procedural-3d-engine/data/shaders/hlsl/computeraytracing/raytracing.comp
Ben Clayton ca884587a4 Move shaders into glsl and hlsl directories
Move `data/shaders` to `data/shaders/glsl`
Move `data/hlsl` to `data/shaders/hlsl`

Fix up shader paths in the cpp files to point to the new glsl location.

`data/shaders/hlsl/compile.py` still overwrites the glsl .spv files (for
now).

Issue: #723
2020-06-01 12:22:28 +01:00

272 lines
No EOL
5.5 KiB
Text

// Copyright 2020 Google LLC
// Shader is looseley based on the ray tracing coding session by Inigo Quilez (www.iquilezles.org)
RWTexture2D<float4> resultImage : register(u0);
#define EPSILON 0.0001
#define MAXLEN 1000.0
#define SHADOW 0.5
#define RAYBOUNCES 2
#define REFLECTIONS true
#define REFLECTIONSTRENGTH 0.4
#define REFLECTIONFALLOFF 0.5
struct Camera
{
float3 pos;
float3 lookat;
float fov;
};
struct UBO
{
float3 lightPos;
float aspectRatio;
float4 fogColor;
Camera camera;
float4x4 rotMat;
};
cbuffer ubo : register(b1) { UBO ubo; }
struct Sphere
{
float3 pos;
float radius;
float3 diffuse;
float specular;
int id;
};
struct Plane
{
float3 normal;
float distance;
float3 diffuse;
float specular;
int id;
};
StructuredBuffer<Sphere> spheres : register(t2);
StructuredBuffer<Plane> planes : register(t3);
void reflectRay(inout float3 rayD, in float3 mormal)
{
rayD = rayD + 2.0 * -dot(mormal, rayD) * mormal;
}
// Lighting =========================================================
float lightDiffuse(float3 normal, float3 lightDir)
{
return clamp(dot(normal, lightDir), 0.1, 1.0);
}
float lightSpecular(float3 normal, float3 lightDir, float specularFactor)
{
float3 viewVec = normalize(ubo.camera.pos);
float3 halfVec = normalize(lightDir + viewVec);
return pow(clamp(dot(normal, halfVec), 0.0, 1.0), specularFactor);
}
// Sphere ===========================================================
float sphereIntersect(in float3 rayO, in float3 rayD, in Sphere sphere)
{
float3 oc = rayO - sphere.pos;
float b = 2.0 * dot(oc, rayD);
float c = dot(oc, oc) - sphere.radius*sphere.radius;
float h = b*b - 4.0*c;
if (h < 0.0)
{
return -1.0;
}
float t = (-b - sqrt(h)) / 2.0;
return t;
}
float3 sphereNormal(in float3 pos, in Sphere sphere)
{
return (pos - sphere.pos) / sphere.radius;
}
// Plane ===========================================================
float planeIntersect(float3 rayO, float3 rayD, Plane plane)
{
float d = dot(rayD, plane.normal);
if (d == 0.0)
return 0.0;
float t = -(plane.distance + dot(rayO, plane.normal)) / d;
if (t < 0.0)
return 0.0;
return t;
}
int intersect(in float3 rayO, in float3 rayD, inout float resT)
{
int id = -1;
uint spheresLength;
uint spheresStride;
spheres.GetDimensions(spheresLength, spheresStride);
int i;
for (i = 0; i < spheresLength; i++)
{
float tSphere = sphereIntersect(rayO, rayD, spheres[i]);
if ((tSphere > EPSILON) && (tSphere < resT))
{
id = spheres[i].id;
resT = tSphere;
}
}
uint planesLength;
uint planesStride;
planes.GetDimensions(planesLength, planesStride);
for (i = 0; i < planesLength; i++)
{
float tplane = planeIntersect(rayO, rayD, planes[i]);
if ((tplane > EPSILON) && (tplane < resT))
{
id = planes[i].id;
resT = tplane;
}
}
return id;
}
float calcShadow(in float3 rayO, in float3 rayD, in int objectId, inout float t)
{
uint spheresLength;
uint spheresStride;
spheres.GetDimensions(spheresLength, spheresStride);
for (int i = 0; i < spheresLength; i++)
{
if (spheres[i].id == objectId)
continue;
float tSphere = sphereIntersect(rayO, rayD, spheres[i]);
if ((tSphere > EPSILON) && (tSphere < t))
{
t = tSphere;
return SHADOW;
}
}
return 1.0;
}
float3 fog(in float t, in float3 color)
{
return lerp(color, ubo.fogColor.rgb, clamp(sqrt(t*t)/20.0, 0.0, 1.0));
}
float3 renderScene(inout float3 rayO, inout float3 rayD, inout int id)
{
float3 color = float3(0, 0, 0);
float t = MAXLEN;
// Get intersected object ID
int objectID = intersect(rayO, rayD, t);
if (objectID == -1)
{
return color;
}
float3 pos = rayO + t * rayD;
float3 lightVec = normalize(ubo.lightPos - pos);
float3 normal;
// Planes
// Spheres
uint planesLength;
uint planesStride;
planes.GetDimensions(planesLength, planesStride);
int i;
for (i = 0; i < planesLength; i++)
{
if (objectID == planes[i].id)
{
normal = planes[i].normal;
float diffuse = lightDiffuse(normal, lightVec);
float specular = lightSpecular(normal, lightVec, planes[i].specular);
color = diffuse * planes[i].diffuse + specular;
}
}
uint spheresLength;
uint spheresStride;
spheres.GetDimensions(spheresLength, spheresStride);
for (i = 0; i < spheresLength; i++)
{
if (objectID == spheres[i].id)
{
normal = sphereNormal(pos, spheres[i]);
float diffuse = lightDiffuse(normal, lightVec);
float specular = lightSpecular(normal, lightVec, spheres[i].specular);
color = diffuse * spheres[i].diffuse + specular;
}
}
if (id == -1)
return color;
id = objectID;
// Shadows
t = length(ubo.lightPos - pos);
color *= calcShadow(pos, lightVec, id, t);
// Fog
color = fog(t, color);
// Reflect ray for next render pass
reflectRay(rayD, normal);
rayO = pos;
return color;
}
[numthreads(16, 16, 1)]
void main(uint3 GlobalInvocationID : SV_DispatchThreadID)
{
int2 dim;
resultImage.GetDimensions(dim.x, dim.y);
float2 uv = float2(GlobalInvocationID.xy) / dim;
float3 rayO = ubo.camera.pos;
float3 rayD = normalize(float3((-1.0 + 2.0 * uv) * float2(ubo.aspectRatio, 1.0), -1.0));
// Basic color path
int id = 0;
float3 finalColor = renderScene(rayO, rayD, id);
// Reflection
if (REFLECTIONS)
{
float reflectionStrength = REFLECTIONSTRENGTH;
for (int i = 0; i < RAYBOUNCES; i++)
{
float3 reflectionColor = renderScene(rayO, rayD, id);
finalColor = (1.0 - reflectionStrength) * finalColor + reflectionStrength * lerp(reflectionColor, finalColor, 1.0 - reflectionStrength);
reflectionStrength *= REFLECTIONFALLOFF;
}
}
resultImage[int2(GlobalInvocationID.xy)] = float4(finalColor, 0.0);
}