procedural-3d-engine/examples/trianglevulkan13/trianglevulkan13.cpp
Sascha Willems c7eed13c7c Code cleanup
2024-09-14 20:27:08 +02:00

974 lines
47 KiB
C++

/*
* Vulkan Example - Basic indexed triangle rendering using Vulkan 1.3
*
* Note:
* This is a variation of the the triangle sample that makes use of Vulkan 1.3 features
* This simplifies the api a bit, esp. with dynamic rendering replacing render passes (and with that framebuffers)
*
* Copyright (C) 2016-2023 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <fstream>
#include <vector>
#include <exception>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
// We want to keep GPU and CPU busy. To do that we may start building a new command buffer while the previous one is still being executed
// This number defines how many frames may be worked on simultaneously at once
// Increasing this number may improve performance but will also introduce additional latency
#define MAX_CONCURRENT_FRAMES 2
class VulkanExample : public VulkanExampleBase
{
public:
// Vertex layout used in this example
struct Vertex {
float position[3];
float color[3];
};
struct VulkanBuffer {
VkDeviceMemory memory{ VK_NULL_HANDLE };
VkBuffer handle{ VK_NULL_HANDLE };
};
VulkanBuffer vertexBuffer;
VulkanBuffer indexBuffer;
uint32_t indexCount{ 0 };
// Uniform buffer block object
struct UniformBuffer : VulkanBuffer {
// The descriptor set stores the resources bound to the binding points in a shader
// It connects the binding points of the different shaders with the buffers and images used for those bindings
VkDescriptorSet descriptorSet;
// We keep a pointer to the mapped buffer, so we can easily update it's contents via a memcpy
uint8_t* mapped{ nullptr };
};
// We use one UBO per frame, so we can have a frame overlap and make sure that uniforms aren't updated while still in use
std::array<UniformBuffer, MAX_CONCURRENT_FRAMES> uniformBuffers;
// For simplicity we use the same uniform block layout as in the shader
// This way we can just memcpy the data to the ubo
// Note: You should use data types that align with the GPU in order to avoid manual padding (vec4, mat4)
struct ShaderData {
glm::mat4 projectionMatrix;
glm::mat4 modelMatrix;
glm::mat4 viewMatrix;
};
// The pipeline layout is used by a pipeline to access the descriptor sets
// It defines interface (without binding any actual data) between the shader stages used by the pipeline and the shader resources
// A pipeline layout can be shared among multiple pipelines as long as their interfaces match
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
// Pipelines (often called "pipeline state objects") are used to bake all states that affect a pipeline
// While in OpenGL every state can be changed at (almost) any time, Vulkan requires to layout the graphics (and compute) pipeline states upfront
// So for each combination of non-dynamic pipeline states you need a new pipeline (there are a few exceptions to this not discussed here)
// Even though this adds a new dimension of planning ahead, it's a great opportunity for performance optimizations by the driver
VkPipeline pipeline{ VK_NULL_HANDLE };
// The descriptor set layout describes the shader binding layout (without actually referencing descriptor)
// Like the pipeline layout it's pretty much a blueprint and can be used with different descriptor sets as long as their layout matches
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
// Synchronization primitives
// Synchronization is an important concept of Vulkan that OpenGL mostly hid away. Getting this right is crucial to using Vulkan.
// Semaphores are used to coordinate operations within the graphics queue and ensure correct command ordering
std::array<VkSemaphore, MAX_CONCURRENT_FRAMES> presentCompleteSemaphores{};
std::array<VkSemaphore, MAX_CONCURRENT_FRAMES> renderCompleteSemaphores{};
// Fences are used to make sure command buffers aren't rerecorded until they've finished executing
std::array<VkFence, MAX_CONCURRENT_FRAMES> waitFences{};
VkCommandPool commandPool{ VK_NULL_HANDLE };
std::array<VkCommandBuffer, MAX_CONCURRENT_FRAMES> commandBuffers{};
// To select the correct sync objects, we need to keep track of the current frame
uint32_t currentFrame{ 0 };
VkPhysicalDeviceVulkan13Features enabledFeatures{ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_FEATURES };
VulkanExample() : VulkanExampleBase()
{
title = "Vulkan Example - Basic indexed triangle using Vulkan 1.3";
// To keep things simple, we don't use the UI overlay from the framework
settings.overlay = false;
// Setup a default look-at camera
camera.type = Camera::CameraType::lookat;
camera.setPosition(glm::vec3(0.0f, 0.0f, -2.5f));
camera.setRotation(glm::vec3(0.0f));
camera.setPerspective(60.0f, (float)width / (float)height, 1.0f, 256.0f);
// We want to use Vulkan 1.3 with the dynamic rendering and sync 2 features
apiVersion = VK_API_VERSION_1_3;
enabledFeatures.dynamicRendering = VK_TRUE;
enabledFeatures.synchronization2 = VK_TRUE;
deviceCreatepNextChain = &enabledFeatures;
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note: Inherited destructor cleans up resources stored in base class
if (device) {
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vkDestroyBuffer(device, vertexBuffer.handle, nullptr);
vkFreeMemory(device, vertexBuffer.memory, nullptr);
vkDestroyBuffer(device, indexBuffer.handle, nullptr);
vkFreeMemory(device, indexBuffer.memory, nullptr);
vkDestroyCommandPool(device, commandPool, nullptr);
for (uint32_t i = 0; i < MAX_CONCURRENT_FRAMES; i++) {
vkDestroyFence(device, waitFences[i], nullptr);
vkDestroySemaphore(device, presentCompleteSemaphores[i], nullptr);
vkDestroySemaphore(device, renderCompleteSemaphores[i], nullptr);
vkDestroyBuffer(device, uniformBuffers[i].handle, nullptr);
vkFreeMemory(device, uniformBuffers[i].memory, nullptr);
}
}
}
// This function is used to request a device memory type that supports all the property flags we request (e.g. device local, host visible)
// Upon success it will return the index of the memory type that fits our requested memory properties
// This is necessary as implementations can offer an arbitrary number of memory types with different
// memory properties.
