procedural-3d-engine/skeletalanimation/skeletalanimation.cpp
2016-03-26 13:21:19 +01:00

924 lines
No EOL
26 KiB
C++

/*
* Vulkan Example - Skeletal animation
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#define VERTEX_BUFFER_BIND_ID 0
#define ENABLE_VALIDATION false
// Vertex layout used in this example
struct Vertex {
glm::vec3 pos;
glm::vec3 normal;
glm::vec2 uv;
glm::vec3 color;
// Max. four bones per vertex
float boneWeights[4];
uint32_t boneIDs[4];
};
class VulkanExample : public VulkanExampleBase
{
public:
struct {
vkTools::VulkanTexture colorMap;
} textures;
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
// Mesh related stuff
// Maximum number of bones per vertex
#define MAX_BONES_PER_VERTEX 4
// Per-vertex bone IDs and weights
struct VertexBoneData
{
std::array<uint32_t, MAX_BONES_PER_VERTEX> IDs;
std::array<float, MAX_BONES_PER_VERTEX> weights;
// Ad bone weighting to vertex info
void add(uint32_t boneID, float weight)
{
for (uint32_t i = 0; i < MAX_BONES_PER_VERTEX; i++)
{
if (weights[i] == 0.0f)
{
IDs[i] = boneID;
weights[i] = weight;
return;
}
}
}
};
// Stores information on a single bone
struct BoneInfo
{
aiMatrix4x4 offset;
aiMatrix4x4 finalTransformation;
BoneInfo()
{
offset = aiMatrix4x4();
finalTransformation = aiMatrix4x4();
};
};
struct Mesh {
// Bone related stuff
// Maps bone name with index
std::map<std::string, uint32_t> boneMapping;
// Bone details
std::vector<BoneInfo> boneInfo;
// Number of bones present
uint32_t numBones = 0;
// Root inverese transform matrix
aiMatrix4x4 globalInverseTransform;
// Per-vertex bone info
std::vector<VertexBoneData> bones;
// Vulkan buffers
vkMeshLoader::MeshBuffer meshBuffer;
// Reference to assimp mesh
// Required for animation
VulkanMeshLoader *meshLoader;
} mesh;
struct {
vkTools::UniformData vsScene;
} uniformData;
// Must not be higher than same const in skinning shader
#define MAX_BONES 128
struct {
glm::mat4 projection;
glm::mat4 model;
glm::mat4 bones[MAX_BONES];
glm::vec4 lightPos = glm::vec4(0.0, -5.0, 25.0, 1.0);
} uboVS;
struct {
VkPipeline solid;
} pipelines;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
float runningTime = 0.0f;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
width = 1280;
height = 720;
zoom = -8.0f;
zoomSpeed = 2.5f;
rotationSpeed = 0.5f;
rotation = { -180.0f, -50.0f, 180.0f };
title = "Vulkan Example - Skeletal animation";
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
vkDestroyPipeline(device, pipelines.solid, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
// Destroy and free mesh resources
vkMeshLoader::freeMeshBufferResources(device, &mesh.meshBuffer);
textureLoader->destroyTexture(textures.colorMap);
vkTools::destroyUniformData(device, &uniformData.vsScene);
delete(mesh.meshLoader);
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
VkResult err;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo);
assert(!err);
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vkTools::initializers::viewport(
(float)width,
(float)height,
0.0f,
1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D(
width,
height,
0,
0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.solid);
VkDeviceSize offsets[1] = { 0 };
// Bind mesh vertex buffer
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &mesh.meshBuffer.vertices.buf, offsets);
// Bind mesh index buffer
vkCmdBindIndexBuffer(drawCmdBuffers[i], mesh.meshBuffer.indices.buf, 0, VK_INDEX_TYPE_UINT32);
// Render mesh vertex buffer using it's indices
vkCmdDrawIndexed(drawCmdBuffers[i], mesh.meshBuffer.indexCount, 1, 0, 0, 0);
vkCmdEndRenderPass(drawCmdBuffers[i]);
err = vkEndCommandBuffer(drawCmdBuffers[i]);
assert(!err);
}
}
void draw()
{
VkResult err;
// Get next image in the swap chain (back/front buffer)
err = swapChain.acquireNextImage(semaphores.presentComplete, &currentBuffer);
assert(!err);
submitPostPresentBarrier(swapChain.buffers[currentBuffer].image);
// Command buffer to be sumitted to the queue
