542 lines
18 KiB
C++
542 lines
18 KiB
C++
/*
|
|
* Vulkan Example - Dynamic uniform buffers
|
|
*
|
|
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
|
|
*
|
|
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
|
*
|
|
* Summary:
|
|
* Demonstrates the use of dynamic uniform buffers.
|
|
*
|
|
* Instead of using one uniform buffer per-object, this example allocates one big uniform buffer
|
|
* with respect to the alignment reported by the device via minUniformBufferOffsetAlignment that
|
|
* contains all matrices for the objects in the scene.
|
|
*
|
|
* The used descriptor type VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC then allows to set a dynamic
|
|
* offset used to pass data from the single uniform buffer to the connected shader binding point.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <vector>
|
|
#include <array>
|
|
#include <random>
|
|
|
|
#define GLM_FORCE_RADIANS
|
|
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
|
|
#include <glm/glm.hpp>
|
|
#include <glm/gtc/matrix_transform.hpp>
|
|
|
|
#include <vulkan/vulkan.h>
|
|
#include "vulkanexamplebase.h"
|
|
#include "vulkandevice.hpp"
|
|
#include "vulkanbuffer.hpp"
|
|
|
|
#define VERTEX_BUFFER_BIND_ID 0
|
|
#define ENABLE_VALIDATION false
|
|
#define OBJECT_INSTANCES 125
|
|
|
|
// Vertex layout for this example
|
|
struct Vertex {
|
|
float pos[3];
|
|
float color[3];
|
|
};
|
|
|
|
// Wrapper functions for aligned memory allocation
|
|
// There is currently no standard for this in C++ that works across all platforms and vendors, so we abstract this
|
|
void* alignedAlloc(size_t size, size_t alignment)
|
|
{
|
|
void *data = nullptr;
|
|
#if defined(_MSC_VER) || defined(__MINGW32__)
|
|
data = _aligned_malloc(size, alignment);
|
|
#else
|
|
int res = posix_memalign(&data, alignment, size);
|
|
if (res != 0)
|
|
data = nullptr;
|
|
#endif
|
|
return data;
|
|
}
|
|
|
|
void alignedFree(void* data)
|
|
{
|
|
#if defined(_MSC_VER) || defined(__MINGW32__)
|
|
_aligned_free(data);
|
|
#else
|
|
free(data);
|
|
#endif
|
|
}
|
|
|
|
class VulkanExample : public VulkanExampleBase
|
|
{
|
|
public:
|
|
struct {
|
|
VkPipelineVertexInputStateCreateInfo inputState;
|
|
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
|
|
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
|
|
} vertices;
|
|
|
|
vk::Buffer vertexBuffer;
|
|
vk::Buffer indexBuffer;
|
|
uint32_t indexCount;
|
|
|
|
struct {
|
|
vk::Buffer view;
|
|
vk::Buffer dynamic;
|
|
} uniformBuffers;
|
|
|
|
struct {
|
|
glm::mat4 projection;
|
|
glm::mat4 view;
|
|
} uboVS;
|
|
|
|
// Store random per-object rotations
|
|
glm::vec3 rotations[OBJECT_INSTANCES];
|
|
glm::vec3 rotationSpeeds[OBJECT_INSTANCES];
|
|
|
|
// One big uniform buffer that contains all matrices
|
|
// Note that we need to manually allocate the data to cope for GPU-specific uniform buffer offset alignments
|
|
struct UboDataDynamic {
|
|
glm::mat4 *model = nullptr;
|
|
} uboDataDynamic;
|
|
|
|
VkPipeline pipeline;
|
|
VkPipelineLayout pipelineLayout;
|
|
VkDescriptorSet descriptorSet;
|
|
VkDescriptorSetLayout descriptorSetLayout;
|
|
|
|
float animationTimer = 0.0f;
|
|
|
|
size_t dynamicAlignment;
|
|
|
|
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
|
|
{
|
|
title = "Vulkan Example - Dynamic uniform buffers";
|
|
enableTextOverlay = true;
|
|
camera.type = Camera::CameraType::lookat;
|
|
camera.setPosition(glm::vec3(0.0f, 0.0f, -30.0f));
|
|
camera.setRotation(glm::vec3(0.0f));
|
|
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
|
|
}
|
|
|
|
~VulkanExample()
|
|
{
|
|
if (uboDataDynamic.model) {
|
|
