&meshBuffer->vertices.mem,
|
|
vertexBuffer.data());
|
|
|
|
// Generate index buffer
|
|
vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
|
|
meshBuffer->indices.size,
|
|
&meshBuffer->indices.buf,
|
|
&meshBuffer->indices.mem,
|
|
indexBuffer.data());
|
|
}
|
|
}
|
|
}; |