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
// Submit to queue
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
assert(!err);
submitPrePresentBarrier(swapChain.buffers[currentBuffer].image);
err = swapChain.queuePresent(queue, currentBuffer, semaphores.renderComplete);
assert(!err);
err = vkQueueWaitIdle(queue);
assert(!err);
}
// Load bone information from ASSIMP mesh
void loadBones(uint32_t meshIndex, const aiMesh* pMesh, std::vector<VertexBoneData>& Bones)
{
for (uint32_t i = 0; i < pMesh->mNumBones; i++)
{
uint32_t index = 0;
std::string name(pMesh->mBones[i]->mName.data);
if (mesh.boneMapping.find(name) == mesh.boneMapping.end())
{
// Bone not present, add new one
index = mesh.numBones;
mesh.numBones++;
BoneInfo bone;
mesh.boneInfo.push_back(bone);
mesh.boneInfo[index].offset = pMesh->mBones[i]->mOffsetMatrix;
mesh.boneMapping[name] = index;
}
else
{
index = mesh.boneMapping[name];
}
for (uint32_t j = 0; j < pMesh->mBones[i]->mNumWeights; j++)
{
uint32_t vertexID = mesh.meshLoader->m_Entries[meshIndex].vertexBase + pMesh->mBones[i]->mWeights[j].mVertexId;
Bones[vertexID].add(index, pMesh->mBones[i]->mWeights[j].mWeight);
}
}
}
// Find animation for a given node
const aiNodeAnim* findNodeAnim(const aiAnimation* animation, const std::string nodeName)
{
for (uint32_t i = 0; i < animation->mNumChannels; i++)
{
const aiNodeAnim* nodeAnim = animation->mChannels[i];
if (std::string(nodeAnim->mNodeName.data) == nodeName)
{
return nodeAnim;
}
}
return nullptr;
}
// Returns a 4x4 matrix with interpolated translation between current and next frame
aiMatrix4x4 interpolateTranslation(float time, const aiNodeAnim* pNodeAnim)
{
aiVector3D translation;
if (pNodeAnim->mNumPositionKeys == 1)
{
translation = pNodeAnim->mPositionKeys[0].mValue;
}
else
{
uint32_t frameIndex = 0;
for (uint32_t i = 0; i < pNodeAnim->mNumPositionKeys - 1; i++)
{
if (time < (float)pNodeAnim->mPositionKeys[i + 1].mTime)
{
frameIndex = i;
break;
}
}
aiVectorKey currentFrame = pNodeAnim->mPositionKeys[frameIndex];
aiVectorKey nextFrame = pNodeAnim->mPositionKeys[(frameIndex + 1) % pNodeAnim->mNumPositionKeys];
float delta = (time - (float)currentFrame.mTime) / (float)(nextFrame.mTime - currentFrame.mTime);
const aiVector3D& start = currentFrame.mValue;
const aiVector3D& end = nextFrame.mValue;
translation = (start + delta * (end - start));
}
aiMatrix4x4 mat;
aiMatrix4x4::Translation(translation, mat);
return mat;
}
// Returns a 4x4 matrix with interpolated rotation between current and next frame
aiMatrix4x4 interpolateRotation(float time, const aiNodeAnim* pNodeAnim)
{
aiQuaternion rotation;
if (pNodeAnim->mNumRotationKeys == 1)
{
rotation = pNodeAnim->mRotationKeys[0].mValue;
}
else
{
uint32_t frameIndex = 0;
for (uint32_t i = 0; i < pNodeAnim->mNumRotationKeys - 1; i++)
{
if (time < (float)pNodeAnim->mRotationKeys[i + 1].mTime)
{
frameIndex = i;
break;
}
}
aiQuatKey currentFrame = pNodeAnim->mRotationKeys[frameIndex];
aiQuatKey nextFrame = pNodeAnim->mRotationKeys[(frameIndex + 1) % pNodeAnim->mNumRotationKeys];
float delta = (time - (float)currentFrame.mTime) / (float)(nextFrame.mTime - currentFrame.mTime);
const aiQuaternion& start = currentFrame.mValue;
const aiQuaternion& end = nextFrame.mValue;
aiQuaternion::Interpolate(rotation, start, end, delta);
rotation.Normalize();
}
aiMatrix4x4 mat(rotation.GetMatrix());
return mat;
}
// Returns a 4x4 matrix with interpolated scaling between current and next frame
aiMatrix4x4 interpolateScale(float time, const aiNodeAnim* pNodeAnim)
{
aiVector3D scale;
if (pNodeAnim->mNumScalingKeys == 1)
{
scale = pNodeAnim->mScalingKeys[0].mValue;
}
else
{
uint32_t frameIndex = 0;
for (uint32_t i = 0; i < pNodeAnim->mNumScalingKeys - 1; i++)
{
if (time < (float)pNodeAnim->mScalingKeys[i + 1].mTime)
{
frameIndex = i;
break;
}
}
aiVectorKey currentFrame = pNodeAnim->mScalingKeys[frameIndex];
aiVectorKey nextFrame = pNodeAnim->mScalingKeys[(frameIndex + 1) % pNodeAnim->mNumScalingKeys];
