Move `data/shaders` to `data/shaders/glsl` Move `data/hlsl` to `data/shaders/hlsl` Fix up shader paths in the cpp files to point to the new glsl location. `data/shaders/hlsl/compile.py` still overwrites the glsl .spv files (for now). Issue: #723
884 lines
No EOL
29 KiB
C++
884 lines
No EOL
29 KiB
C++
/*
|
|
* Vulkan Example - Scene rendering
|
|
*
|
|
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
|
|
*
|
|
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
|
*
|
|
* Summary:
|
|
* Renders a scene made of multiple parts with different materials and textures.
|
|
*
|
|
* The example loads a scene made up of multiple parts into one vertex and index buffer to only
|
|
* have one (big) memory allocation. In Vulkan it's advised to keep number of memory allocations
|
|
* down and try to allocate large blocks of memory at once instead of having many small allocations.
|
|
*
|
|
* Every part has a separate material and multiple descriptor sets (set = x layout qualifier in GLSL)
|
|
* are used to bind a uniform buffer with global matrices and the part's material's sampler at once.
|
|
*
|
|
* To demonstrate another way of passing data the example also uses push constants for passing
|
|
* material properties.
|
|
*
|
|
* Note that this example is just one way of rendering a scene made up of multiple parts in Vulkan.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <vector>
|
|
|
|
#define GLM_FORCE_RADIANS
|
|
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
|
|
#include <glm/glm.hpp>
|
|
#include <glm/gtc/matrix_transform.hpp>
|
|
#include <glm/gtc/type_ptr.hpp>
|
|
|
|
#include <assimp/Importer.hpp>
|
|
#include <assimp/scene.h>
|
|
#include <assimp/postprocess.h>
|
|
#include <assimp/cimport.h>
|
|
|
|
#include <vulkan/vulkan.h>
|
|
#include "vulkanexamplebase.h"
|
|
#include "VulkanTexture.hpp"
|
|
#include "VulkanDevice.hpp"
|
|
#include "VulkanBuffer.hpp"
|
|
|
|
#define VERTEX_BUFFER_BIND_ID 0
|
|
#define ENABLE_VALIDATION false
|
|
|
|
// Vertex layout used in this example
|
|
struct Vertex {
|
|
glm::vec3 pos;
|
|
glm::vec3 normal;
|
|
glm::vec2 uv;
|
|
glm::vec3 color;
|
|
};
|
|
|
|
// Scene related structs
|
|
|
|
// Shader properites for a material
|
|
// Will be passed to the shaders using push constant
|
|
struct SceneMaterialProperties
|
|
{
|
|
glm::vec4 ambient;
|
|
glm::vec4 diffuse;
|
|
glm::vec4 specular;
|
|
float opacity;
|
|
};
|
|
|
|
// Stores info on the materials used in the scene
|
|
struct SceneMaterial
|
|
{
|
|
std::string name;
|
|
// Material properties
|
|
SceneMaterialProperties properties;
|
|
// The example only uses a diffuse channel
|
|
vks::Texture2D diffuse;
|
|
// The material's descriptor contains the material descriptors
|
|
VkDescriptorSet descriptorSet;
|
|
// Pointer to the pipeline used by this material
|
|
VkPipeline *pipeline;
|
|
};
|
|
|
|
// Stores per-mesh Vulkan resources
|
|
struct ScenePart
|
|
{
|
|
// Index of first index in the scene buffer
|
|
uint32_t indexBase;
|
|
uint32_t indexCount;
|
|
|
|
// Pointer to the material used by this mesh
|
|
SceneMaterial *material;
|
|
};
|
|
|
|
// Class for loading the scene and generating all Vulkan resources
|
|
class Scene
|
|
{
|
|
private:
|
|
vks::VulkanDevice *vulkanDevice;
|
|
VkQueue queue;
|
|
|
|
VkDescriptorPool descriptorPool;
|
|
|
|
