procedural-3d-engine/examples/conditionalrender/conditionalrender.cpp
2018-08-12 18:58:36 +02:00

409 lines
No EOL
16 KiB
C++

/*
* Vulkan Example - Conditional rendering
*
* Note: Requires a device that supports the VK_EXT_conditional_rendering extension
*
* With conditional rendering it's possible to execute certain rendering commands based
* on a buffer value instead of having to rebuild the command buffers.
*
* Copyright (C) 2018 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#include "VulkanModel.hpp"
#define ENABLE_VALIDATION false
#define MODEL_ROWS 3
class VulkanExample : public VulkanExampleBase
{
public:
PFN_vkCmdBeginConditionalRenderingEXT vkCmdBeginConditionalRenderingEXT;
PFN_vkCmdEndConditionalRenderingEXT vkCmdEndConditionalRenderingEXT;
VkPhysicalDeviceConditionalRenderingFeaturesEXT conditionalRenderingFeatures{};
// Vertex layout for the models
vks::VertexLayout vertexLayout = vks::VertexLayout({
vks::VERTEX_COMPONENT_POSITION,
vks::VERTEX_COMPONENT_NORMAL,
vks::VERTEX_COMPONENT_COLOR,
});
vks::Model model;
struct {
glm::mat4 projection;
glm::mat4 modelview;
} uboVS;
vks::Buffer uniformBuffer;
std::array<int32_t, MODEL_ROWS> conditionalVisibility{};
vks::Buffer conditionalBuffer;
VkPipelineLayout pipelineLayout;
VkPipeline pipeline;
VkDescriptorSetLayout descriptorSetLayout;
VkDescriptorSet descriptorSet;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "Conditional rendering";
settings.overlay = true;
camera.type = Camera::CameraType::lookat;
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
camera.setRotation(glm::vec3(0.0f, 0.0f, 0.0f));
camera.setTranslation(glm::vec3(0.0f, 0.0f, -15.0f));
rotationSpeed *= 0.25f;
// Enable extension required for conditional rendering
enabledDeviceExtensions.push_back(VK_EXT_CONDITIONAL_RENDERING_EXTENSION_NAME);
// Enable extension required to get conditional rendering supported features
enabledInstanceExtensions.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
model.destroy();
uniformBuffer.destroy();
conditionalBuffer.destroy();
}
// Enable physical device features required for this example
virtual void getEnabledFeatures()
{
// Geometry shader support is required for this example
if (deviceFeatures.geometryShader) {
enabledFeatures.geometryShader = VK_TRUE;
}
else {
vks::tools::exitFatal("Selected GPU does not support geometry shaders!", VK_ERROR_FEATURE_NOT_PRESENT);
}
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 0.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &model.vertices.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], model.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
struct PushBlock {
glm::vec4 offset;
glm::vec4 color;
} pushBlock;
const std::array<glm::vec3, 3> colors = {
glm::vec3(1.0f, 0.0f, 0.0f),
glm::vec3(0.0f, 1.0f, 0.0f),
glm::vec3(0.0f, 0.0f, 1.0f),
};
/*
[POI] Setup the conditional rendering structure that decides on wether the commands are rendered or discarded
*/
VkConditionalRenderingBeginInfoEXT conditionalRenderingBeginInfo{};
conditionalRenderingBeginInfo.sType = VK_STRUCTURE_TYPE_CONDITIONAL_RENDERING_BEGIN_INFO_EXT;
// If the value in this buffer at the given offset is zero, commands are discadrd
conditionalRenderingBeginInfo.buffer = conditionalBuffer.buffer;
// Offset will be changed in the loop below to toggle visibility of whole rows
conditionalRenderingBeginInfo.offset = 0;
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
for (int32_t x = -1; x < MODEL_ROWS - 1; x++) {
for (int32_t y = -2; y < 3; y++) {
pushBlock.offset = glm::vec4((float)x * 3.0f, (float)y * 2.5f, 0.0f, 1.0f);
pushBlock.color = glm::vec4(colors[x+1], 1.0f);
/*
[POI] Start the conditionally rendered part (for this row)
*/
conditionalRenderingBeginInfo.offset = sizeof(uint32_t) * (x + 1);
vkCmdBeginConditionalRenderingEXT(drawCmdBuffers[i], &conditionalRenderingBeginInfo);
vkCmdPushConstants(drawCmdBuffers[i], pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(pushBlock), &pushBlock);
vkCmdDrawIndexed(drawCmdBuffers[i], model.indexCount, 1, 0, 0, 0);
vkCmdEndConditionalRenderingEXT(drawCmdBuffers[i]);
}
}
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void loadAssets()
{
model.loadFromFile(getAssetPath() + "models/suzanne.obj", vertexLayout, 0.1f, vulkanDevice, queue);
}
void setupDescriptorSets()
{
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
};
VkDescriptorPoolCreateInfo descriptorPoolCI = vks::initializers::descriptorPoolCreateInfo(poolSizes.size(), poolSizes.data(), 1);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCI, nullptr, &descriptorPool));
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
};
VkDescriptorSetLayoutCreateInfo descriptorLayoutCI{};
descriptorLayoutCI.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
descriptorLayoutCI.bindingCount = static_cast<uint32_t>(setLayoutBindings.size());
descriptorLayoutCI.pBindings = setLayoutBindings.data();
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayoutCI, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VkPushConstantRange pushConstantRange = vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT, sizeof(glm::vec4) * 2, 0);
pipelineLayoutCI.pushConstantRangeCount = 1;
pipelineLayoutCI.pPushConstantRanges = &pushConstantRange;
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout));
VkDescriptorSetAllocateInfo descriptorSetAllocateInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &descriptorSetAllocateInfo, &descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffer.descriptor)
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
const std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), static_cast<uint32_t>(dynamicStateEnables.size()), 0);