// You can check https://vulkan.gpuinfo.org/ for details on different memory configurations
uint32_t getMemoryTypeIndex(uint32_t typeBits, VkMemoryPropertyFlags properties)
{
// Iterate over all memory types available for the device used in this example
for (uint32_t i = 0; i < deviceMemoryProperties.memoryTypeCount; i++) {
if ((typeBits & 1) == 1) {
if ((deviceMemoryProperties.memoryTypes[i].propertyFlags & properties) == properties) {
return i;
}
}
typeBits >>= 1;
}
throw "Could not find a suitable memory type!";
}
// Create the per-frame (in flight) sVulkan synchronization primitives used in this example
void createSynchronizationPrimitives()
{
// Semaphores are used for correct command ordering within a queue
VkSemaphoreCreateInfo semaphoreCI{ VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO };
// Fences are used to check draw command buffer completion on the host
VkFenceCreateInfo fenceCI{ VK_STRUCTURE_TYPE_FENCE_CREATE_INFO };
// Create the fences in signaled state (so we don't wait on first render of each command buffer)
fenceCI.flags = VK_FENCE_CREATE_SIGNALED_BIT;
for (uint32_t i = 0; i < MAX_CONCURRENT_FRAMES; i++) {
// Semaphore used to ensure that image presentation is complete before starting to submit again
VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCI, nullptr, &presentCompleteSemaphores[i]));
// Semaphore used to ensure that all commands submitted have been finished before submitting the image to the queue
VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCI, nullptr, &renderCompleteSemaphores[i]));
// Fence used to ensure that command buffer has completed exection before using it again
VK_CHECK_RESULT(vkCreateFence(device, &fenceCI, nullptr, &waitFences[i]));
}
}
void createCommandBuffers()
{
// All command buffers are allocated from the same command pool
VkCommandPoolCreateInfo commandPoolCI{ VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO };
commandPoolCI.queueFamilyIndex = swapChain.queueNodeIndex;
commandPoolCI.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
VK_CHECK_RESULT(vkCreateCommandPool(device, &commandPoolCI, nullptr, &commandPool));
// Allocate one command buffer per max. concurrent frame from above pool
VkCommandBufferAllocateInfo cmdBufAllocateInfo = vks::initializers::commandBufferAllocateInfo(commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, MAX_CONCURRENT_FRAMES);
VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, commandBuffers.data()));
}
// Prepare vertex and index buffers for an indexed triangle
// Also uploads them to device local memory using staging and initializes vertex input and attribute binding to match the vertex shader
void createVertexBuffer()
{
// A note on memory management in Vulkan in general:
// This is a very complex topic and while it's fine for an example application to small individual memory allocations that is not
// what should be done a real-world application, where you should allocate large chunks of memory at once instead.
// Setup vertices
const std::vector<Vertex> vertices{
{ { 1.0f, 1.0f, 0.0f }, { 1.0f, 0.0f, 0.0f } },
{ { -1.0f, 1.0f, 0.0f }, { 0.0f, 1.0f, 0.0f } },
{ { 0.0f, -1.0f, 0.0f }, { 0.0f, 0.0f, 1.0f } }
};
uint32_t vertexBufferSize = static_cast<uint32_t>(vertices.size()) * sizeof(Vertex);
// Setup indices
// We do this for demonstration purposes, a triangle doesn't require indices to be rendered (because of the 1:1 mapping), but more complex shapes usually make use of indices
std::vector<uint32_t> indices{ 0, 1, 2 };
indexCount = static_cast<uint32_t>(indices.size());
uint32_t indexBufferSize = indexCount * sizeof(uint32_t);
VkMemoryAllocateInfo memAlloc{ VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
VkMemoryRequirements memReqs;
// Static data like vertex and index buffer should be stored on the device memory for optimal (and fastest) access by the GPU
//
// To achieve this we use so-called "staging buffers" :
// - Create a buffer that's visible to the host (and can be mapped)
// - Copy the data to this buffer
// - Create another buffer that's local on the device (VRAM) with the same size
// - Copy the data from the host to the device using a command buffer
// - Delete the host visible (staging) buffer
// - Use the device local buffers for rendering
//
// Note: On unified memory architectures where host (CPU) and GPU share the same memory, staging is not necessary
// To keep this sample easy to follow, there is no check for that in place
struct {
VulkanBuffer vertexBuffer;
VulkanBuffer indexBuffer;
} stagingBuffers;
void* data;
// Vertex buffer
VkBufferCreateInfo vertexBufferInfoCI{ VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
vertexBufferInfoCI.size = vertexBufferSize;
// Buffer is used as the copy source
vertexBufferInfoCI.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
// Create a host-visible buffer to copy the vertex data to (staging buffer)
VK_CHECK_RESULT(vkCreateBuffer(device, &vertexBufferInfoCI, nullptr, &stagingBuffers.vertexBuffer.handle));
vkGetBufferMemoryRequirements(device, stagingBuffers.vertexBuffer.handle, &memReqs);
memAlloc.allocationSize = memReqs.size;
// Request a host visible memory type that can be used to copy our data do
// Also request it to be coherent, so that writes are visible to the GPU right after unmapping the buffer
memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &stagingBuffers.vertexBuffer.memory));
// Map and copy
VK_CHECK_RESULT(vkMapMemory(device, stagingBuffers.vertexBuffer.memory, 0, memAlloc.allocationSize, 0, &data));
memcpy(data, vertices.data(), vertexBufferSize);
vkUnmapMemory(device, stagingBuffers.vertexBuffer.memory);
