procedural-3d-engine/occlusionquery/occlusionquery.cpp

707 lines
23 KiB
C++

/*
* Vulkan Example - Using occlusion query for visbility testing
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#define VERTEX_BUFFER_BIND_ID 0
#define ENABLE_VALIDATION false
// Vertex layout used in this example
// Vertex layout for this example
std::vector<vkMeshLoader::VertexLayout> vertexLayout =
{
vkMeshLoader::VERTEX_LAYOUT_POSITION,
vkMeshLoader::VERTEX_LAYOUT_NORMAL,
vkMeshLoader::VERTEX_LAYOUT_COLOR,
};
class VulkanExample : public VulkanExampleBase
{
public:
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
struct {
vkMeshLoader::MeshBuffer teapot;
vkMeshLoader::MeshBuffer plane;
vkMeshLoader::MeshBuffer sphere;
} meshes;
struct {
vkTools::UniformData vsScene;
vkTools::UniformData teapot;
vkTools::UniformData sphere;
} uniformData;
struct {
glm::mat4 projection;
glm::mat4 model;
glm::vec4 lightPos = glm::vec4(10.0f, 10.0f, 10.0f, 1.0f);
float visible;
} uboVS;
struct {
VkPipeline solid;
VkPipeline occluder;
// Pipeline with basic shaders used for occlusion pass
VkPipeline simple;
} pipelines;
struct {
VkDescriptorSet teapot;
VkDescriptorSet sphere;
} descriptorSets;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
// Stores occlusion query results
struct {
VkBuffer buffer;
VkDeviceMemory memory;
} queryResult;
// Pool that stores all occlusion queries
VkQueryPool queryPool;
// Passed query samples
uint64_t passedSamples[2] = { 1,1 };
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
width = 1280;
height = 720;
zoom = -35.0f;
zoomSpeed = 2.5f;
rotationSpeed = 0.5f;
rotation = { 0.0, -123.75, 0.0 };
title = "Vulkan Example - Occlusion queries";
#ifdef _WIN32
if (!ENABLE_VALIDATION)
{
setupConsole(title);
}
#endif
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
vkDestroyPipeline(device, pipelines.solid, nullptr);
vkDestroyPipeline(device, pipelines.occluder, nullptr);
vkDestroyPipeline(device, pipelines.simple, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vkDestroyQueryPool(device, queryPool, nullptr);
vkDestroyBuffer(device, queryResult.buffer, nullptr);
vkFreeMemory(device, queryResult.memory, nullptr);
vkTools::destroyUniformData(device, &uniformData.vsScene);
vkTools::destroyUniformData(device, &uniformData.sphere);
vkTools::destroyUniformData(device, &uniformData.teapot);
vkMeshLoader::freeMeshBufferResources(device, &meshes.sphere);
vkMeshLoader::freeMeshBufferResources(device, &meshes.plane);
vkMeshLoader::freeMeshBufferResources(device, &meshes.teapot);
}
// Create a buffer for storing the query result
// Setup a query pool
void setupQueryResultBuffer()
{
uint32_t bufSize = 2 * sizeof(uint64_t);
VkMemoryRequirements memReqs;
VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo();
VkBufferCreateInfo bufferCreateInfo =
vkTools::initializers::bufferCreateInfo(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
bufSize);
// Results are saved in a host visible buffer for easy access by the application
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &queryResult.buffer));
vkGetBufferMemoryRequirements(device, queryResult.buffer, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &queryResult.memory));
VK_CHECK_RESULT(vkBindBufferMemory(device, queryResult.buffer, queryResult.memory, 0));
// Create query pool
VkQueryPoolCreateInfo queryPoolInfo = {};
queryPoolInfo.sType = VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO;
// Query pool will be created for occlusion queries
queryPoolInfo.queryType = VK_QUERY_TYPE_OCCLUSION;
queryPoolInfo.queryCount = 2;
VK_CHECK_RESULT(vkCreateQueryPool(device, &queryPoolInfo, NULL, &queryPool));
}
// Retrieves the results of the occlusion queries submitted to the command buffer
void getQueryResults()
{
// We use vkGetQueryResults to copy the results into a host visible buffer
vkGetQueryPoolResults(
device,
queryPool,
0,
2,
sizeof(passedSamples),
passedSamples,
sizeof(uint64_t),
// Store results a 64 bit values and wait until the results have been finished
// If you don't want to wait, you can use VK_QUERY_RESULT_WITH_AVAILABILITY_BIT
// which also returns the state of the result (ready) in the result
VK_QUERY_RESULT_64_BIT | VK_QUERY_RESULT_WAIT_BIT);
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
// Reset query pool
// Must be done outside of render pass
vkCmdResetQueryPool(drawCmdBuffers[i], queryPool, 0, 2);
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vkTools::initializers::viewport(
(float)width,
(float)height,
0.0f,
1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D(
width,
height,
0,
0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
glm::mat4 modelMatrix = glm::mat4();
// Occlusion pass
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.simple);
// Occluder first
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.plane.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.plane.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], meshes.plane.indexCount, 1, 0, 0, 0);
// Teapot
vkCmdBeginQuery(drawCmdBuffers[i], queryPool, 0, VK_FLAGS_NONE);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.teapot, 0, NULL);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.teapot.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.teapot.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], meshes.teapot.indexCount, 1, 0, 0, 0);