alignedFree(uboDataDynamic.model);
|
|
}
|
|
|
|
// Clean up used Vulkan resources
|
|
// Note : Inherited destructor cleans up resources stored in base class
|
|
vkDestroyPipeline(device, pipeline, nullptr);
|
|
|
|
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
|
|
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
|
|
|
|
vertexBuffer.destroy();
|
|
indexBuffer.destroy();
|
|
|
|
uniformBuffers.view.destroy();
|
|
uniformBuffers.dynamic.destroy();
|
|
}
|
|
|
|
void buildCommandBuffers()
|
|
{
|
|
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
|
|
|
|
VkClearValue clearValues[2];
|
|
clearValues[0].color = defaultClearColor;
|
|
clearValues[1].depthStencil = { 1.0f, 0 };
|
|
|
|
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
|
|
renderPassBeginInfo.renderPass = renderPass;
|
|
renderPassBeginInfo.renderArea.offset.x = 0;
|
|
renderPassBeginInfo.renderArea.offset.y = 0;
|
|
renderPassBeginInfo.renderArea.extent.width = width;
|
|
renderPassBeginInfo.renderArea.extent.height = height;
|
|
renderPassBeginInfo.clearValueCount = 2;
|
|
renderPassBeginInfo.pClearValues = clearValues;
|
|
|
|
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
|
|
{
|
|
renderPassBeginInfo.framebuffer = frameBuffers[i];
|
|
|
|
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
|
|
|
|
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
|
|
|
VkViewport viewport = vkTools::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
|
|
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
|
|
|
VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0);
|
|
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
|
|
|
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
|
|
|
|
VkDeviceSize offsets[1] = { 0 };
|
|
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &vertexBuffer.buffer, offsets);
|
|
vkCmdBindIndexBuffer(drawCmdBuffers[i], indexBuffer.buffer, 0, VK_INDEX_TYPE_UINT32);
|
|
|
|
// Render multiple objects using different model matrices by dynamically offsetting into one uniform buffer
|
|
for (uint32_t j = 0; j < OBJECT_INSTANCES; j++)
|
|
{
|
|
// One dynamic offset per dynamic descriptor to offset into the ubo containing all model matrices
|
|
uint32_t dynamicOffset = j * static_cast<uint32_t>(dynamicAlignment);
|
|
// Bind the descriptor set for rendering a mesh using the dynamic offset
|
|
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 1, &dynamicOffset);
|
|
|
|
vkCmdDrawIndexed(drawCmdBuffers[i], indexCount, 1, 0, 0, 0);
|
|
}
|
|
|
|
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
|
|
|
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
|
|
}
|
|
}
|
|
|
|
void draw()
|
|
{
|
|
VulkanExampleBase::prepareFrame();
|
|
|
|
// Command buffer to be sumitted to the queue
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
|
|
|
|
// Submit to queue
|
|
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
|
|
|
|
VulkanExampleBase::submitFrame();
|
|
}
|
|
|
|
void generateTriangle()
|
|
{
|
|
// Setup vertices indices for a colored cube
|
|
std::vector<Vertex> vertices = {
|
|
{ { -1.0f, -1.0f, 1.0f },{ 1.0f, 0.0f, 0.0f } },
|
|
{ { 1.0f, -1.0f, 1.0f },{ 0.0f, 1.0f, 0.0f } },
|
|
{ { 1.0f, 1.0f, 1.0f },{ 0.0f, 0.0f, 1.0f } },
|
|
{ { -1.0f, 1.0f, 1.0f },{ 0.0f, 0.0f, 0.0f } },
|
|
{ { -1.0f, -1.0f, -1.0f },{ 1.0f, 0.0f, 0.0f } },
|
|
{ { 1.0f, -1.0f, -1.0f },{ 0.0f, 1.0f, 0.0f } },
|
|
{ { 1.0f, 1.0f, -1.0f },{ 0.0f, 0.0f, 1.0f } },
|
|
{ { -1.0f, 1.0f, -1.0f },{ 0.0f, 0.0f, 0.0f } },
|
|
};
|
|
|
|
std::vector<uint32_t> indices = {
|
|
0,1,2, 2,3,0, 1,5,6, 6,2,1, 7,6,5, 5,4,7, 4,0,3, 3,7,4, 4,5,1, 1,0,4, 3,2,6, 6,7,3,