float delta = (time - (float)currentFrame.mTime) / (float)(nextFrame.mTime - currentFrame.mTime);
const aiVector3D& start = currentFrame.mValue;
const aiVector3D& end = nextFrame.mValue;
scale = (start + delta * (end - start));
}
aiMatrix4x4 mat;
aiMatrix4x4::Scaling(scale, mat);
return mat;
}
// Get node hierarchy for current animation time
void readNodeHierarchy(float AnimationTime, const aiNode* pNode, const aiMatrix4x4& ParentTransform)
{
std::string NodeName(pNode->mName.data);
const aiAnimation* pAnimation = mesh.meshLoader->pScene->mAnimations[0];
aiMatrix4x4 NodeTransformation(pNode->mTransformation);
const aiNodeAnim* pNodeAnim = findNodeAnim(pAnimation, NodeName);
if (pNodeAnim)
{
// Get interpolated matrices between current and next frame
aiMatrix4x4 matScale = interpolateScale(AnimationTime, pNodeAnim);
aiMatrix4x4 matRotation = interpolateRotation(AnimationTime, pNodeAnim);
aiMatrix4x4 matTranslation = interpolateTranslation(AnimationTime, pNodeAnim);
NodeTransformation = matTranslation * matRotation;// *matScale;
}
aiMatrix4x4 GlobalTransformation = ParentTransform * NodeTransformation;
if (mesh.boneMapping.find(NodeName) != mesh.boneMapping.end())
{
uint32_t BoneIndex = mesh.boneMapping[NodeName];
mesh.boneInfo[BoneIndex].finalTransformation = mesh.globalInverseTransform * GlobalTransformation * mesh.boneInfo[BoneIndex].offset;
}
for (uint32_t i = 0; i < pNode->mNumChildren; i++)
{
readNodeHierarchy(AnimationTime, pNode->mChildren[i], GlobalTransformation);
}
}
// Recursive bone transformation
// Results are stored in the Transforms vector
void boneTransform(float time, std::vector<aiMatrix4x4>& boneTransforms)
{
float TicksPerSecond = (float)(mesh.meshLoader->pScene->mAnimations[0]->mTicksPerSecond != 0 ? mesh.meshLoader->pScene->mAnimations[0]->mTicksPerSecond : 25.0f);
float TimeInTicks = time * TicksPerSecond;
float AnimationTime = fmod(TimeInTicks, (float)mesh.meshLoader->pScene->mAnimations[0]->mDuration);
aiMatrix4x4 identity = aiMatrix4x4();
readNodeHierarchy(AnimationTime, mesh.meshLoader->pScene->mRootNode, identity);
boneTransforms.resize(mesh.numBones);
for (uint32_t i = 0; i < boneTransforms.size(); i++)
{
boneTransforms[i] = mesh.boneInfo[i].finalTransformation;
}
}
// Load a mesh based on data read via assimp
// The other example will use the VulkanMesh loader which has some additional functionality for loading meshes
void loadMesh()
{
mesh.meshLoader = new VulkanMeshLoader();
#if defined(__ANDROID__)
mesh.meshLoader->assetManager = androidApp->activity->assetManager;
#endif
mesh.meshLoader->LoadMesh(getAssetPath() + "models/astroboy/astroBoy_walk.dae", 0);
// Setup bones
// One vertex bone info structure per vertex
mesh.bones.resize(mesh.meshLoader->numVertices);
// Store global inverse transform matrix of root node
mesh.globalInverseTransform = mesh.meshLoader->pScene->mRootNode->mTransformation;
mesh.globalInverseTransform.Inverse();
// Load bones (weights and IDs)
for (uint32_t m = 0; m < mesh.meshLoader->m_Entries.size(); m++)
{
aiMesh *paiMesh = mesh.meshLoader->pScene->mMeshes[m];
if (paiMesh->mNumBones > 0)
{
loadBones(m, paiMesh, mesh.bones);
}
}
// Generate vertex buffer
float scale = 1.0f;
std::vector<Vertex> vertexBuffer;
// Iterate through all meshes in the file
// and extract the vertex information used in this demo
for (uint32_t m = 0; m < mesh.meshLoader->m_Entries.size(); m++)
{
for (uint32_t i = 0; i < mesh.meshLoader->m_Entries[m].Vertices.size(); i++)
{
Vertex vertex;
vertex.pos = mesh.meshLoader->m_Entries[m].Vertices[i].m_pos * scale;
vertex.pos.y = -vertex.pos.y;
vertex.normal = mesh.meshLoader->m_Entries[m].Vertices[i].m_normal;
vertex.uv = mesh.meshLoader->m_Entries[m].Vertices[i].m_tex;
vertex.color = mesh.meshLoader->m_Entries[m].Vertices[i].m_color;
// Fetch bone weights and IDs
for (uint32_t j = 0; j < 4; j++)
{
vertex.boneWeights[j] = mesh.bones[mesh.meshLoader->m_Entries[m].vertexBase + i].weights[j];
vertex.boneIDs[j] = mesh.bones[mesh.meshLoader->m_Entries[m].vertexBase + i].IDs[j];
}