vkCmdEndQuery(drawCmdBuffers[i], queryPool, 0);
// Sphere
vkCmdBeginQuery(drawCmdBuffers[i], queryPool, 1, VK_FLAGS_NONE);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.sphere, 0, NULL);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.sphere.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.sphere.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], meshes.sphere.indexCount, 1, 0, 0, 0);
vkCmdEndQuery(drawCmdBuffers[i], queryPool, 1);
// Visible pass
// Clear color and depth attachments
VkClearAttachment clearAttachments[2] = {};
clearAttachments[0].aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
clearAttachments[0].clearValue.color = defaultClearColor;
clearAttachments[0].colorAttachment = 0;
clearAttachments[1].aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
clearAttachments[1].clearValue.depthStencil = { 1.0f, 0 };
VkClearRect clearRect = {};
clearRect.layerCount = 1;
clearRect.rect.offset = { 0, 0 };
clearRect.rect.extent = { width, height };
vkCmdClearAttachments(
drawCmdBuffers[i],
2,
clearAttachments,
1,
&clearRect);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.solid);
// Teapot
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.teapot, 0, NULL);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.teapot.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.teapot.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], meshes.teapot.indexCount, 1, 0, 0, 0);
// Sphere
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.sphere, 0, NULL);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.sphere.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.sphere.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], meshes.sphere.indexCount, 1, 0, 0, 0);
// Occluder
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.occluder);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.plane.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.plane.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], meshes.plane.indexCount, 1, 0, 0, 0);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
// Read query results for displaying in next frame
getQueryResults();
}
void loadMeshes()
{
loadMesh(getAssetPath() + "models/plane_z.3ds", &meshes.plane, vertexLayout, 0.4f);
loadMesh(getAssetPath() + "models/teapot.3ds", &meshes.teapot, vertexLayout, 0.3f);
loadMesh(getAssetPath() + "models/sphere.3ds", &meshes.sphere, vertexLayout, 0.3f);
}
void setupVertexDescriptions()
{
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vkTools::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
vkMeshLoader::vertexSize(vertexLayout),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
// Describes memory layout and shader positions
vertices.attributeDescriptions.resize(3);
// Location 0 : Position
vertices.attributeDescriptions[0] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32_SFLOAT,
0);
// Location 1 : Normal
vertices.attributeDescriptions[1] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 3);
// Location 3 : Color
vertices.attributeDescriptions[2] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
2,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 6);
vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupDescriptorPool()
{
std::vector<VkDescriptorPoolSize> poolSizes =
{
// One uniform buffer block for each mesh
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vkTools::initializers::descriptorPoolCreateInfo(
poolSizes.size(),
poolSizes.data(),
3);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT,
0)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vkTools::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
setLayoutBindings.size());
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vkTools::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
}
void setupDescriptorSets()
{
VkDescriptorSetAllocateInfo allocInfo =
vkTools::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
// Occluder (plane)
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformData.vsScene.descriptor)
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
// Teapot
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.teapot));
writeDescriptorSets[0].dstSet = descriptorSets.teapot;
writeDescriptorSets[0].pBufferInfo = &uniformData.teapot.descriptor;
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
// Sphere
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.sphere));
writeDescriptorSets[0].dstSet = descriptorSets.sphere;
writeDescriptorSets[0].pBufferInfo = &uniformData.sphere.descriptor;
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vkTools::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_BACK_BIT,
VK_FRONT_FACE_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vkTools::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vkTools::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vkTools::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vkTools::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
dynamicStateEnables.size(),
0);
// Solid rendering pipeline
// Load shaders
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
shaderStages[0] = loadShader(getAssetPath() + "shaders/occlusionquery/mesh.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/occlusionquery/mesh.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vkTools::initializers::pipelineCreateInfo(