VK_CHECK_RESULT(vkBindBufferMemory(device, stagingBuffers.vertexBuffer.handle, stagingBuffers.vertexBuffer.memory, 0));
// Create a device local buffer to which the (host local) vertex data will be copied and which will be used for rendering
vertexBufferInfoCI.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
VK_CHECK_RESULT(vkCreateBuffer(device, &vertexBufferInfoCI, nullptr, &vertexBuffer.handle));
vkGetBufferMemoryRequirements(device, vertexBuffer.handle, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &vertexBuffer.memory));
VK_CHECK_RESULT(vkBindBufferMemory(device, vertexBuffer.handle, vertexBuffer.memory, 0));
// Index buffer
VkBufferCreateInfo indexbufferCI{ VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
indexbufferCI.size = indexBufferSize;
indexbufferCI.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
// Copy index data to a buffer visible to the host (staging buffer)
VK_CHECK_RESULT(vkCreateBuffer(device, &indexbufferCI, nullptr, &stagingBuffers.indexBuffer.handle));
vkGetBufferMemoryRequirements(device, stagingBuffers.indexBuffer.handle, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &stagingBuffers.indexBuffer.memory));
VK_CHECK_RESULT(vkMapMemory(device, stagingBuffers.indexBuffer.memory, 0, indexBufferSize, 0, &data));
memcpy(data, indices.data(), indexBufferSize);
vkUnmapMemory(device, stagingBuffers.indexBuffer.memory);
VK_CHECK_RESULT(vkBindBufferMemory(device, stagingBuffers.indexBuffer.handle, stagingBuffers.indexBuffer.memory, 0));
// Create destination buffer with device only visibility
indexbufferCI.usage = VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
VK_CHECK_RESULT(vkCreateBuffer(device, &indexbufferCI, nullptr, &indexBuffer.handle));
vkGetBufferMemoryRequirements(device, indexBuffer.handle, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &indexBuffer.memory));
VK_CHECK_RESULT(vkBindBufferMemory(device, indexBuffer.handle, indexBuffer.memory, 0));
// Buffer copies have to be submitted to a queue, so we need a command buffer for them
VkCommandBuffer copyCmd;
VkCommandBufferAllocateInfo cmdBufAllocateInfo{ VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO };
cmdBufAllocateInfo.commandPool = commandPool;
cmdBufAllocateInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
cmdBufAllocateInfo.commandBufferCount = 1;
VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &copyCmd));
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VK_CHECK_RESULT(vkBeginCommandBuffer(copyCmd, &cmdBufInfo));
// Copy vertex and index buffers to the device
VkBufferCopy copyRegion{};
copyRegion.size = vertexBufferSize;
vkCmdCopyBuffer(copyCmd, stagingBuffers.vertexBuffer.handle, vertexBuffer.handle, 1, &copyRegion);
copyRegion.size = indexBufferSize;
vkCmdCopyBuffer(copyCmd, stagingBuffers.indexBuffer.handle, indexBuffer.handle, 1, &copyRegion);
VK_CHECK_RESULT(vkEndCommandBuffer(copyCmd));
// Submit the command buffer to the queue to finish the copy
VkSubmitInfo submitInfo{ VK_STRUCTURE_TYPE_SUBMIT_INFO };
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &copyCmd;
// Create fence to ensure that the command buffer has finished executing
VkFenceCreateInfo fenceCI{ VK_STRUCTURE_TYPE_FENCE_CREATE_INFO };
VkFence fence;
VK_CHECK_RESULT(vkCreateFence(device, &fenceCI, nullptr, &fence));
// Submit copies to the queue
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, fence));
// Wait for the fence to signal that command buffer has finished executing
VK_CHECK_RESULT(vkWaitForFences(device, 1, &fence, VK_TRUE, DEFAULT_FENCE_TIMEOUT));
vkDestroyFence(device, fence, nullptr);
vkFreeCommandBuffers(device, commandPool, 1, &copyCmd);
// The fence made sure copies are finished, so we can safely delete the staging buffer
vkDestroyBuffer(device, stagingBuffers.vertexBuffer.handle, nullptr);
vkFreeMemory(device, stagingBuffers.vertexBuffer.memory, nullptr);
vkDestroyBuffer(device, stagingBuffers.indexBuffer.handle, nullptr);
vkFreeMemory(device, stagingBuffers.indexBuffer.memory, nullptr);
}
// Decriptors are used to pass data to shaders, for our sample we use a descriptor to pass parameters like matrices to the shader
void createDescriptors()
{
// Descriptors are allocated from a pool, that tells the implementation how many and what types of descriptors we are going to use (at maximum)
VkDescriptorPoolSize descriptorTypeCounts[1]{};
// This example only one descriptor type (uniform buffer)
descriptorTypeCounts[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
// We have one buffer (and as such descriptor) per frame
descriptorTypeCounts[0].descriptorCount = MAX_CONCURRENT_FRAMES;
// For additional types you need to add new entries in the type count list
// E.g. for two combined image samplers :
// typeCounts[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
// typeCounts[1].descriptorCount = 2;
// Create the global descriptor pool
// All descriptors used in this example are allocated from this pool
VkDescriptorPoolCreateInfo descriptorPoolCI{ VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO };
descriptorPoolCI.poolSizeCount = 1;
descriptorPoolCI.pPoolSizes = descriptorTypeCounts;
// Set the max. number of descriptor sets that can be requested from this pool (requesting beyond this limit will result in an error)
// Our sample will create one set per uniform buffer per frame
descriptorPoolCI.maxSets = MAX_CONCURRENT_FRAMES;
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCI, nullptr, &descriptorPool));
// Descriptor set layouts define the interface between our application and the shader
// Basically connects the different shader stages to descriptors for binding uniform buffers, image samplers, etc.