|
|
};
|
|
|
|
indexCount = static_cast<uint32_t>(indices.size());
|
|
|
|
// Create buffers
|
|
// For the sake of simplicity we won't stage the vertex data to the gpu memory
|
|
// Vertex buffer
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&vertexBuffer,
|
|
vertices.size() * sizeof(Vertex),
|
|
vertices.data()));
|
|
// Index buffer
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&indexBuffer,
|
|
indices.size() * sizeof(uint32_t),
|
|
indices.data()));
|
|
}
|
|
|
|
void setupVertexDescriptions()
|
|
{
|
|
// Binding description
|
|
vertices.bindingDescriptions = {
|
|
vkTools::initializers::vertexInputBindingDescription(VERTEX_BUFFER_BIND_ID, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX),
|
|
};
|
|
|
|
// Attribute descriptions
|
|
vertices.attributeDescriptions = {
|
|
vkTools::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, pos)), // Location 0 : Position
|
|
vkTools::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, color)), // Location 1 : Color
|
|
};
|
|
|
|
vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
|
|
vertices.inputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertices.bindingDescriptions.size());
|
|
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
|
|
vertices.inputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertices.attributeDescriptions.size());
|
|
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
|
|
}
|
|
|
|
void setupDescriptorPool()
|
|
{
|
|
// Example uses one ubo and one image sampler
|
|
std::vector<VkDescriptorPoolSize> poolSizes =
|
|
{
|
|
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
|
|
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 1),
|
|
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1)
|
|
};
|
|
|
|
VkDescriptorPoolCreateInfo descriptorPoolInfo =
|
|
vkTools::initializers::descriptorPoolCreateInfo(
|
|
static_cast<uint32_t>(poolSizes.size()),
|
|
poolSizes.data(),
|
|
2);
|
|
|
|
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
|
|
}
|
|
|
|
void setupDescriptorSetLayout()
|
|
{
|
|
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
|
|
{
|
|
vkTools::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
|
|
vkTools::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, VK_SHADER_STAGE_VERTEX_BIT, 1),
|
|
vkTools::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 2)
|
|
};
|
|
|
|
VkDescriptorSetLayoutCreateInfo descriptorLayout =
|
|
vkTools::initializers::descriptorSetLayoutCreateInfo(
|
|
setLayoutBindings.data(),
|
|
static_cast<uint32_t>(setLayoutBindings.size()));
|
|
|
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
|
|
|
|
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
|
|
vkTools::initializers::pipelineLayoutCreateInfo(
|
|
&descriptorSetLayout,
|
|
1);
|
|
|
|
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
|
|
}
|
|
|
|
void setupDescriptorSet()
|
|
{
|
|
VkDescriptorSetAllocateInfo allocInfo =
|
|
vkTools::initializers::descriptorSetAllocateInfo(
|
|
descriptorPool,
|
|
&descriptorSetLayout,
|
|
1);
|
|
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
|
|
|
|
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
|
|
// Binding 0 : Projection/View matrix uniform buffer
|
|
vkTools::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.view.descriptor),
|
|
// Binding 1 : Instance matrix as dynamic uniform buffer
|
|
vkTools::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 1, &uniformBuffers.dynamic.descriptor),
|
|
};
|
|
|
|
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
|
|
}
|
|
|
|
void preparePipelines()
|
|
{
|
|
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