// We will be using separate descriptor sets (and bindings)
|
|
// for material and scene related uniforms
|
|
struct
|
|
{
|
|
VkDescriptorSetLayout material;
|
|
VkDescriptorSetLayout scene;
|
|
} descriptorSetLayouts;
|
|
|
|
// We will be using one single index and vertex buffer
|
|
// containing vertices and indices for all meshes in the scene
|
|
// This allows us to keep memory allocations down
|
|
vks::Buffer vertexBuffer;
|
|
vks::Buffer indexBuffer;
|
|
|
|
VkDescriptorSet descriptorSetScene;
|
|
|
|
const aiScene* aScene;
|
|
|
|
// Get materials from the assimp scene and map to our scene structures
|
|
void loadMaterials()
|
|
{
|
|
materials.resize(aScene->mNumMaterials);
|
|
|
|
for (size_t i = 0; i < materials.size(); i++)
|
|
{
|
|
materials[i] = {};
|
|
|
|
aiString name;
|
|
aScene->mMaterials[i]->Get(AI_MATKEY_NAME, name);
|
|
|
|
// Properties
|
|
aiColor4D color;
|
|
aScene->mMaterials[i]->Get(AI_MATKEY_COLOR_AMBIENT, color);
|
|
materials[i].properties.ambient = glm::make_vec4(&color.r) + glm::vec4(0.1f);
|
|
aScene->mMaterials[i]->Get(AI_MATKEY_COLOR_DIFFUSE, color);
|
|
materials[i].properties.diffuse = glm::make_vec4(&color.r);
|
|
aScene->mMaterials[i]->Get(AI_MATKEY_COLOR_SPECULAR, color);
|
|
materials[i].properties.specular = glm::make_vec4(&color.r);
|
|
aScene->mMaterials[i]->Get(AI_MATKEY_OPACITY, materials[i].properties.opacity);
|
|
|
|
if ((materials[i].properties.opacity) > 0.0f)
|
|
materials[i].properties.specular = glm::vec4(0.0f);
|
|
|
|
materials[i].name = name.C_Str();
|
|
std::cout << "Material \"" << materials[i].name << "\"" << std::endl;
|
|
|
|
// Textures
|
|
std::string texFormatSuffix;
|
|
VkFormat texFormat;
|
|
// Get supported compressed texture format
|
|
if (vulkanDevice->features.textureCompressionBC) {
|
|
texFormatSuffix = "_bc3_unorm";
|
|
texFormat = VK_FORMAT_BC3_UNORM_BLOCK;
|
|
}
|
|
else if (vulkanDevice->features.textureCompressionASTC_LDR) {
|
|
texFormatSuffix = "_astc_8x8_unorm";
|
|
texFormat = VK_FORMAT_ASTC_8x8_UNORM_BLOCK;
|
|
}
|
|
else if (vulkanDevice->features.textureCompressionETC2) {
|
|
texFormatSuffix = "_etc2_unorm";
|
|
texFormat = VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK;
|
|
}
|
|
else {
|
|
vks::tools::exitFatal("Device does not support any compressed texture format!", VK_ERROR_FEATURE_NOT_PRESENT);
|
|
}
|
|
|
|
aiString texturefile;
|
|
// Diffuse
|
|
aScene->mMaterials[i]->GetTexture(aiTextureType_DIFFUSE, 0, &texturefile);
|
|
if (aScene->mMaterials[i]->GetTextureCount(aiTextureType_DIFFUSE) > 0)
|
|
{
|
|
std::cout << " Diffuse: \"" << texturefile.C_Str() << "\"" << std::endl;
|
|
std::string fileName = std::string(texturefile.C_Str());
|
|
std::replace(fileName.begin(), fileName.end(), '\\', '/');
|
|
fileName.insert(fileName.find(".ktx"), texFormatSuffix);
|
|
materials[i].diffuse.loadFromFile(assetPath + fileName, texFormat, vulkanDevice, queue);
|
|
}
|
|
else
|
|
{
|
|
std::cout << " Material has no diffuse, using dummy texture!" << std::endl;
|
|
// todo : separate pipeline and layout
|
|
materials[i].diffuse.loadFromFile(assetPath + "dummy_rgba_unorm.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
|
|
}
|
|
|
|
// For scenes with multiple textures per material we would need to check for additional texture types, e.g.:
|
|
// aiTextureType_HEIGHT, aiTextureType_OPACITY, aiTextureType_SPECULAR, etc.