vertexBuffer.push_back(vertex);
}
}
uint32_t vertexBufferSize = vertexBuffer.size() * sizeof(Vertex);
// Generate index buffer from loaded mesh file
std::vector<uint32_t> indexBuffer;
for (uint32_t m = 0; m < mesh.meshLoader->m_Entries.size(); m++)
{
uint32_t indexBase = indexBuffer.size();
for (uint32_t i = 0; i < mesh.meshLoader->m_Entries[m].Indices.size(); i++)
{
indexBuffer.push_back(mesh.meshLoader->m_Entries[m].Indices[i] + indexBase);
}
}
uint32_t indexBufferSize = indexBuffer.size() * sizeof(uint32_t);
mesh.meshBuffer.indexCount = indexBuffer.size();
// Generate vertex buffer
createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
vertexBufferSize,
vertexBuffer.data(),
&mesh.meshBuffer.vertices.buf,
&mesh.meshBuffer.vertices.mem);
// Generate index buffer
createBuffer(
VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
indexBufferSize,
indexBuffer.data(),
&mesh.meshBuffer.indices.buf,
&mesh.meshBuffer.indices.mem);
}
void loadTextures()
{
textureLoader->loadTexture(
getAssetPath() + "models/astroboy/astroboy.ktx",
VK_FORMAT_BC3_UNORM_BLOCK,
&textures.colorMap);
}
void setupVertexDescriptions()
{
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vkTools::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
sizeof(Vertex),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
// Describes memory layout and shader positions
vertices.attributeDescriptions.resize(6);
// Location 0 : Position
vertices.attributeDescriptions[0] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32_SFLOAT,
0);
// Location 1 : Normal
vertices.attributeDescriptions[1] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 3);
// Location 2 : Texture coordinates
vertices.attributeDescriptions[2] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
2,
VK_FORMAT_R32G32_SFLOAT,
sizeof(float) * 6);
// Location 3 : Color
vertices.attributeDescriptions[3] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
3,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 8);
// Location 4 : Bone weights
vertices.attributeDescriptions[4] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
4,
VK_FORMAT_R32G32B32A32_SFLOAT,
sizeof(float) * 11);
// Location 5 : Bone IDs
vertices.attributeDescriptions[5] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
5,
VK_FORMAT_R32G32B32A32_SINT,
sizeof(float) * 15);
vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupDescriptorPool()
{
// Example uses one ubo and one combined image sampler
std::vector<VkDescriptorPoolSize> poolSizes =
{
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1),
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vkTools::initializers::descriptorPoolCreateInfo(
poolSizes.size(),
poolSizes.data(),
2);
VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool);
assert(!vkRes);
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT,
0),
// Binding 1 : Fragment shader combined sampler
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
1),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vkTools::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
setLayoutBindings.size());
VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout);
assert(!err);
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vkTools::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout);
assert(!err);
}
void setupDescriptorSet()
{
VkDescriptorSetAllocateInfo allocInfo =
vkTools::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet);
assert(!vkRes);
VkDescriptorImageInfo texDescriptor =
vkTools::initializers::descriptorImageInfo(
textures.colorMap.sampler,
textures.colorMap.view,
VK_IMAGE_LAYOUT_GENERAL);
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformData.vsScene.descriptor),
// Binding 1 : Color map
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&texDescriptor)
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vkTools::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_BACK_BIT,