|
|
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
|
|
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
|
|
0,
|
|
VK_FALSE);
|
|
|
|
VkPipelineRasterizationStateCreateInfo rasterizationState =
|
|
vkTools::initializers::pipelineRasterizationStateCreateInfo(
|
|
VK_POLYGON_MODE_FILL,
|
|
VK_CULL_MODE_NONE,
|
|
VK_FRONT_FACE_COUNTER_CLOCKWISE,
|
|
0);
|
|
|
|
VkPipelineColorBlendAttachmentState blendAttachmentState =
|
|
vkTools::initializers::pipelineColorBlendAttachmentState(
|
|
0xf,
|
|
VK_FALSE);
|
|
|
|
VkPipelineColorBlendStateCreateInfo colorBlendState =
|
|
vkTools::initializers::pipelineColorBlendStateCreateInfo(
|
|
1,
|
|
&blendAttachmentState);
|
|
|
|
VkPipelineDepthStencilStateCreateInfo depthStencilState =
|
|
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
|
|
VK_TRUE,
|
|
VK_TRUE,
|
|
VK_COMPARE_OP_LESS_OR_EQUAL);
|
|
|
|
VkPipelineViewportStateCreateInfo viewportState =
|
|
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
|
|
|
VkPipelineMultisampleStateCreateInfo multisampleState =
|
|
vkTools::initializers::pipelineMultisampleStateCreateInfo(
|
|
VK_SAMPLE_COUNT_1_BIT,
|
|
0);
|
|
|
|
std::vector<VkDynamicState> dynamicStateEnables = {
|
|
VK_DYNAMIC_STATE_VIEWPORT,
|
|
VK_DYNAMIC_STATE_SCISSOR
|
|
};
|
|
VkPipelineDynamicStateCreateInfo dynamicState =
|
|
vkTools::initializers::pipelineDynamicStateCreateInfo(
|
|
dynamicStateEnables.data(),
|
|
static_cast<uint32_t>(dynamicStateEnables.size()),
|
|
0);
|
|
|
|
// Load shaders
|
|
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
|
|
|
|
shaderStages[0] = loadShader(getAssetPath() + "shaders/dynamicuniformbuffer/base.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
|
shaderStages[1] = loadShader(getAssetPath() + "shaders/dynamicuniformbuffer/base.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
|
|
|
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
|
|
vkTools::initializers::pipelineCreateInfo(
|
|
pipelineLayout,
|
|
renderPass,
|
|
0);
|
|
|
|
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
|
|
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
|
|
pipelineCreateInfo.pRasterizationState = &rasterizationState;
|
|
pipelineCreateInfo.pColorBlendState = &colorBlendState;
|
|
pipelineCreateInfo.pMultisampleState = &multisampleState;
|
|
pipelineCreateInfo.pViewportState = &viewportState;
|
|
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
|
|
pipelineCreateInfo.pDynamicState = &dynamicState;
|
|
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
|
|
pipelineCreateInfo.pStages = shaderStages.data();
|
|
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipeline));
|
|
}
|
|
|
|
// Prepare and initialize uniform buffer containing shader uniforms
|
|
void prepareUniformBuffers()
|
|
{
|
|
// Allocate data for the dynamic uniform buffer object
|
|
// We allocate this manually as the alignment of the offset differs between GPUs
|
|
|
|
// Calculate required alignment depending on device limits
|
|
size_t uboAlignment = vulkanDevice->properties.limits.minUniformBufferOffsetAlignment;
|
|
dynamicAlignment = (sizeof(glm::mat4) / uboAlignment) * uboAlignment + ((sizeof(glm::mat4) % uboAlignment) > 0 ? uboAlignment : 0);
|
|
|
|
size_t bufferSize = OBJECT_INSTANCES * dynamicAlignment;
|
|
|
|
uboDataDynamic.model = (glm::mat4*)alignedAlloc(bufferSize, dynamicAlignment);
|
|
assert(uboDataDynamic.model);
|
|
|
|
std::cout << "minUniformBufferOffsetAlignment = " << uboAlignment << std::endl;
|
|
std::cout << "dynamicAlignment = " << dynamicAlignment << std::endl;
|
|
|
|
// Vertex shader uniform buffer block