|
|
|
|
// Assign pipeline
|
|
materials[i].pipeline = (materials[i].properties.opacity == 0.0f) ? &pipelines.solid : &pipelines.blending;
|
|
}
|
|
|
|
// Generate descriptor sets for the materials
|
|
|
|
// Descriptor pool
|
|
std::vector<VkDescriptorPoolSize> poolSizes;
|
|
poolSizes.push_back(vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, static_cast<uint32_t>(materials.size())));
|
|
poolSizes.push_back(vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, static_cast<uint32_t>(materials.size())));
|
|
|
|
VkDescriptorPoolCreateInfo descriptorPoolInfo =
|
|
vks::initializers::descriptorPoolCreateInfo(
|
|
static_cast<uint32_t>(poolSizes.size()),
|
|
poolSizes.data(),
|
|
static_cast<uint32_t>(materials.size()) + 1);
|
|
|
|
VK_CHECK_RESULT(vkCreateDescriptorPool(vulkanDevice->logicalDevice, &descriptorPoolInfo, nullptr, &descriptorPool));
|
|
|
|
// Descriptor set and pipeline layouts
|
|
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings;
|
|
VkDescriptorSetLayoutCreateInfo descriptorLayout;
|
|
|
|
// Set 0: Scene matrices
|
|
setLayoutBindings.push_back(vks::initializers::descriptorSetLayoutBinding(
|
|
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
|
|
VK_SHADER_STAGE_VERTEX_BIT,
|
|
0));
|
|
descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(
|
|
setLayoutBindings.data(),
|
|
static_cast<uint32_t>(setLayoutBindings.size()));
|
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(vulkanDevice->logicalDevice, &descriptorLayout, nullptr, &descriptorSetLayouts.scene));
|
|
|
|
// Set 1: Material data
|
|
setLayoutBindings.clear();
|
|
setLayoutBindings.push_back(vks::initializers::descriptorSetLayoutBinding(
|
|
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
|
|
VK_SHADER_STAGE_FRAGMENT_BIT,
|
|
0));
|
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(vulkanDevice->logicalDevice, &descriptorLayout, nullptr, &descriptorSetLayouts.material));
|
|
|
|
// Setup pipeline layout
|
|
std::array<VkDescriptorSetLayout, 2> setLayouts = { descriptorSetLayouts.scene, descriptorSetLayouts.material };
|
|
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(setLayouts.data(), static_cast<uint32_t>(setLayouts.size()));
|
|
|
|
// We will be using a push constant block to pass material properties to the fragment shaders
|
|
VkPushConstantRange pushConstantRange = vks::initializers::pushConstantRange(
|
|
VK_SHADER_STAGE_FRAGMENT_BIT,
|
|
sizeof(SceneMaterialProperties),
|
|
0);
|
|
pipelineLayoutCreateInfo.pushConstantRangeCount = 1;
|
|
pipelineLayoutCreateInfo.pPushConstantRanges = &pushConstantRange;
|
|
|
|
VK_CHECK_RESULT(vkCreatePipelineLayout(vulkanDevice->logicalDevice, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout));
|
|
|
|
// Material descriptor sets
|
|
for (size_t i = 0; i < materials.size(); i++)
|
|
{
|
|
// Descriptor set
|
|
VkDescriptorSetAllocateInfo allocInfo =
|
|
vks::initializers::descriptorSetAllocateInfo(
|
|
descriptorPool,
|
|
&descriptorSetLayouts.material,
|
|
1);
|
|
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(vulkanDevice->logicalDevice, &allocInfo, &materials[i].descriptorSet));
|
|
|
|
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
|
|
|
|
// todo : only use image sampler descriptor set and use one scene ubo for matrices
|
|
|
|
// Binding 0: Diffuse texture
|
|
writeDescriptorSets.push_back(vks::initializers::writeDescriptorSet(
|
|
materials[i].descriptorSet,
|
|
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
|
|
0,
|
|
&materials[i].diffuse.descriptor));
|
|
|
|
vkUpdateDescriptorSets(vulkanDevice->logicalDevice, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
|
|
}
|
|
|
|
// Scene descriptor set
|
|
VkDescriptorSetAllocateInfo allocInfo =
|
|
vks::initializers::descriptorSetAllocateInfo(
|
|
descriptorPool,
|
|
&descriptorSetLayouts.scene,
|
|
1);
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(vulkanDevice->logicalDevice, &allocInfo, &descriptorSetScene));
|
|
|
|
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