// Vertex bindings and attributes
const std::vector<VkVertexInputBindingDescription> vertexInputBindings = {
vks::initializers::vertexInputBindingDescription(0, vertexLayout.stride(), VK_VERTEX_INPUT_RATE_VERTEX),
};
const std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, 0), // Location 0: Position
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3), // Location 1: Normal
vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 6), // Location 3: Color
};
VkPipelineVertexInputStateCreateInfo vertexInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
vertexInputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertexInputBindings.size());
vertexInputState.pVertexBindingDescriptions = vertexInputBindings.data();
vertexInputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
vertexInputState.pVertexAttributeDescriptions = vertexInputAttributes.data();
VkGraphicsPipelineCreateInfo pipelineCreateInfoCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
pipelineCreateInfoCI.pVertexInputState = &vertexInputState;
pipelineCreateInfoCI.pInputAssemblyState = &inputAssemblyStateCI;
pipelineCreateInfoCI.pRasterizationState = &rasterizationStateCI;
pipelineCreateInfoCI.pColorBlendState = &colorBlendStateCI;
pipelineCreateInfoCI.pMultisampleState = &multisampleStateCI;
pipelineCreateInfoCI.pViewportState = &viewportStateCI;
pipelineCreateInfoCI.pDepthStencilState = &depthStencilStateCI;
pipelineCreateInfoCI.pDynamicState = &dynamicStateCI;
const std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages = {
loadShader(getAssetPath() + "shaders/conditionalrender/model.vert.spv", VK_SHADER_STAGE_VERTEX_BIT),
loadShader(getAssetPath() + "shaders/conditionalrender/model.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT)
};
pipelineCreateInfoCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCreateInfoCI.pStages = shaderStages.data();
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfoCI, nullptr, &pipeline));
}
void prepareUniformBuffers()
{
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffer,
sizeof(uboVS)));
VK_CHECK_RESULT(uniformBuffer.map());
updateUniformBuffers();
}
void updateUniformBuffers()
{
uboVS.projection = camera.matrices.perspective;
uboVS.modelview = camera.matrices.view;
memcpy(uniformBuffer.mapped, &uboVS, sizeof(uboVS));
}
void updateConditionalBuffer()
{
memcpy(conditionalBuffer.mapped, &conditionalVisibility, sizeof(conditionalVisibility));
}
void draw()
{
VulkanExampleBase::prepareFrame();
// Command buffer to be sumitted to the queue
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
// Submit to queue
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
/*
Extension specific functions
*/
/*
Get the function pointer
The conditional rendering functions are part of an extension so they have to be manually loaded
*/
vkCmdBeginConditionalRenderingEXT = (PFN_vkCmdBeginConditionalRenderingEXT)vkGetDeviceProcAddr(device, "vkCmdBeginConditionalRenderingEXT");
if (!vkCmdBeginConditionalRenderingEXT) {
vks::tools::exitFatal("Could not get a valid function pointer for vkCmdBeginConditionalRenderingEXT", -1);
}
vkCmdEndConditionalRenderingEXT = (PFN_vkCmdEndConditionalRenderingEXT)vkGetDeviceProcAddr(device, "vkCmdEndConditionalRenderingEXT");
if (!vkCmdEndConditionalRenderingEXT) {
vks::tools::exitFatal("Could not get a valid function pointer for vkCmdEndConditionalRenderingEXT", -1);
}
/*
Get conditional rendering features
*/
PFN_vkGetPhysicalDeviceFeatures2KHR vkGetPhysicalDeviceFeatures2KHR = reinterpret_cast<PFN_vkGetPhysicalDeviceFeatures2KHR>(vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceFeatures2KHR"));
if (!vkGetPhysicalDeviceFeatures2KHR) {
vks::tools::exitFatal("Could not get a valid function pointer for vkGetPhysicalDeviceFeatures2KHR", -1);
}
VkPhysicalDeviceFeatures2KHR deviceFeatures2{};
conditionalRenderingFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT;
deviceFeatures2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2_KHR;
deviceFeatures2.pNext = &conditionalRenderingFeatures;
vkGetPhysicalDeviceFeatures2KHR(physicalDevice, &deviceFeatures2);
/*
Create the buffer that contains the conditional rendering information
A single conditional value is 32 bits and if it's zero the rendering commands are discarded
This sample renders multiple rows of objects conditionally, so we setup a buffer with one value per row
*/
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_CONDITIONAL_RENDERING_BIT_EXT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&conditionalBuffer,
sizeof(uint32_t) * MODEL_ROWS));
/*
Copy visibility data
*/
for (auto i = 0; i < conditionalVisibility.size(); i++) {
conditionalVisibility[i] = 1;
}
VK_CHECK_RESULT(conditionalBuffer.map());
memcpy(conditionalBuffer.mapped, &conditionalVisibility, sizeof(conditionalVisibility));
/*
End of extension specific functions
*/
loadAssets();
prepareUniformBuffers();
setupDescriptorSets();
preparePipelines();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
}
virtual void viewChanged()
{
updateUniformBuffers();
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Visibility")) {
for (uint32_t i = 0; i < MODEL_ROWS; i++) {
if (overlay->checkBox(std::to_string(i).c_str(), &conditionalVisibility[i])) {
updateConditionalBuffer();
};
if (i < MODEL_ROWS - 1) { ImGui::SameLine(); };
}
}
if (overlay->header("Device properties")) {
overlay->text("conditional rendering: %s", conditionalRenderingFeatures.conditionalRendering ? "true" : "false");
overlay->text("inherited conditional rendering: %s", conditionalRenderingFeatures.inheritedConditionalRendering ? "true" : "false");
}
}
};
VULKAN_EXAMPLE_MAIN()