// So every shader binding should map to one descriptor set layout binding
// Binding 0: Uniform buffer (Vertex shader)
VkDescriptorSetLayoutBinding layoutBinding{};
layoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
layoutBinding.descriptorCount = 1;
layoutBinding.stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
VkDescriptorSetLayoutCreateInfo descriptorLayoutCI{ VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO };
descriptorLayoutCI.bindingCount = 1;
descriptorLayoutCI.pBindings = &layoutBinding;
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayoutCI, nullptr, &descriptorSetLayout));
// Where the descriptor set layout is the interface, the descriptor set points to actual data
// Descriptors that are changed per frame need to be multiplied, so we can update descriptor n+1 while n is still used by the GPU, so we create one per max frame in flight
for (uint32_t i = 0; i < MAX_CONCURRENT_FRAMES; i++) {
VkDescriptorSetAllocateInfo allocInfo{ VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO };
allocInfo.descriptorPool = descriptorPool;
allocInfo.descriptorSetCount = 1;
allocInfo.pSetLayouts = &descriptorSetLayout;
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &uniformBuffers[i].descriptorSet));
// Update the descriptor set determining the shader binding points
// For every binding point used in a shader there needs to be one
// descriptor set matching that binding point
VkWriteDescriptorSet writeDescriptorSet{ VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET };
// The buffer's information is passed using a descriptor info structure
VkDescriptorBufferInfo bufferInfo{};
bufferInfo.buffer = uniformBuffers[i].handle;
bufferInfo.range = sizeof(ShaderData);
// Binding 0 : Uniform buffer
writeDescriptorSet.dstSet = uniformBuffers[i].descriptorSet;
writeDescriptorSet.descriptorCount = 1;
writeDescriptorSet.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
writeDescriptorSet.pBufferInfo = &bufferInfo;
writeDescriptorSet.dstBinding = 0;
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
}
}
// Create the depth (and stencil) buffer attachments
// Note: Override of virtual function in the base class and called from within VulkanExampleBase::prepare
void setupDepthStencil()
{
// Create an optimal image used as the depth stencil attachment
VkImageCreateInfo imageCI{ VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
imageCI.imageType = VK_IMAGE_TYPE_2D;
imageCI.format = depthFormat;
// Use example's height and width
imageCI.extent = { width, height, 1 };
imageCI.mipLevels = 1;
imageCI.arrayLayers = 1;
imageCI.samples = VK_SAMPLE_COUNT_1_BIT;
imageCI.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCI.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
imageCI.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
VK_CHECK_RESULT(vkCreateImage(device, &imageCI, nullptr, &depthStencil.image));
// Allocate memory for the image (device local) and bind it to our image
VkMemoryAllocateInfo memAlloc{ VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
VkMemoryRequirements memReqs;
vkGetImageMemoryRequirements(device, depthStencil.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &depthStencil.memory));
VK_CHECK_RESULT(vkBindImageMemory(device, depthStencil.image, depthStencil.memory, 0));
// Create a view for the depth stencil image
// Images aren't directly accessed in Vulkan, but rather through views described by a subresource range
// This allows for multiple views of one image with differing ranges (e.g. for different layers)
VkImageViewCreateInfo depthStencilViewCI{ VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO };
depthStencilViewCI.viewType = VK_IMAGE_VIEW_TYPE_2D;
depthStencilViewCI.format = depthFormat;
depthStencilViewCI.subresourceRange = {};
depthStencilViewCI.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
// Stencil aspect should only be set on depth + stencil formats (VK_FORMAT_D16_UNORM_S8_UINT..VK_FORMAT_D32_SFLOAT_S8_UINT)
if (depthFormat >= VK_FORMAT_D16_UNORM_S8_UINT) {
depthStencilViewCI.subresourceRange.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
}
depthStencilViewCI.subresourceRange.baseMipLevel = 0;
depthStencilViewCI.subresourceRange.levelCount = 1;
depthStencilViewCI.subresourceRange.baseArrayLayer = 0;
depthStencilViewCI.subresourceRange.layerCount = 1;
depthStencilViewCI.image = depthStencil.image;
VK_CHECK_RESULT(vkCreateImageView(device, &depthStencilViewCI, nullptr, &depthStencil.view));
}
// Vulkan loads its shaders from an immediate binary representation called SPIR-V
// Shaders are compiled offline from e.g. GLSL using the reference glslang compiler
// This function loads such a shader from a binary file and returns a shader module structure
VkShaderModule loadSPIRVShader(std::string filename)
{
size_t shaderSize;
char* shaderCode{ nullptr };
#if defined(__ANDROID__)
// Load shader from compressed asset
AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, filename.c_str(), AASSET_MODE_STREAMING);
assert(asset);
shaderSize = AAsset_getLength(asset);
assert(shaderSize > 0);
shaderCode = new char[shaderSize];
AAsset_read(asset, shaderCode, shaderSize);
AAsset_close(asset);
#else
std::ifstream is(filename, std::ios::binary | std::ios::in | std::ios::ate);
if (is.is_open()) {
shaderSize = is.tellg();
is.seekg(0, std::ios::beg);
// Copy file contents into a buffer
shaderCode = new char[shaderSize];
is.read(shaderCode, shaderSize);
is.close();
assert(shaderSize > 0);
}
#endif
if (shaderCode) {
// Create a new shader module that will be used for pipeline creation
VkShaderModuleCreateInfo shaderModuleCI{ VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO };
shaderModuleCI.codeSize = shaderSize;
shaderModuleCI.pCode = (uint32_t*)shaderCode;
VkShaderModule shaderModule;
VK_CHECK_RESULT(vkCreateShaderModule(device, &shaderModuleCI, nullptr, &shaderModule));
