385 lines
15 KiB
C++
385 lines
15 KiB
C++
/*
|
|
* Vulkan Example - Using descriptor sets for passing data to shader stages
|
|
*
|
|
* Relevant code parts are marked with [POI]
|
|
*
|
|
* Copyright (C) 2018-2023 by Sascha Willems - www.saschawillems.de
|
|
*
|
|
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
|
*/
|
|
|
|
#include "vulkanexamplebase.h"
|
|
#include "VulkanglTFModel.h"
|
|
|
|
#define ENABLE_VALIDATION false
|
|
|
|
class VulkanExample : public VulkanExampleBase
|
|
{
|
|
public:
|
|
bool animate = true;
|
|
|
|
struct Cube {
|
|
struct Matrices {
|
|
glm::mat4 projection;
|
|
glm::mat4 view;
|
|
glm::mat4 model;
|
|
} matrices;
|
|
VkDescriptorSet descriptorSet;
|
|
vks::Texture2D texture;
|
|
vks::Buffer uniformBuffer;
|
|
glm::vec3 rotation;
|
|
};
|
|
std::array<Cube, 2> cubes;
|
|
|
|
vkglTF::Model model;
|
|
|
|
VkPipeline pipeline;
|
|
VkPipelineLayout pipelineLayout;
|
|
|
|
VkDescriptorSetLayout descriptorSetLayout;
|
|
|
|
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
|
|
{
|
|
title = "Using descriptor Sets";
|
|
camera.type = Camera::CameraType::lookat;
|
|
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
|
|
camera.setRotation(glm::vec3(0.0f, 0.0f, 0.0f));
|
|
camera.setTranslation(glm::vec3(0.0f, 0.0f, -5.0f));
|
|
}
|
|
|
|
~VulkanExample()
|
|
{
|
|
vkDestroyPipeline(device, pipeline, nullptr);
|
|
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
|
|
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
|
|
for (auto cube : cubes) {
|
|
cube.uniformBuffer.destroy();
|
|
cube.texture.destroy();
|
|
}
|
|
}
|
|
|
|
virtual void getEnabledFeatures()
|
|
{
|
|
if (deviceFeatures.samplerAnisotropy) {
|
|
enabledFeatures.samplerAnisotropy = VK_TRUE;
|
|
};
|
|
}
|
|
|
|
void buildCommandBuffers()
|
|
{
|
|
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
|
|
|
VkClearValue clearValues[2];
|
|
clearValues[0].color = defaultClearColor;
|
|
clearValues[1].depthStencil = { 1.0f, 0 };
|
|
|
|
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
|
|
renderPassBeginInfo.renderPass = renderPass;
|
|
renderPassBeginInfo.renderArea.offset.x = 0;
|
|
renderPassBeginInfo.renderArea.offset.y = 0;
|
|
renderPassBeginInfo.renderArea.extent.width = width;
|
|
renderPassBeginInfo.renderArea.extent.height = height;
|
|
renderPassBeginInfo.clearValueCount = 2;
|
|
renderPassBeginInfo.pClearValues = clearValues;
|
|
|
|
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) {
|
|
renderPassBeginInfo.framebuffer = frameBuffers[i];
|
|
|
|
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
|
|
|
|
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
|
|
|
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
|
|
|
|
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
|
|
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
|
|
|
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
|
|
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
|
|
|
model.bindBuffers(drawCmdBuffers[i]);
|
|
|
|
/*
|
|
[POI] Render cubes with separate descriptor sets
|
|
*/
|
|
for (auto cube : cubes) {
|
|
// Bind the cube's descriptor set. This tells the command buffer to use the uniform buffer and image set for this cube
|
|
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &cube.descriptorSet, 0, nullptr);
|
|
model.draw(drawCmdBuffers[i]);
|
|
}
|
|
|
|
drawUI(drawCmdBuffers[i]);
|
|
|
|
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
|
|
|
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
|
|
}
|
|
}
|
|
|
|
void loadAssets()
|
|
{
|
|
const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY;
|
|
model.loadFromFile(getAssetPath() + "models/cube.gltf", vulkanDevice, queue, glTFLoadingFlags);
|
|
cubes[0].texture.loadFromFile(getAssetPath() + "textures/crate01_color_height_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
|
|
cubes[1].texture.loadFromFile(getAssetPath() + "textures/crate02_color_height_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
|
|
}
|
|
|
|
/*
|
|
[POI] Set up descriptor sets and set layout
|
|
*/
|
|
void setupDescriptors()
|
|
{
|
|
/*
|
|
|
|
Descriptor set layout
|
|
|
|
The layout describes the shader bindings and types used for a certain descriptor layout and as such must match the shader bindings
|
|
|
|
Shader bindings used in this example:
|
|
|
|
VS:
|
|
layout (set = 0, binding = 0) uniform UBOMatrices ...