|
|
// Binding 0 : Vertex shader uniform buffer
|
|
writeDescriptorSets.push_back(vks::initializers::writeDescriptorSet(
|
|
descriptorSetScene,
|
|
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
|
|
0,
|
|
&uniformBuffer.descriptor));
|
|
|
|
vkUpdateDescriptorSets(vulkanDevice->logicalDevice, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
|
|
}
|
|
|
|
// Load all meshes from the scene and generate the buffers for rendering them
|
|
void loadMeshes(VkCommandBuffer copyCmd)
|
|
{
|
|
std::vector<Vertex> vertices;
|
|
std::vector<uint32_t> indices;
|
|
uint32_t indexBase = 0;
|
|
|
|
meshes.resize(aScene->mNumMeshes);
|
|
for (uint32_t i = 0; i < meshes.size(); i++)
|
|
{
|
|
aiMesh *aMesh = aScene->mMeshes[i];
|
|
|
|
std::cout << "Mesh \"" << aMesh->mName.C_Str() << "\"" << std::endl;
|
|
std::cout << " Material: \"" << materials[aMesh->mMaterialIndex].name << "\"" << std::endl;
|
|
std::cout << " Faces: " << aMesh->mNumFaces << std::endl;
|
|
|
|
meshes[i].material = &materials[aMesh->mMaterialIndex];
|
|
meshes[i].indexBase = indexBase;
|
|
meshes[i].indexCount = aMesh->mNumFaces * 3;
|
|
|
|
// Vertices
|
|
bool hasUV = aMesh->HasTextureCoords(0);
|
|
bool hasColor = aMesh->HasVertexColors(0);
|
|
bool hasNormals = aMesh->HasNormals();
|
|
|
|
const uint32_t vertexOffset = static_cast<uint32_t>(vertices.size());
|
|
|
|
for (uint32_t v = 0; v < aMesh->mNumVertices; v++)
|
|
{
|
|
Vertex vertex;
|
|
vertex.pos = glm::make_vec3(&aMesh->mVertices[v].x);
|
|
vertex.pos.y = -vertex.pos.y;
|
|
vertex.uv = hasUV ? glm::make_vec2(&aMesh->mTextureCoords[0][v].x) : glm::vec2(0.0f);
|
|
vertex.normal = hasNormals ? glm::make_vec3(&aMesh->mNormals[v].x) : glm::vec3(0.0f);
|
|
vertex.normal.y = -vertex.normal.y;
|
|
vertex.color = hasColor ? glm::make_vec3(&aMesh->mColors[0][v].r) : glm::vec3(1.0f);
|
|
vertices.push_back(vertex);
|
|
}
|
|
|
|
// Indices
|
|
for (uint32_t f = 0; f < aMesh->mNumFaces; f++)
|
|
{
|
|
for (uint32_t j = 0; j < 3; j++)
|
|
{
|
|
indices.push_back(vertexOffset + aMesh->mFaces[f].mIndices[j]);
|
|
}
|
|
}
|
|
|
|
indexBase += aMesh->mNumFaces * 3;
|
|
}
|
|
|
|
// Create buffers
|
|
// For better performance we only create one index and vertex buffer to keep number of memory allocations down
|
|
size_t vertexDataSize = vertices.size() * sizeof(Vertex);
|
|
size_t indexDataSize = indices.size() * sizeof(uint32_t);
|
|
|
|
vks::Buffer vertexStaging, indexStaging;
|
|
|
|
// Vertex buffer
|
|
// Staging buffer
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&vertexStaging,
|
|
static_cast<uint32_t>(vertexDataSize),
|
|
vertices.data()));
|
|
// Target
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
|
|
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
|
|
&vertexBuffer,
|
|
static_cast<uint32_t>(vertexDataSize)));
|
|
|
|
// Index buffer
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&indexStaging,
|
|
static_cast<uint32_t>(indexDataSize),
|
|
indices.data()));
|
|
// Target
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
|
|
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
|
|
&indexBuffer,
|
|
static_cast<uint32_t>(indexDataSize)));
|
|
|
|
// Copy
|
|
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
|
VK_CHECK_RESULT(vkBeginCommandBuffer(copyCmd, &cmdBufInfo));
|
|
|
|
VkBufferCopy copyRegion = {};
|
|
|
|
copyRegion.size = vertexDataSize;
|
|
vkCmdCopyBuffer(
|
|
copyCmd,
|
|
vertexStaging.buffer,
|
|
vertexBuffer.buffer,
|
|
1,
|
|
©Region);
|
|
|
|
copyRegion.size = indexDataSize;
|
|
vkCmdCopyBuffer(
|
|
copyCmd,
|
|
indexStaging.buffer,
|
|
indexBuffer.buffer,
|
|
1,
|
|
©Region);
|
|
|
|
VK_CHECK_RESULT(vkEndCommandBuffer(copyCmd));
|
|
|
|
VkSubmitInfo submitInfo = {};
|
|
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = ©Cmd;
|
|
|
|
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
|
|
VK_CHECK_RESULT(vkQueueWaitIdle(queue));
|
|
|
|
//todo: fence
|
|
vertexStaging.destroy();
|
|
indexStaging.destroy();
|
|
}
|
|
|
|
public:
|
|