delete[] shaderCode;
return shaderModule;
} else {
std::cerr << "Error: Could not open shader file \"" << filename << "\"" << std::endl;
return VK_NULL_HANDLE;
}
}
void createPipeline()
{
// The pipeline layout is the interface telling the pipeline what type of descriptors will later be bound
VkPipelineLayoutCreateInfo pipelineLayoutCI{ VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO };
pipelineLayoutCI.setLayoutCount = 1;
pipelineLayoutCI.pSetLayouts = &descriptorSetLayout;
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout));
// Create the graphics pipeline used in this example
// Vulkan uses the concept of rendering pipelines to encapsulate fixed states, replacing OpenGL's complex state machine
// A pipeline is then stored and hashed on the GPU making pipeline changes very fast
VkGraphicsPipelineCreateInfo pipelineCI{ VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO };
// The layout used for this pipeline (can be shared among multiple pipelines using the same layout)
pipelineCI.layout = pipelineLayout;
// Construct the different states making up the pipeline
// Input assembly state describes how primitives are assembled
// This pipeline will assemble vertex data as a triangle lists (though we only use one triangle)
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI{ VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO };
inputAssemblyStateCI.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
// Rasterization state
VkPipelineRasterizationStateCreateInfo rasterizationStateCI{ VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO };
rasterizationStateCI.polygonMode = VK_POLYGON_MODE_FILL;
rasterizationStateCI.cullMode = VK_CULL_MODE_NONE;
rasterizationStateCI.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
rasterizationStateCI.depthClampEnable = VK_FALSE;
rasterizationStateCI.rasterizerDiscardEnable = VK_FALSE;
rasterizationStateCI.depthBiasEnable = VK_FALSE;
rasterizationStateCI.lineWidth = 1.0f;
// Color blend state describes how blend factors are calculated (if used)
// We need one blend attachment state per color attachment (even if blending is not used)
VkPipelineColorBlendAttachmentState blendAttachmentState{};
blendAttachmentState.colorWriteMask = 0xf;
blendAttachmentState.blendEnable = VK_FALSE;
VkPipelineColorBlendStateCreateInfo colorBlendStateCI{ VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO };
colorBlendStateCI.attachmentCount = 1;
colorBlendStateCI.pAttachments = &blendAttachmentState;
// Viewport state sets the number of viewports and scissor used in this pipeline
// Note: This is actually overridden by the dynamic states (see below)
VkPipelineViewportStateCreateInfo viewportStateCI{ VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO };
viewportStateCI.viewportCount = 1;
viewportStateCI.scissorCount = 1;
// Enable dynamic states
// Most states are baked into the pipeline, but there is somee state that can be dynamically changed within the command buffer to mak e things easuer
// To be able to change these we need do specify which dynamic states will be changed using this pipeline. Their actual states are set later on in the command buffer
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicStateCI{ VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO };
dynamicStateCI.pDynamicStates = dynamicStateEnables.data();
dynamicStateCI.dynamicStateCount = static_cast<uint32_t>(dynamicStateEnables.size());
// Depth and stencil state containing depth and stencil compare and test operations
// We only use depth tests and want depth tests and writes to be enabled and compare with less or equal
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI{ VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO };
depthStencilStateCI.depthTestEnable = VK_TRUE;
depthStencilStateCI.depthWriteEnable = VK_TRUE;
depthStencilStateCI.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL;
depthStencilStateCI.depthBoundsTestEnable = VK_FALSE;
depthStencilStateCI.back.failOp = VK_STENCIL_OP_KEEP;
depthStencilStateCI.back.passOp = VK_STENCIL_OP_KEEP;
depthStencilStateCI.back.compareOp = VK_COMPARE_OP_ALWAYS;
depthStencilStateCI.stencilTestEnable = VK_FALSE;
depthStencilStateCI.front = depthStencilStateCI.back;
// This example does not make use of multi sampling (for anti-aliasing), the state must still be set and passed to the pipeline
VkPipelineMultisampleStateCreateInfo multisampleStateCI{ VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO };
multisampleStateCI.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
// Vertex input descriptions
// Specifies the vertex input parameters for a pipeline
// Vertex input binding
// This example uses a single vertex input binding at binding point 0 (see vkCmdBindVertexBuffers)
VkVertexInputBindingDescription vertexInputBinding{};
vertexInputBinding.binding = 0;
vertexInputBinding.stride = sizeof(Vertex);
vertexInputBinding.inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
// Input attribute bindings describe shader attribute locations and memory layouts
std::array<VkVertexInputAttributeDescription, 2> vertexInputAttributs;
// These match the following shader layout (see triangle.vert):
// layout (location = 0) in vec3 inPos;
// layout (location = 1) in vec3 inColor;
// Attribute location 0: Position
vertexInputAttributs[0].binding = 0;
vertexInputAttributs[0].location = 0;
// Position attribute is three 32 bit signed (SFLOAT) floats (R32 G32 B32)
vertexInputAttributs[0].format = VK_FORMAT_R32G32B32_SFLOAT;
vertexInputAttributs[0].offset = offsetof(Vertex, position);
// Attribute location 1: Color
vertexInputAttributs[1].binding = 0;
vertexInputAttributs[1].location = 1;
// Color attribute is three 32 bit signed (SFLOAT) floats (R32 G32 B32)
vertexInputAttributs[1].format = VK_FORMAT_R32G32B32_SFLOAT;
vertexInputAttributs[1].offset = offsetof(Vertex, color);