|
|
|
|
FS :
|
|
layout (set = 0, binding = 1) uniform sampler2D ...;
|
|
|
|
*/
|
|
|
|
std::array<VkDescriptorSetLayoutBinding,2> setLayoutBindings{};
|
|
|
|
/*
|
|
Binding 0: Uniform buffers (used to pass matrices)
|
|
*/
|
|
setLayoutBindings[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
|
|
// Shader binding point
|
|
setLayoutBindings[0].binding = 0;
|
|
// Accessible from the vertex shader only (flags can be combined to make it accessible to multiple shader stages)
|
|
setLayoutBindings[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
|
|
// Binding contains one element (can be used for array bindings)
|
|
setLayoutBindings[0].descriptorCount = 1;
|
|
|
|
/*
|
|
Binding 1: Combined image sampler (used to pass per object texture information)
|
|
*/
|
|
setLayoutBindings[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
|
|
setLayoutBindings[1].binding = 1;
|
|
// Accessible from the fragment shader only
|
|
setLayoutBindings[1].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
|
|
setLayoutBindings[1].descriptorCount = 1;
|
|
|
|
// Create the descriptor set layout
|
|
VkDescriptorSetLayoutCreateInfo descriptorLayoutCI{};
|
|
descriptorLayoutCI.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
|
|
descriptorLayoutCI.bindingCount = static_cast<uint32_t>(setLayoutBindings.size());
|
|
descriptorLayoutCI.pBindings = setLayoutBindings.data();
|
|
|
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayoutCI, nullptr, &descriptorSetLayout));
|
|
|
|
/*
|
|
|
|
Descriptor pool
|
|
|
|
Actual descriptors are allocated from a descriptor pool telling the driver what types and how many
|
|
descriptors this application will use
|
|
|
|
An application can have multiple pools (e.g. for multiple threads) with any number of descriptor types
|
|
as long as device limits are not surpassed
|
|
|
|
It's good practice to allocate pools with actually required descriptor types and counts
|
|
|
|
*/
|
|
|
|
std::array<VkDescriptorPoolSize, 2> descriptorPoolSizes{};
|
|
|
|
// Uniform buffers : 1 per object
|
|
descriptorPoolSizes[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
|
|
descriptorPoolSizes[0].descriptorCount = static_cast<uint32_t>(cubes.size());
|
|
|
|
// Combined image samples : 1 per object texture
|
|
descriptorPoolSizes[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
|
|
descriptorPoolSizes[1].descriptorCount = static_cast<uint32_t>(cubes.size());
|
|
|
|
// Create the global descriptor pool
|
|
VkDescriptorPoolCreateInfo descriptorPoolCI = {};
|
|
descriptorPoolCI.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
|
|
descriptorPoolCI.poolSizeCount = static_cast<uint32_t>(descriptorPoolSizes.size());
|
|
descriptorPoolCI.pPoolSizes = descriptorPoolSizes.data();
|
|
// Max. number of descriptor sets that can be allocated from this pool (one per object)
|
|
descriptorPoolCI.maxSets = static_cast<uint32_t>(cubes.size());
|
|
|
|
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCI, nullptr, &descriptorPool));
|
|
|
|
/*
|
|
|
|
Descriptor sets
|
|
|
|
Using the shared descriptor set layout and the descriptor pool we will now allocate the descriptor sets.
|
|
|
|
Descriptor sets contain the actual descriptor for the objects (buffers, images) used at render time.
|
|
|
|
*/
|
|
|
|
for (auto &cube: cubes) {
|
|
|
|
// Allocates an empty descriptor set without actual descriptors from the pool using the set layout
|
|
VkDescriptorSetAllocateInfo allocateInfo{};
|
|
allocateInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
|
|
allocateInfo.descriptorPool = descriptorPool;
|
|
allocateInfo.descriptorSetCount = 1;
|
|
allocateInfo.pSetLayouts = &descriptorSetLayout;
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocateInfo, &cube.descriptorSet));
|
|
|
|
// Update the descriptor set with the actual descriptors matching shader bindings set in the layout
|
|
|
|
std::array<VkWriteDescriptorSet, 2> writeDescriptorSets{};
|
|
|
|
/*
|
|
Binding 0: Object matrices Uniform buffer
|
|
*/
|
|
writeDescriptorSets[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
|
|
writeDescriptorSets[0].dstSet = cube.descriptorSet;
|
|
writeDescriptorSets[0].dstBinding = 0;
|
|
writeDescriptorSets[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
|
|
writeDescriptorSets[0].pBufferInfo = &cube.uniformBuffer.descriptor;
|
|
writeDescriptorSets[0].descriptorCount = 1;
|
|
|
|
/*
|
|
Binding 1: Object texture
|
|
*/
|
|
writeDescriptorSets[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
|
|
writeDescriptorSets[1].dstSet = cube.descriptorSet;
|
|
writeDescriptorSets[1].dstBinding = 1;
|
|
writeDescriptorSets[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
|
|
// Images use a different descriptor structure, so we use pImageInfo instead of pBufferInfo
|
|
writeDescriptorSets[1].pImageInfo = &cube.texture.descriptor;
|
|
writeDescriptorSets[1].descriptorCount = 1;
|
|