VK_FRONT_FACE_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vkTools::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vkTools::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vkTools::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vkTools::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
dynamicStateEnables.size(),
0);
// Solid rendering pipeline
// Load shaders
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
shaderStages[0] = loadShader(getAssetPath() + "shaders/skeletalanimation/mesh.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/skeletalanimation/mesh.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vkTools::initializers::pipelineCreateInfo(
pipelineLayout,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data();
VkResult err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid);
assert(!err);
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Vertex shader uniform buffer block
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
sizeof(uboVS),
&uboVS,
&uniformData.vsScene.buffer,
&uniformData.vsScene.memory,
&uniformData.vsScene.descriptor);
updateUniformBuffers();
}
void updateUniformBuffers()
{
// Vertex shader
uboVS.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.1f, 256.0f);
glm::mat4 viewMatrix = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, zoom));
viewMatrix = glm::rotate(viewMatrix, glm::radians(90.0f), glm::vec3(1.0f, 0.0f, 0.0f));
uboVS.model = glm::mat4();
uboVS.model = viewMatrix * glm::translate(uboVS.model, glm::vec3(0.0f, 0.0f, -3.5f));
uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.z), glm::vec3(0.0f, 1.0f, 0.0f));
uboVS.model = glm::rotate(uboVS.model, glm::radians(-rotation.y), glm::vec3(0.0f, 0.0f, 1.0f));
// Update bones
std::vector<aiMatrix4x4> boneTransforms;
boneTransform(runningTime, boneTransforms);
for (uint32_t i = 0; i < boneTransforms.size(); i++)
{
uboVS.bones[i] = glm::transpose(glm::make_mat4(&boneTransforms[i].a1));
}
uint8_t *pData;
VkResult err = vkMapMemory(device, uniformData.vsScene.memory, 0, sizeof(uboVS), 0, (void **)&pData);
assert(!err);
memcpy(pData, &uboVS, sizeof(uboVS));
vkUnmapMemory(device, uniformData.vsScene.memory);
}
void prepare()
{
VulkanExampleBase::prepare();
loadTextures();
loadMesh();
setupVertexDescriptions();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
vkDeviceWaitIdle(device);
draw();
vkDeviceWaitIdle(device);
if (!paused)
{
runningTime += frameTimer * 0.75f;
updateUniformBuffers();
}
}
virtual void viewChanged()
{
updateUniformBuffers();
}
};
VulkanExample *vulkanExample;
#if defined(_WIN32)
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
if (vulkanExample != NULL)
{
vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam);
}
return (DefWindowProc(hWnd, uMsg, wParam, lParam));
}
#elif defined(__linux__) && !defined(__ANDROID__)
static void handleEvent(const xcb_generic_event_t *event)
{
if (vulkanExample != NULL)
{
vulkanExample->handleEvent(event);
}
}
#endif
// Main entry point
#if defined(_WIN32)
// Windows entry point
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow)
#elif defined(__ANDROID__)
// Android entry point
void android_main(android_app* state)
#elif defined(__linux__)
// Linux entry point
int main(const int argc, const char *argv[])
#endif
{
#if defined(__ANDROID__)
// Removing this may cause the compiler to omit the main entry point
// which would make the application crash at start
app_dummy();
#endif
vulkanExample = new VulkanExample();
#if defined(_WIN32)
vulkanExample->setupWindow(hInstance, WndProc);
#elif defined(__ANDROID__)
// Attach vulkan example to global android application state
state->userData = vulkanExample;
state->onAppCmd = VulkanExample::handleAppCommand;
state->onInputEvent = VulkanExample::handleAppInput;
vulkanExample->androidApp = state;
#elif defined(__linux__)
vulkanExample->setupWindow();
#endif
#if !defined(__ANDROID__)
vulkanExample->initSwapchain();
vulkanExample->prepare();
#endif
vulkanExample->renderLoop();
delete(vulkanExample);
#if !defined(__ANDROID__)
return 0;
#endif
}