|
|
|
|
// Static shared uniform buffer object with projection and view matrix
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&uniformBuffers.view,
|
|
sizeof(uboVS)));
|
|
|
|
// Uniform buffer object with per-object matrices
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
|
|
&uniformBuffers.dynamic,
|
|
bufferSize));
|
|
|
|
// Map persistent
|
|
VK_CHECK_RESULT(uniformBuffers.view.map());
|
|
VK_CHECK_RESULT(uniformBuffers.dynamic.map());
|
|
|
|
// Prepare per-object matrices with offsets and random rotations
|
|
std::mt19937 rndGen(static_cast<uint32_t>(time(0)));
|
|
std::normal_distribution<float> rndDist(-1.0f, 1.0f);
|
|
for (uint32_t i = 0; i < OBJECT_INSTANCES; i++)
|
|
{
|
|
rotations[i] = glm::vec3(rndDist(rndGen), rndDist(rndGen), rndDist(rndGen)) * 2.0f * (float)M_PI;
|
|
rotationSpeeds[i] = glm::vec3(rndDist(rndGen), rndDist(rndGen), rndDist(rndGen));
|
|
}
|
|
|
|
updateUniformBuffers();
|
|
updateDynamicUniformBuffer(true);
|
|
}
|
|
|
|
void updateUniformBuffers()
|
|
{
|
|
// Fixed ubo with projection and view matrices
|
|
uboVS.projection = camera.matrices.perspective;
|
|
uboVS.view = camera.matrices.view;
|
|
|
|
memcpy(uniformBuffers.view.mapped, &uboVS, sizeof(uboVS));
|
|
}
|
|
|
|
void updateDynamicUniformBuffer(bool force = false)
|
|
{
|
|
// Update at max. 60 fps
|
|
animationTimer += frameTimer;
|
|
if ((animationTimer <= 1.0f / 60.0f) && (!force)) {
|
|
return;
|
|
}
|
|
|
|
// Dynamic ubo with per-object model matrices indexed by offsets in the command buffer
|
|
uint32_t dim = static_cast<uint32_t>(pow(OBJECT_INSTANCES, (1.0f / 3.0f)));
|
|
glm::vec3 offset(5.0f);
|
|
|
|
for (uint32_t x = 0; x < dim; x++)
|
|
{
|
|
for (uint32_t y = 0; y < dim; y++)
|
|
{
|
|
for (uint32_t z = 0; z < dim; z++)
|
|
{
|
|
uint32_t index = x * dim * dim + y * dim + z;
|
|
|
|
// Aligned offset
|
|
glm::mat4* modelMat = (glm::mat4*)(((uint64_t)uboDataDynamic.model + (index * dynamicAlignment)));
|
|
|
|
// Update rotations
|
|
rotations[index] += animationTimer * rotationSpeeds[index];
|
|
|
|
// Update matrices
|
|
glm::vec3 pos = glm::vec3(-((dim * offset.x) / 2.0f) + offset.x / 2.0f + x * offset.x, -((dim * offset.y) / 2.0f) + offset.y / 2.0f + y * offset.y, -((dim * offset.z) / 2.0f) + offset.z / 2.0f + z * offset.z);
|
|
*modelMat = glm::translate(glm::mat4(), pos);
|
|
*modelMat = glm::rotate(*modelMat, rotations[index].x, glm::vec3(1.0f, 1.0f, 0.0f));
|
|
*modelMat = glm::rotate(*modelMat, rotations[index].y, glm::vec3(0.0f, 1.0f, 0.0f));
|
|
*modelMat = glm::rotate(*modelMat, rotations[index].z, glm::vec3(0.0f, 0.0f, 1.0f));
|
|
}
|
|
}
|
|
}
|
|
|
|
animationTimer = 0.0f;
|
|
|
|
memcpy(uniformBuffers.dynamic.mapped, uboDataDynamic.model, uniformBuffers.dynamic.size);
|
|
// Flush to make changes visible to the host
|
|
VkMappedMemoryRange memoryRange = vkTools::initializers::mappedMemoryRange();
|
|
memoryRange.memory = uniformBuffers.dynamic.memory;
|
|
memoryRange.size = sizeof(uboDataDynamic);
|
|
vkFlushMappedMemoryRanges(device, 1, &memoryRange);
|
|
}
|
|
|
|
void prepare()
|
|
{
|
|
VulkanExampleBase::prepare();
|
|
generateTriangle();
|
|
setupVertexDescriptions();
|
|
prepareUniformBuffers();
|
|
setupDescriptorSetLayout();
|
|
preparePipelines();
|
|
setupDescriptorPool();
|
|
setupDescriptorSet();
|
|
buildCommandBuffers();
|
|
prepared = true;
|
|
}
|
|
|
|
virtual void render()
|
|
{
|
|
if (!prepared)
|
|
return;
|
|
draw();
|
|
if (!paused)
|
|
updateDynamicUniformBuffer();
|
|
}
|
|
|
|
virtual void viewChanged()
|
|
{
|
|
updateUniformBuffers();
|
|
}
|
|
};
|
|
|
|
VULKAN_EXAMPLE_MAIN()
|