#if defined(__ANDROID__)
|
|
AAssetManager* assetManager = nullptr;
|
|
#endif
|
|
|
|
std::string assetPath = "";
|
|
|
|
std::vector<SceneMaterial> materials;
|
|
std::vector<ScenePart> meshes;
|
|
|
|
// Shared ubo containing matrices used by all
|
|
// materials and meshes
|
|
vks::Buffer uniformBuffer;
|
|
struct UniformData {
|
|
glm::mat4 projection;
|
|
glm::mat4 view;
|
|
glm::mat4 model;
|
|
glm::vec4 lightPos = glm::vec4(1.25f, 8.35f, 0.0f, 0.0f);
|
|
} uniformData;
|
|
|
|
// Scene uses multiple pipelines
|
|
struct {
|
|
VkPipeline solid;
|
|
VkPipeline blending;
|
|
VkPipeline wireframe;
|
|
} pipelines;
|
|
|
|
// Shared pipeline layout
|
|
VkPipelineLayout pipelineLayout;
|
|
|
|
// For displaying only a single part of the scene
|
|
bool renderSingleScenePart = false;
|
|
int32_t scenePartIndex = 0;
|
|
|
|
// Default constructor
|
|
Scene(vks::VulkanDevice *vulkanDevice, VkQueue queue)
|
|
{
|
|
this->vulkanDevice = vulkanDevice;
|
|
this->queue = queue;
|
|
|
|
// Prepare uniform buffer for global matrices
|
|
VkMemoryRequirements memReqs;
|
|
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
|
|
VkBufferCreateInfo bufferCreateInfo = vks::initializers::bufferCreateInfo(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, sizeof(uniformData));
|
|
VK_CHECK_RESULT(vkCreateBuffer(vulkanDevice->logicalDevice, &bufferCreateInfo, nullptr, &uniformBuffer.buffer));
|
|
vkGetBufferMemoryRequirements(vulkanDevice->logicalDevice, uniformBuffer.buffer, &memReqs);
|
|
memAlloc.allocationSize = memReqs.size;
|
|
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
|
|
VK_CHECK_RESULT(vkAllocateMemory(vulkanDevice->logicalDevice, &memAlloc, nullptr, &uniformBuffer.memory));
|
|
VK_CHECK_RESULT(vkBindBufferMemory(vulkanDevice->logicalDevice, uniformBuffer.buffer, uniformBuffer.memory, 0));
|
|
VK_CHECK_RESULT(vkMapMemory(vulkanDevice->logicalDevice, uniformBuffer.memory, 0, sizeof(uniformData), 0, (void **)&uniformBuffer.mapped));
|
|
uniformBuffer.descriptor.offset = 0;
|
|
uniformBuffer.descriptor.buffer = uniformBuffer.buffer;
|
|
uniformBuffer.descriptor.range = sizeof(uniformData);
|
|
uniformBuffer.device = vulkanDevice->logicalDevice;
|
|
}
|
|
|
|
// Default destructor
|
|
~Scene()
|
|
{
|
|
vertexBuffer.destroy();
|
|
indexBuffer.destroy();
|
|
for (auto material : materials)
|
|
{
|
|
material.diffuse.destroy();
|
|
}
|
|
vkDestroyPipelineLayout(vulkanDevice->logicalDevice, pipelineLayout, nullptr);
|
|
vkDestroyDescriptorSetLayout(vulkanDevice->logicalDevice, descriptorSetLayouts.material, nullptr);
|
|
vkDestroyDescriptorSetLayout(vulkanDevice->logicalDevice, descriptorSetLayouts.scene, nullptr);
|
|
vkDestroyDescriptorPool(vulkanDevice->logicalDevice, descriptorPool, nullptr);
|
|
vkDestroyPipeline(vulkanDevice->logicalDevice, pipelines.solid, nullptr);
|
|
vkDestroyPipeline(vulkanDevice->logicalDevice, pipelines.blending, nullptr);
|
|
vkDestroyPipeline(vulkanDevice->logicalDevice, pipelines.wireframe, nullptr);
|
|
uniformBuffer.destroy();
|
|
}
|
|
|
|
void load(std::string filename, VkCommandBuffer copyCmd)
|
|
{
|
|
Assimp::Importer Importer;
|
|
|
|
int flags = aiProcess_PreTransformVertices | aiProcess_Triangulate | aiProcess_GenNormals;
|
|
|
|
#if defined(__ANDROID__)
|
|
AAsset* asset = AAssetManager_open(assetManager, filename.c_str(), AASSET_MODE_STREAMING);
|
|
assert(asset);
|
|
size_t size = AAsset_getLength(asset);
|
|
assert(size > 0);
|
|
void *meshData = malloc(size);
|
|
AAsset_read(asset, meshData, size);
|
|
AAsset_close(asset);
|
|
aScene = Importer.ReadFileFromMemory(meshData, size, flags);
|
|
free(meshData);
|
|
#else
|
|
aScene = Importer.ReadFile(filename.c_str(), flags);
|
|
#endif
|
|
if (aScene)
|
|
{
|
|
loadMaterials();
|
|
loadMeshes(copyCmd);
|
|
}
|
|
else
|
|
{
|
|
printf("Error parsing '%s': '%s'\n", filename.c_str(), Importer.GetErrorString());
|
|
#if defined(__ANDROID__)
|
|
LOGE("Error parsing '%s': '%s'", filename.c_str(), Importer.GetErrorString());
|
|
#endif
|