// Vertex input state used for pipeline creation
VkPipelineVertexInputStateCreateInfo vertexInputStateCI{ VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO };
vertexInputStateCI.vertexBindingDescriptionCount = 1;
vertexInputStateCI.pVertexBindingDescriptions = &vertexInputBinding;
vertexInputStateCI.vertexAttributeDescriptionCount = 2;
vertexInputStateCI.pVertexAttributeDescriptions = vertexInputAttributs.data();
// Shaders
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages{};
// Vertex shader
shaderStages[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
shaderStages[0].stage = VK_SHADER_STAGE_VERTEX_BIT;
shaderStages[0].module = loadSPIRVShader(getShadersPath() + "triangle/triangle.vert.spv");
shaderStages[0].pName = "main";
assert(shaderStages[0].module != VK_NULL_HANDLE);
// Fragment shader
shaderStages[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
shaderStages[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT;
shaderStages[1].module = loadSPIRVShader(getShadersPath() + "triangle/triangle.frag.spv");
shaderStages[1].pName = "main";
assert(shaderStages[1].module != VK_NULL_HANDLE);
// Set pipeline shader stage info
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCI.pStages = shaderStages.data();
// Attachment information for dynamic rendering
VkPipelineRenderingCreateInfoKHR pipelineRenderingCI{ VK_STRUCTURE_TYPE_PIPELINE_RENDERING_CREATE_INFO_KHR };
pipelineRenderingCI.colorAttachmentCount = 1;
pipelineRenderingCI.pColorAttachmentFormats = &swapChain.colorFormat;
pipelineRenderingCI.depthAttachmentFormat = depthFormat;
pipelineRenderingCI.stencilAttachmentFormat = depthFormat;
// Assign the pipeline states to the pipeline creation info structure
pipelineCI.pVertexInputState = &vertexInputStateCI;
pipelineCI.pInputAssemblyState = &inputAssemblyStateCI;
pipelineCI.pRasterizationState = &rasterizationStateCI;
pipelineCI.pColorBlendState = &colorBlendStateCI;
pipelineCI.pMultisampleState = &multisampleStateCI;
pipelineCI.pViewportState = &viewportStateCI;
pipelineCI.pDepthStencilState = &depthStencilStateCI;
pipelineCI.pDynamicState = &dynamicStateCI;
pipelineCI.pNext = &pipelineRenderingCI;
// Create rendering pipeline using the specified states
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline));
// Shader modules can safely be destroyed when the pipeline has been created
vkDestroyShaderModule(device, shaderStages[0].module, nullptr);
vkDestroyShaderModule(device, shaderStages[1].module, nullptr);
}
void createUniformBuffers()
{
// Prepare and initialize the per-frame uniform buffer blocks containing shader uniforms
// Single uniforms like in OpenGL are no longer present in Vulkan. All Shader uniforms are passed via uniform buffer blocks
// Vertex shader uniform buffer block
VkBufferCreateInfo bufferInfo{ VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
VkMemoryAllocateInfo allocInfo{ VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
allocInfo.allocationSize = 0;
allocInfo.memoryTypeIndex = 0;
bufferInfo.size = sizeof(ShaderData);
// This buffer will be used as a uniform buffer
bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
// Create the buffers
for (uint32_t i = 0; i < MAX_CONCURRENT_FRAMES; i++) {
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferInfo, nullptr, &uniformBuffers[i].handle));
// Get memory requirements including size, alignment and memory type
VkMemoryRequirements memReqs;
vkGetBufferMemoryRequirements(device, uniformBuffers[i].handle, &memReqs);
allocInfo.allocationSize = memReqs.size;
// Get the memory type index that supports host visible memory access
// Most implementations offer multiple memory types and selecting the correct one to allocate memory from is crucial
// We also want the buffer to be host coherent so we don't have to flush (or sync after every update).
allocInfo.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
// Allocate memory for the uniform buffer
VK_CHECK_RESULT(vkAllocateMemory(device, &allocInfo, nullptr, &(uniformBuffers[i].memory)));
// Bind memory to buffer
VK_CHECK_RESULT(vkBindBufferMemory(device, uniformBuffers[i].handle, uniformBuffers[i].memory, 0));
// We map the buffer once, so we can update it without having to map it again
VK_CHECK_RESULT(vkMapMemory(device, uniformBuffers[i].memory, 0, sizeof(ShaderData), 0, (void**)&uniformBuffers[i].mapped));
}
}
void prepare()
{
VulkanExampleBase::prepare();
createSynchronizationPrimitives();
createCommandBuffers();
createVertexBuffer();
createUniformBuffers();
createDescriptors();
createPipeline();
prepared = true;
}
virtual void render() override
{
// Use a fence to wait until the command buffer has finished execution before using it again
vkWaitForFences(device, 1, &waitFences[currentFrame], VK_TRUE, UINT64_MAX);
VK_CHECK_RESULT(vkResetFences(device, 1, &waitFences[currentFrame]));
// Get the next swap chain image from the implementation
// Note that the implementation is free to return the images in any order, so we must use the acquire function and can't just cycle through the images/imageIndex on our own
uint32_t imageIndex;
VkResult result = vkAcquireNextImageKHR(device, swapChain.swapChain, UINT64_MAX, presentCompleteSemaphores[currentFrame], VK_NULL_HANDLE, &imageIndex);
if (result == VK_ERROR_OUT_OF_DATE_KHR) {
windowResize();
return;
} else if ((result != VK_SUCCESS) && (result != VK_SUBOPTIMAL_KHR)) {
throw "Could not acquire the next swap chain image!";
}
// Update the uniform buffer for the next frame
ShaderData shaderData{};
shaderData.projectionMatrix = camera.matrices.perspective;
shaderData.viewMatrix = camera.matrices.view;
shaderData.modelMatrix = glm::mat4(1.0f);
// Copy the current matrices to the current frame's uniform buffer. As we requested a host coherent memory type for the uniform buffer, the write is instantly visible to the GPU.