pipelineLayout,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data();
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid));
// Basic pipeline for coloring occluded objects
shaderStages[0] = loadShader(getAssetPath() + "shaders/occlusionquery/simple.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/occlusionquery/simple.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
rasterizationState.cullMode = VK_CULL_MODE_NONE;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.simple));
// Visual pipeline for the occluder
shaderStages[0] = loadShader(getAssetPath() + "shaders/occlusionquery/occluder.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/occlusionquery/occluder.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// Enable blending
blendAttachmentState.blendEnable = VK_TRUE;
blendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD;
blendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_SRC_COLOR;
blendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.occluder));
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Vertex shader uniform buffer block
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
sizeof(uboVS),
&uboVS,
&uniformData.vsScene.buffer,
&uniformData.vsScene.memory,
&uniformData.vsScene.descriptor);
// Teapot
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
sizeof(uboVS),
&uboVS,
&uniformData.teapot.buffer,
&uniformData.teapot.memory,
&uniformData.teapot.descriptor);
// Sphere
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
sizeof(uboVS),
&uboVS,
&uniformData.sphere.buffer,
&uniformData.sphere.memory,
&uniformData.sphere.descriptor);
updateUniformBuffers();
}
void updateUniformBuffers()
{
// Vertex shader
glm::mat4 viewMatrix = glm::mat4();
uboVS.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.1f, 256.0f);
viewMatrix = glm::translate(viewMatrix, glm::vec3(0.0f, 0.0f, zoom));
glm::mat4 rotMatrix = glm::mat4();
rotMatrix = glm::rotate(rotMatrix, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
rotMatrix = glm::rotate(rotMatrix, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
rotMatrix = glm::rotate(rotMatrix, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
uboVS.model = glm::mat4();
uboVS.model = viewMatrix * rotMatrix;;
uboVS.visible = 1.0f;
uint8_t *pData;
VK_CHECK_RESULT(vkMapMemory(device, uniformData.vsScene.memory, 0, sizeof(uboVS), 0, (void **)&pData));
memcpy(pData, &uboVS, sizeof(uboVS));
vkUnmapMemory(device, uniformData.vsScene.memory);
// Teapot
// Toggle color depending on visibility
uboVS.visible = (passedSamples[0] > 0) ? 1.0f : 0.0f;
uboVS.model = viewMatrix * rotMatrix * glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, -10.0f));
VK_CHECK_RESULT(vkMapMemory(device, uniformData.teapot.memory, 0, sizeof(uboVS), 0, (void **)&pData));
memcpy(pData, &uboVS, sizeof(uboVS));
vkUnmapMemory(device, uniformData.teapot.memory);
// Sphere
// Toggle color depending on visibility
uboVS.visible = (passedSamples[1] > 0) ? 1.0f : 0.0f;
uboVS.model = viewMatrix * rotMatrix * glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, 10.0f));
VK_CHECK_RESULT(vkMapMemory(device, uniformData.sphere.memory, 0, sizeof(uboVS), 0, (void **)&pData));
memcpy(pData, &uboVS, sizeof(uboVS));
vkUnmapMemory(device, uniformData.sphere.memory);
}
void prepare()
{
VulkanExampleBase::prepare();
loadMeshes();
setupQueryResultBuffer();
setupVertexDescriptions();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSets();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
}
virtual void viewChanged()
{
vkDeviceWaitIdle(device);
updateUniformBuffers();
std::cout << "Passed samples : Teapot = " << passedSamples[0] << " / Sphere = " << passedSamples[1] <<"\n";
}
};
VulkanExample *vulkanExample;
#if defined(_WIN32)
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
if (vulkanExample != NULL)
{
vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam);
}
return (DefWindowProc(hWnd, uMsg, wParam, lParam));
}
#elif defined(__linux__) && !defined(__ANDROID__)
static void handleEvent(const xcb_generic_event_t *event)
{
if (vulkanExample != NULL)
{
vulkanExample->handleEvent(event);
}
}
#endif
// Main entry point
#if defined(_WIN32)
// Windows entry point
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow)
#elif defined(__ANDROID__)
// Android entry point
void android_main(android_app* state)
#elif defined(__linux__)
// Linux entry point
int main(const int argc, const char *argv[])
#endif
{
#if defined(__ANDROID__)
// Removing this may cause the compiler to omit the main entry point
// which would make the application crash at start
app_dummy();
#endif
vulkanExample = new VulkanExample();
#if defined(_WIN32)
vulkanExample->setupWindow(hInstance, WndProc);
#elif defined(__ANDROID__)
// Attach vulkan example to global android application state
state->userData = vulkanExample;
state->onAppCmd = VulkanExample::handleAppCommand;
state->onInputEvent = VulkanExample::handleAppInput;
vulkanExample->androidApp = state;
#elif defined(__linux__)
vulkanExample->setupWindow();
#endif
#if !defined(__ANDROID__)
vulkanExample->initSwapchain();
vulkanExample->prepare();
#endif
vulkanExample->renderLoop();
delete(vulkanExample);
#if !defined(__ANDROID__)
return 0;
#endif
}