|
|
// Execute the writes to update descriptors for this set
|
|
// Note that it's also possible to gather all writes and only run updates once, even for multiple sets
|
|
// This is possible because each VkWriteDescriptorSet also contains the destination set to be updated
|
|
// For simplicity we will update once per set instead
|
|
|
|
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
|
|
}
|
|
|
|
}
|
|
|
|
void preparePipelines()
|
|
{
|
|
/*
|
|
[POI] Create a pipeline layout used for our graphics pipeline
|
|
*/
|
|
VkPipelineLayoutCreateInfo pipelineLayoutCI{};
|
|
pipelineLayoutCI.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
|
|
// The pipeline layout is based on the descriptor set layout we created above
|
|
pipelineLayoutCI.setLayoutCount = 1;
|
|
pipelineLayoutCI.pSetLayouts = &descriptorSetLayout;
|
|
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout));
|
|
|
|
const std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
|
|
|
|
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
|
|
VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
|
|
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
|
|
VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
|
|
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
|
|
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
|
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
|
|
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), static_cast<uint32_t>(dynamicStateEnables.size()),0);
|
|
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
|
|
|
|
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
|
|
pipelineCI.pInputAssemblyState = &inputAssemblyStateCI;
|
|
pipelineCI.pRasterizationState = &rasterizationStateCI;
|
|
pipelineCI.pColorBlendState = &colorBlendStateCI;
|
|
pipelineCI.pMultisampleState = &multisampleStateCI;
|
|
pipelineCI.pViewportState = &viewportStateCI;
|
|
pipelineCI.pDepthStencilState = &depthStencilStateCI;
|
|
pipelineCI.pDynamicState = &dynamicStateCI;
|
|
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
|
|
pipelineCI.pStages = shaderStages.data();
|
|
pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({vkglTF::VertexComponent::Position, vkglTF::VertexComponent::Normal, vkglTF::VertexComponent::UV, vkglTF::VertexComponent::Color});
|
|
|
|
shaderStages[0] = loadShader(getShadersPath() + "descriptorsets/cube.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
|
shaderStages[1] = loadShader(getShadersPath() + "descriptorsets/cube.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline));
|
|
}
|
|
|
|
void prepareUniformBuffers()
|
|
{
|
|
// Vertex shader matrix uniform buffer block
|
|
for (auto& cube : cubes) {
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&cube.uniformBuffer,
|
|
sizeof(Cube::Matrices)));
|
|
VK_CHECK_RESULT(cube.uniformBuffer.map());
|
|
}
|
|
|
|
updateUniformBuffers();
|
|
}
|
|
|
|
void updateUniformBuffers()
|
|
{
|
|
cubes[0].matrices.model = glm::translate(glm::mat4(1.0f), glm::vec3(-2.0f, 0.0f, 0.0f));
|
|
cubes[1].matrices.model = glm::translate(glm::mat4(1.0f), glm::vec3( 1.5f, 0.5f, 0.0f));
|
|
|
|
for (auto& cube : cubes) {
|
|
cube.matrices.projection = camera.matrices.perspective;
|
|
cube.matrices.view = camera.matrices.view;
|
|
cube.matrices.model = glm::rotate(cube.matrices.model, glm::radians(cube.rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
|
|
cube.matrices.model = glm::rotate(cube.matrices.model, glm::radians(cube.rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
|
|
cube.matrices.model = glm::rotate(cube.matrices.model, glm::radians(cube.rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
|
|
cube.matrices.model = glm::scale(cube.matrices.model, glm::vec3(0.25f));
|
|
memcpy(cube.uniformBuffer.mapped, &cube.matrices, sizeof(cube.matrices));
|
|
}
|
|
}
|
|
|
|
void draw()
|
|
{
|
|
VulkanExampleBase::prepareFrame();
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
|
|
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
|
|
VulkanExampleBase::submitFrame();
|
|
}
|
|
|
|
void prepare()
|
|
{
|
|
VulkanExampleBase::prepare();
|
|
loadAssets();
|
|
prepareUniformBuffers();
|
|
setupDescriptors();
|
|
preparePipelines();
|
|
buildCommandBuffers();
|
|
prepared = true;
|
|
}
|
|
|
|
virtual void render()
|
|
{
|
|
if (!prepared)
|
|
return;
|
|
draw();
|
|
if (animate && !paused) {
|
|
cubes[0].rotation.x += 2.5f * frameTimer;
|
|
if (cubes[0].rotation.x > 360.0f)
|
|
cubes[0].rotation.x -= 360.0f;
|
|
cubes[1].rotation.y += 2.0f * frameTimer;
|
|
if (cubes[1].rotation.x > 360.0f)
|
|
cubes[1].rotation.x -= 360.0f;
|
|
}
|
|
if ((camera.updated) || (animate && !paused)) {
|
|
updateUniformBuffers();
|
|
}
|
|
}
|
|
|
|
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
|
|
{
|
|
if (overlay->header("Settings")) {
|
|
overlay->checkBox("Animate", &animate);
|
|
}
|
|
}
|
|
};
|
|
|
|
VULKAN_EXAMPLE_MAIN()
|