memcpy(uniformBuffers[currentFrame].mapped, &shaderData, sizeof(ShaderData));
// Build the command buffer for the next frame to render
vkResetCommandBuffer(commandBuffers[currentFrame], 0);
VkCommandBufferBeginInfo cmdBufInfo{ VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO };
const VkCommandBuffer commandBuffer = commandBuffers[currentFrame];
VK_CHECK_RESULT(vkBeginCommandBuffer(commandBuffer, &cmdBufInfo));
// With dynamic rendering we need to explicitly add layout transitions by using barriers, this set of barriers prepares the color and depth images for output
vks::tools::insertImageMemoryBarrier(commandBuffer, swapChain.buffers[imageIndex].image, 0, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VkImageSubresourceRange{ VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 });
vks::tools::insertImageMemoryBarrier(commandBuffer, depthStencil.image, 0, VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL, VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT,VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT, VkImageSubresourceRange{ VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT, 0, 1, 0, 1 });
// New structures are used to define the attachments used in dynamic rendering
// Color attachment
VkRenderingAttachmentInfo colorAttachment{ VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO };
colorAttachment.imageView = swapChain.buffers[imageIndex].view;
colorAttachment.imageLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
colorAttachment.clearValue.color = { 0.0f, 0.0f, 0.2f, 0.0f };
// Depth/stencil attachment
VkRenderingAttachmentInfo depthStencilAttachment{ VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO };
depthStencilAttachment.imageView = depthStencil.view;
depthStencilAttachment.imageLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
depthStencilAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
depthStencilAttachment.storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
depthStencilAttachment.clearValue.depthStencil = { 1.0f, 0 };
VkRenderingInfo renderingInfo{ VK_STRUCTURE_TYPE_RENDERING_INFO_KHR };
renderingInfo.renderArea = { 0, 0, width, height };
renderingInfo.layerCount = 1;
renderingInfo.colorAttachmentCount = 1;
renderingInfo.pColorAttachments = &colorAttachment;
renderingInfo.pDepthAttachment = &depthStencilAttachment;
renderingInfo.pStencilAttachment = &depthStencilAttachment;
// Start a dynamic rendering section
vkCmdBeginRendering(commandBuffer, &renderingInfo);
// Update dynamic viewport state
VkViewport viewport{ 0.0f, 0.0f, (float)width, (float)height, 0.0f, 1.0f };
vkCmdSetViewport(commandBuffer, 0, 1, &viewport);
// Update dynamic scissor state
VkRect2D scissor{ 0, 0, width, height };
vkCmdSetScissor(commandBuffer, 0, 1, &scissor);
// Bind descriptor set for the currrent frame's uniform buffer, so the shader uses the data from that buffer for this draw
vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &uniformBuffers[currentFrame].descriptorSet, 0, nullptr);
// The pipeline (state object) contains all states of the rendering pipeline, binding it will set all the states specified at pipeline creation time
vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
// Bind triangle vertex buffer (contains position and colors)
VkDeviceSize offsets[1]{ 0 };
vkCmdBindVertexBuffers(commandBuffer, 0, 1, &vertexBuffer.handle, offsets);
// Bind triangle index buffer
vkCmdBindIndexBuffer(commandBuffer, indexBuffer.handle, 0, VK_INDEX_TYPE_UINT32);
// Draw indexed triangle
vkCmdDrawIndexed(commandBuffer, indexCount, 1, 0, 0, 1);
// Finish the current dynamic rendering section
vkCmdEndRendering(commandBuffer);
// This barrier prepares the color image for presentation, we don't need to care for the depth image
vks::tools::insertImageMemoryBarrier(commandBuffer, swapChain.buffers[imageIndex].image, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, 0, VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_2_NONE, VkImageSubresourceRange{ VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 });
VK_CHECK_RESULT(vkEndCommandBuffer(commandBuffer));
// Submit the command buffer to the graphics queue
// Pipeline stage at which the queue submission will wait (via pWaitSemaphores)
VkPipelineStageFlags waitStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
// The submit info structure specifies a command buffer queue submission batch
VkSubmitInfo submitInfo{ VK_STRUCTURE_TYPE_SUBMIT_INFO };
submitInfo.pWaitDstStageMask = &waitStageMask; // Pointer to the list of pipeline stages that the semaphore waits will occur at
submitInfo.pCommandBuffers = &commandBuffer; // Command buffers(s) to execute in this batch (submission)
submitInfo.commandBufferCount = 1; // We submit a single command buffer
// Semaphore to wait upon before the submitted command buffer starts executing
submitInfo.pWaitSemaphores = &presentCompleteSemaphores[currentFrame];
submitInfo.waitSemaphoreCount = 1;
// Semaphore to be signaled when command buffers have completed
submitInfo.pSignalSemaphores = &renderCompleteSemaphores[currentFrame];