|
}
|
|
|
|
}
|
|
|
|
// Renders the scene into an active command buffer
|
|
// In a real world application we would do some visibility culling in here
|
|
void render(VkCommandBuffer cmdBuffer, bool wireframe)
|
|
{
|
|
VkDeviceSize offsets[1] = { 0 };
|
|
|
|
// Bind scene vertex and index buffers
|
|
vkCmdBindVertexBuffers(cmdBuffer, 0, 1, &vertexBuffer.buffer, offsets);
|
|
vkCmdBindIndexBuffer(cmdBuffer, indexBuffer.buffer, 0, VK_INDEX_TYPE_UINT32);
|
|
|
|
for (size_t i = 0; i < meshes.size(); i++)
|
|
{
|
|
if ((renderSingleScenePart) && (i != scenePartIndex))
|
|
continue;
|
|
|
|
// todo : per material pipelines
|
|
// vkCmdBindPipeline(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, *mesh.material->pipeline);
|
|
|
|
// We will be using multiple descriptor sets for rendering
|
|
// In GLSL the selection is done via the set and binding keywords
|
|
// VS: layout (set = 0, binding = 0) uniform UBO;
|
|
// FS: layout (set = 1, binding = 0) uniform sampler2D samplerColorMap;
|
|
|
|
std::array<VkDescriptorSet, 2> descriptorSets;
|
|
// Set 0: Scene descriptor set containing global matrices
|
|
descriptorSets[0] = descriptorSetScene;
|
|
// Set 1: Per-Material descriptor set containing bound images
|
|
descriptorSets[1] = meshes[i].material->descriptorSet;
|
|
|
|
vkCmdBindPipeline(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, wireframe ? pipelines.wireframe : *meshes[i].material->pipeline);
|
|
vkCmdBindDescriptorSets(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, static_cast<uint32_t>(descriptorSets.size()), descriptorSets.data(), 0, NULL);
|
|
|
|
// Pass material properies via push constants
|
|
vkCmdPushConstants(
|
|
cmdBuffer,
|
|
pipelineLayout,
|
|
VK_SHADER_STAGE_FRAGMENT_BIT,
|
|
0,
|
|
sizeof(SceneMaterialProperties),
|
|
&meshes[i].material->properties);
|
|
|
|
// Render from the global scene vertex buffer using the mesh index offset
|
|
vkCmdDrawIndexed(cmdBuffer, meshes[i].indexCount, 1, 0, meshes[i].indexBase, 0);
|
|
}
|
|
}
|
|
};
|
|
|
|
class VulkanExample : public VulkanExampleBase
|
|
{
|
|
public:
|
|
bool wireframe = false;
|
|
bool attachLight = false;
|
|
|
|
Scene *scene = nullptr;
|
|
|
|
struct {
|
|
VkPipelineVertexInputStateCreateInfo inputState;
|
|
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
|
|
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
|
|
} vertices;
|
|
|
|
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
|
|
{
|
|
title = "Multi-part scene rendering";
|
|
camera.type = Camera::CameraType::firstperson;
|
|
camera.movementSpeed = 7.5f;
|
|
camera.position = { 15.0f, -13.5f, 0.0f };
|
|
camera.setRotation(glm::vec3(5.0f, 90.0f, 0.0f));
|
|
camera.setRotationSpeed(0.5f);
|
|
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
|
|
settings.overlay = true;
|
|
}
|
|
|
|
~VulkanExample()
|
|
{
|
|
delete(scene);
|
|
}
|
|
|
|
// Enable physical device features required for this example
|
|
virtual void getEnabledFeatures()
|
|
{
|
|
// Fill mode non solid is required for wireframe display
|
|
if (deviceFeatures.fillModeNonSolid) {
|
|
enabledFeatures.fillModeNonSolid = VK_TRUE;
|
|
};
|
|
}
|
|
|
|
void buildCommandBuffers()
|
|
{
|
|
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
|
|
|
VkClearValue clearValues[2];
|
|
clearValues[0].color = defaultClearColor;
|
|
clearValues[1].depthStencil = { 1.0f, 0 };
|
|
|
|
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
|
|
renderPassBeginInfo.renderPass = renderPass;
|
|
renderPassBeginInfo.renderArea.offset.x = 0;
|
|
renderPassBeginInfo.renderArea.offset.y = 0;
|
|
renderPassBeginInfo.renderArea.extent.width = width;
|
|
renderPassBeginInfo.renderArea.extent.height = height;
|
|
renderPassBeginInfo.clearValueCount = 2;
|
|
renderPassBeginInfo.pClearValues = clearValues;
|
|
|
|
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
|
|
{
|
|
renderPassBeginInfo.framebuffer = frameBuffers[i];
|
|
|
|
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
|
|
|
|