submitInfo.signalSemaphoreCount = 1;
// Submit to the graphics queue passing a wait fence
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, waitFences[currentFrame]));
// Present the current frame buffer to the swap chain
// Pass the semaphore signaled by the command buffer submission from the submit info as the wait semaphore for swap chain presentation
// This ensures that the image is not presented to the windowing system until all commands have been submitted
VkPresentInfoKHR presentInfo{ VK_STRUCTURE_TYPE_PRESENT_INFO_KHR };
presentInfo.waitSemaphoreCount = 1;
presentInfo.pWaitSemaphores = &renderCompleteSemaphores[currentFrame];
presentInfo.swapchainCount = 1;
presentInfo.pSwapchains = &swapChain.swapChain;
presentInfo.pImageIndices = &imageIndex;
result = vkQueuePresentKHR(queue, &presentInfo);
if ((result == VK_ERROR_OUT_OF_DATE_KHR) || (result == VK_SUBOPTIMAL_KHR)) {
windowResize();
} else if (result != VK_SUCCESS) {
throw "Could not present the image to the swap chain!";
}
// Select the next frame to render to, based on the max. no. of concurrent frames
currentFrame = (currentFrame + 1) % MAX_CONCURRENT_FRAMES;
}
// Override these as otherwise the base class would generate frame buffers and render passes
void setupFrameBuffer() override {}
void setupRenderPass() override {}
};
// OS specific main entry points
// Most of the code base is shared for the different supported operating systems, but stuff like message handling differs
#if defined(_WIN32)
// Windows entry point
VulkanExample *vulkanExample;
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
if (vulkanExample != NULL)
{
vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam);
}
return (DefWindowProc(hWnd, uMsg, wParam, lParam));
}
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow)
{
for (size_t i = 0; i < __argc; i++) { VulkanExample::args.push_back(__argv[i]); };
vulkanExample = new VulkanExample();
vulkanExample->initVulkan();
vulkanExample->setupWindow(hInstance, WndProc);
vulkanExample->prepare();
vulkanExample->renderLoop();
delete(vulkanExample);
return 0;
}
#elif defined(__ANDROID__)
// Android entry point
VulkanExample *vulkanExample;
void android_main(android_app* state)
{
vulkanExample = new VulkanExample();
state->userData = vulkanExample;
state->onAppCmd = VulkanExample::handleAppCommand;
state->onInputEvent = VulkanExample::handleAppInput;
androidApp = state;
vulkanExample->renderLoop();
delete(vulkanExample);
}
#elif defined(_DIRECT2DISPLAY)
// Linux entry point with direct to display wsi
// Direct to Displays (D2D) is used on embedded platforms
VulkanExample *vulkanExample;
static void handleEvent()
{
}
int main(const int argc, const char *argv[])
{
for (size_t i = 0; i < argc; i++) { VulkanExample::args.push_back(argv[i]); };
vulkanExample = new VulkanExample();
vulkanExample->initVulkan();
vulkanExample->prepare();
vulkanExample->renderLoop();
delete(vulkanExample);
return 0;
}
#elif defined(VK_USE_PLATFORM_DIRECTFB_EXT)
VulkanExample *vulkanExample;
static void handleEvent(const DFBWindowEvent *event)
{
if (vulkanExample != NULL)
{
vulkanExample->handleEvent(event);
}
}
int main(const int argc, const char *argv[])
{
for (size_t i = 0; i < argc; i++) { VulkanExample::args.push_back(argv[i]); };
vulkanExample = new VulkanExample();
vulkanExample->initVulkan();
vulkanExample->setupWindow();
vulkanExample->prepare();
vulkanExample->renderLoop();
delete(vulkanExample);
return 0;
}
#elif defined(VK_USE_PLATFORM_WAYLAND_KHR)
VulkanExample *vulkanExample;
int main(const int argc, const char *argv[])
{
for (size_t i = 0; i < argc; i++) { VulkanExample::args.push_back(argv[i]); };
vulkanExample = new VulkanExample();
vulkanExample->initVulkan();
vulkanExample->setupWindow();
vulkanExample->prepare();
vulkanExample->renderLoop();
delete(vulkanExample);
return 0;
}
#elif defined(__linux__) || defined(__FreeBSD__)
// Linux entry point
VulkanExample *vulkanExample;
#if defined(VK_USE_PLATFORM_XCB_KHR)
static void handleEvent(const xcb_generic_event_t *event)
{
if (vulkanExample != NULL)
{
vulkanExample->handleEvent(event);
}
}
#else
static void handleEvent()
{
}
#endif
int main(const int argc, const char *argv[])
{
for (size_t i = 0; i < argc; i++) { VulkanExample::args.push_back(argv[i]); };
vulkanExample = new VulkanExample();
vulkanExample->initVulkan();
vulkanExample->setupWindow();
vulkanExample->prepare();
vulkanExample->renderLoop();
delete(vulkanExample);
return 0;
}
#elif (defined(VK_USE_PLATFORM_MACOS_MVK) || defined(VK_USE_PLATFORM_METAL_EXT)) && defined(VK_EXAMPLE_XCODE_GENERATED)
VulkanExample *vulkanExample;
int main(const int argc, const char *argv[])
{
@autoreleasepool
{
for (size_t i = 0; i < argc; i++) { VulkanExample::args.push_back(argv[i]); };
vulkanExample = new VulkanExample();
vulkanExample->initVulkan();
vulkanExample->setupWindow(nullptr);
vulkanExample->prepare();
vulkanExample->renderLoop();
delete(vulkanExample);
}
return 0;
}
#elif defined(VK_USE_PLATFORM_SCREEN_QNX)
VULKAN_EXAMPLE_MAIN()
#endif