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
|
|
|
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
|
|
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
|
|
|
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
|
|
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
|
|
|
scene->render(drawCmdBuffers[i], wireframe);
|
|
|
|
drawUI(drawCmdBuffers[i]);
|
|
|
|
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
|
|
|
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
|
|
}
|
|
}
|
|
|
|
void setupVertexDescriptions()
|
|
{
|
|
// Binding description
|
|
vertices.bindingDescriptions.resize(1);
|
|
vertices.bindingDescriptions[0] =
|
|
vks::initializers::vertexInputBindingDescription(
|
|
VERTEX_BUFFER_BIND_ID,
|
|
sizeof(Vertex),
|
|
VK_VERTEX_INPUT_RATE_VERTEX);
|
|
|
|
// Attribute descriptions
|
|
// Describes memory layout and shader positions
|
|
vertices.attributeDescriptions.resize(4);
|
|
// Location 0 : Position
|
|
vertices.attributeDescriptions[0] =
|
|
vks::initializers::vertexInputAttributeDescription(
|
|
VERTEX_BUFFER_BIND_ID,
|
|
0,
|
|
VK_FORMAT_R32G32B32_SFLOAT,
|
|
0);
|
|
// Location 1 : Normal
|
|
vertices.attributeDescriptions[1] =
|
|
vks::initializers::vertexInputAttributeDescription(
|
|
VERTEX_BUFFER_BIND_ID,
|
|
1,
|
|
VK_FORMAT_R32G32B32_SFLOAT,
|
|
sizeof(float) * 3);
|
|
// Location 2 : Texture coordinates
|
|
vertices.attributeDescriptions[2] =
|
|
vks::initializers::vertexInputAttributeDescription(
|
|
VERTEX_BUFFER_BIND_ID,
|
|
2,
|
|
VK_FORMAT_R32G32_SFLOAT,
|
|
sizeof(float) * 6);
|
|
// Location 3 : Color
|
|
vertices.attributeDescriptions[3] =
|
|
vks::initializers::vertexInputAttributeDescription(
|
|
VERTEX_BUFFER_BIND_ID,
|
|
3,
|
|
VK_FORMAT_R32G32B32_SFLOAT,
|
|
sizeof(float) * 8);
|
|
|
|
vertices.inputState = vks::initializers::pipelineVertexInputStateCreateInfo();
|
|
vertices.inputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertices.bindingDescriptions.size());
|
|
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
|
|
vertices.inputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertices.attributeDescriptions.size());
|
|
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
|
|
}
|
|
|
|
void preparePipelines()
|
|
{
|
|
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
|
|
vks::initializers::pipelineInputAssemblyStateCreateInfo(
|
|
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
|
|
0,
|
|
VK_FALSE);
|
|
|
|
VkPipelineRasterizationStateCreateInfo rasterizationState =
|
|
vks::initializers::pipelineRasterizationStateCreateInfo(
|
|
VK_POLYGON_MODE_FILL,
|
|
VK_CULL_MODE_BACK_BIT,
|
|
VK_FRONT_FACE_COUNTER_CLOCKWISE,
|
|
0);
|
|
|
|
VkPipelineColorBlendAttachmentState blendAttachmentState =
|
|
vks::initializers::pipelineColorBlendAttachmentState(
|
|
0xf,
|
|
VK_FALSE);
|
|
|
|
VkPipelineColorBlendStateCreateInfo colorBlendState =
|
|
vks::initializers::pipelineColorBlendStateCreateInfo(
|
|
1,
|
|
&blendAttachmentState);
|
|
|
|
VkPipelineDepthStencilStateCreateInfo depthStencilState =
|
|
vks::initializers::pipelineDepthStencilStateCreateInfo(
|
|
VK_TRUE,
|
|
VK_TRUE,
|
|
VK_COMPARE_OP_LESS_OR_EQUAL);
|
|
|
|
VkPipelineViewportStateCreateInfo viewportState =
|
|
vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
|
|
|
VkPipelineMultisampleStateCreateInfo multisampleState =
|
|
vks::initializers::pipelineMultisampleStateCreateInfo(
|
|
VK_SAMPLE_COUNT_1_BIT,
|
|
0);
|
|
|
|
std::vector<VkDynamicState> dynamicStateEnables = {
|
|
VK_DYNAMIC_STATE_VIEWPORT,
|
|
VK_DYNAMIC_STATE_SCISSOR
|
|
};
|
|
VkPipelineDynamicStateCreateInfo dynamicState =
|
|
vks::initializers::pipelineDynamicStateCreateInfo(
|
|
dynamicStateEnables.data(),
|
|
static_cast<uint32_t>(dynamicStateEnables.size()),
|
|
0);
|
|
|
|
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
|
|
|
|
// Solid rendering pipeline
|
|
shaderStages[0] = loadShader(getShadersPath() + "scenerendering/scene.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
|
shaderStages[1] = loadShader(getShadersPath() + "scenerendering/scene.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
|
|
|
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
|
|
vks::initializers::pipelineCreateInfo(
|
|
scene->pipelineLayout,
|
|
renderPass,
|
|
0);
|
|
|
|
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
|
|
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
|
|
pipelineCreateInfo.pRasterizationState = &rasterizationState;
|
|
pipelineCreateInfo.pColorBlendState = &colorBlendState;
|
|
pipelineCreateInfo.pMultisampleState = &multisampleState;
|
|
pipelineCreateInfo.pViewportState = &viewportState;
|
|
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
|
|
pipelineCreateInfo.pDynamicState = &dynamicState;
|
|
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
|
|
pipelineCreateInfo.pStages = shaderStages.data();
|
|
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &scene->pipelines.solid));
|
|
|
|
// Alpha blended pipeline
|
|
rasterizationState.cullMode = VK_CULL_MODE_NONE;
|
|
blendAttachmentState.blendEnable = VK_TRUE;
|
|
blendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD;
|
|
blendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_SRC_COLOR;
|
|
blendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR;
|
|
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &scene->pipelines.blending));
|
|
|
|
// Wire frame rendering pipeline
|
|
if (deviceFeatures.fillModeNonSolid) {
|
|
rasterizationState.cullMode = VK_CULL_MODE_BACK_BIT;
|
|
blendAttachmentState.blendEnable = VK_FALSE;
|
|
rasterizationState.polygonMode = VK_POLYGON_MODE_LINE;
|
|
rasterizationState.lineWidth = 1.0f;
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &scene->pipelines.wireframe));
|
|
}
|
|
}
|
|
|
|
void updateUniformBuffers()
|
|
{
|
|
if (attachLight)
|
|
{
|
|
scene->uniformData.lightPos = glm::vec4(-camera.position, 1.0f);
|
|
}
|
|
|
|
scene->uniformData.projection = camera.matrices.perspective;
|
|
scene->uniformData.view = camera.matrices.view;
|
|
scene->uniformData.model = glm::mat4(1.0f);
|
|
|
|
memcpy(scene->uniformBuffer.mapped, &scene->uniformData, sizeof(scene->uniformData));
|
|
}
|
|
|
|
void draw()
|
|
{
|
|
VulkanExampleBase::prepareFrame();
|
|
|
|
// Command buffer to be sumitted to the queue
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
|
|
|
|
// Submit to queue
|
|
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
|
|
|
|
VulkanExampleBase::submitFrame();
|
|
}
|
|
|
|
void loadScene()
|
|
{
|
|
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, false);
|
|
scene = new Scene(vulkanDevice, queue);
|
|
|
|
#if defined(__ANDROID__)
|
|
scene->assetManager = androidApp->activity->assetManager;
|
|
#endif
|
|
scene->assetPath = getAssetPath() + "models/sibenik/";
|
|
scene->load(getAssetPath() + "models/sibenik/sibenik.dae", copyCmd);
|
|
vkFreeCommandBuffers(device, cmdPool, 1, ©Cmd);
|
|
updateUniformBuffers();
|
|
}
|
|
|
|
void prepare()
|
|
{
|
|
VulkanExampleBase::prepare();
|
|
setupVertexDescriptions();
|
|
loadScene();
|
|
preparePipelines();
|
|
buildCommandBuffers();
|
|
prepared = true;
|
|
}
|
|
|
|
virtual void render()
|
|
{
|
|
if (!prepared)
|
|
return;
|
|
draw();
|
|
}
|
|
|
|
virtual void viewChanged()
|
|
{
|
|
updateUniformBuffers();
|
|
}
|
|
|
|
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
|
|
{
|
|
if (overlay->header("Settings")) {
|
|
if (deviceFeatures.fillModeNonSolid) {
|
|
if (overlay->checkBox("Wireframe", &wireframe)) {
|
|
buildCommandBuffers();
|
|
}
|
|
}
|
|
if (scene) {
|
|
if (overlay->checkBox("Attach light to camera", &attachLight)) {
|
|
updateUniformBuffers();
|
|
}
|
|
if (overlay->checkBox("Render single part", &scene->renderSingleScenePart)) {
|
|
buildCommandBuffers();
|
|
}
|
|
if (scene->renderSingleScenePart) {
|
|
if (overlay->sliderInt("Part to render", &scene->scenePartIndex, 0, static_cast<int32_t>(scene->meshes.size()))) {
|
|
buildCommandBuffers();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
VULKAN_EXAMPLE_MAIN() |